影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

新版高中數(shù)學精講精練新人教A版第03章 三角函數(shù)A

上傳人:仙*** 文檔編號:64189825 上傳時間:2022-03-21 格式:DOC 頁數(shù):11 大小:414KB
收藏 版權申訴 舉報 下載
新版高中數(shù)學精講精練新人教A版第03章 三角函數(shù)A_第1頁
第1頁 / 共11頁
新版高中數(shù)學精講精練新人教A版第03章 三角函數(shù)A_第2頁
第2頁 / 共11頁
新版高中數(shù)學精講精練新人教A版第03章 三角函數(shù)A_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版高中數(shù)學精講精練新人教A版第03章 三角函數(shù)A》由會員分享,可在線閱讀,更多相關《新版高中數(shù)學精講精練新人教A版第03章 三角函數(shù)A(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1

2、 1 20xx高中數(shù)學精講精練 第三章 三角函數(shù)A 【知識導讀】 任意角 的概念 角度制與 弧度制 任意角的 三角函數(shù) 弧長與扇形 面積公式 三角函數(shù)的 圖象和性質(zhì) 和 角 公 式 差 角 公 式 幾個三角 恒等式 倍 角 公 式 同角三角函數(shù)關系 誘 導公 式 正弦定理與余弦定理 解斜三角形及其應用 化簡、計算、求值 與

3、證明 【方法點撥】 三角函數(shù)是一種重要的初等函數(shù),它與數(shù)學的其它部分如解析幾何、立體幾何及向量等有著廣泛的聯(lián)系,同時它也提供了一種解決數(shù)學問題的重要方法——“三角法”.這一部分的內(nèi)容,具有以下幾個特點: 1.公式繁雜.公式雖多,但公式間的聯(lián)系非常密切,規(guī)律性強.弄清公式間的相互聯(lián)系和推導體系,是記住這些公式的關鍵. 2.思想豐富.化歸、數(shù)形結(jié)合、分類討論和函數(shù)與方程的思想貫穿于本單元的始終,類比的思維方法在本單元中也得到充分的應用.如將任意角的三角函數(shù)值的問題化歸為銳角的三角函數(shù)的問題,將不同名的三角函數(shù)問題化成同名的三角函數(shù)的問題,將不同角

4、的三角函數(shù)問題化成同角的三角函數(shù)問題等. 3.變換靈活.有角的變換、公式的變換、三角函數(shù)名稱的變換、三角函數(shù)次數(shù)的變換、三角函數(shù)表達形式的變換及一些常量的變換等,并且有的變換技巧性較強. 4.應用廣泛.三角函數(shù)與數(shù)學中的其它知識的結(jié)合點非常多,它是解決立體幾何、解析幾何及向量問題的重要工具,并且這部分知識在今后的學習和研究中起著十分重要的作用,比如在物理學、天文學、測量學及其它各門科學技術都有廣泛的應用. 第1課 三角函數(shù)的概念 【考點導讀】 1. 理解任意角和弧度的概念,能正確進行弧度與角度的換算.   角的概念推廣后,有正角、負角和零角;與終邊相同的角連同角本身,可構成

5、一個集合;把長度等于半徑的圓弧所對的圓心角定義為1弧度的角,熟練掌握角度與弧度的互換,能運用弧長公式及扇形的面積公式=(為弧長)解決問題. 2. 理解任意角的正弦、余弦、正切的定義. 角的概念推廣以后,以角的頂點為坐標原點,角的始邊為x軸的正半軸,建立直角坐標系,在角的終邊上任取一點(不同于坐標原點),設(),則的三個三角函數(shù)值定義為:. 從定義中不難得出六個三角函數(shù)的定義域:正弦函數(shù)、余弦函數(shù)的定義域為R;正切函數(shù)的定義域為. 3. 掌握判斷三角函數(shù)值的符號的規(guī)律,熟記特殊角的三角函數(shù)值. 由三角函數(shù)的定義不難得出三個三角函數(shù)值的符號,可以簡記為:一正(第一象限內(nèi)全為正值),二正弦

6、(第二象限內(nèi)只有正弦值為正),三切(第三象限只有正切值為正),四余弦(第四象限內(nèi)只有余弦值為正).另外,熟記、、、、的三角函數(shù)值,對快速、準確地運算很有好處. 4. 掌握正弦線、余弦線、正切線的概念.   在平面直角坐標系中,正確地畫出一個角的正弦線、余弦線和正切線,并能運用正弦線、余弦線和正切線理解三角函數(shù)的性質(zhì)、解決三角不等式等問題. 【基礎練習】 1. 化成的形式是     ?。? 第二或第四象限 2.已知為第三象限角,則所在的象限是 . 3.已知角的終邊過點,則=   , =     . 正 4.的符號為

7、 . 5.已知角的終邊上一點(),且,求,的值. 解:由三角函數(shù)定義知,,當時,,; 當時,,. 【范例解析】 例1.(1)已知角的終邊經(jīng)過一點,求的值; (2)已知角的終邊在一條直線上,求,的值. 分析:利用三角函數(shù)定義求解. 解:(1)由已知,.當時,,,,則; 當時,,,,則. (2)設點是角的終邊上一點,則; 當時,角是第一象限角,則; 當時,角是第三象限角,則. 點評:要注意對參數(shù)進行分類討論. 例2.(1)若,則在第_____________象限. (2)若角是第二象限角,則,,,,中能確定是正值的有____個. 解:(1)由,得,同號,故在第一,三

8、象限. (2)由角是第二象限角,即,得,,故僅有為正值. 點評:準確表示角的范圍,由此確定三角函數(shù)的符號. 例3. 一扇形的周長為,當扇形的圓心角等于多少時,這個扇形的面積最大?最大面積是多少? 分析:選取變量,建立目標函數(shù)求最值. 解:設扇形的半徑為x㎝,則弧長為㎝,故面積為, 當時,面積最大,此時,,, 所以當弧度時,扇形面積最大25. 點評:由于弧度制引入,三角函數(shù)就可以看成是以實數(shù)為自變量的函數(shù). 【反饋演練】 二 1.若且則在第_______象限. 三 2.已知,則點在第________象限. 3.已知角是第二象限,且為其終邊上一點,

9、若,則m的值為_______. 4.將時鐘的分針撥快,則時針轉(zhuǎn)過的弧度為      . 5.若,且與終邊相同,則= . 6.已知1弧度的圓心角所對的弦長2,則這個圓心角所對的弧長是_______,這個圓心角所在的扇形的面積是___________. 7.(1)已知扇形的周長是6cm,該扇形中心角是1弧度,求該扇形面積. (2)若扇形的面積為8,當扇形的中心角為多少弧度時,該扇形周長最小. 簡解:(1)該扇形面積2; (2),得,當且僅當時取等號.此時,,.

10、 第2課 同角三角函數(shù)關系及誘導公式 【考點導讀】 1.理解同角三角函數(shù)的基本關系式;同角的三角函數(shù)關系反映了同一個角的不同三角函數(shù)間的聯(lián)系. 2.掌握正弦,余弦的誘導公式;誘導公式則揭示了不同象限角的三角函數(shù)間的內(nèi)在規(guī)律,起著變名,變號,變角等作用. 【基礎練習】 1. tan600°=______. 2. 已知是第四象限角,,則______. - 3.已知,且,則tan=______. 4.sin15°cos75°+cos15°sin105°=___1___. 【范例解析】 例1.已知,求,的值. 分析:利用誘導公式結(jié)合同角關系,求值. 解:由,得

11、,是第二,三象限角. 若是第二象限角,則,; 若是第三象限角,則,. 點評:若已知正弦,余弦,正切的某一三角函數(shù)值,但沒有確定角所在的象限,可按角的象限進行分類,做到不漏不重復. 例2.已知是三角形的內(nèi)角,若,求的值. 分析:先求出的值,聯(lián)立方程組求解. 解:由兩邊平方,得,即. 又是三角形的內(nèi)角,,. 由,又,得. 聯(lián)立方程組,解得,得. 點評:由于,因此式子,,三者之間有密切的聯(lián)系,知其一,必能求其二. 【反饋演練】 1.已知,則的值為_____. 2.“”是“A=30o”的必要而不充分條件. 3.設,且,則的取值范圍是 4.已知,且,則的值是

12、 . 5.(1)已知,且,求的值. (2)已知,求的值. 解:(1)由,得. 原式=. (2), . 6.已知,求 (I)的值; (II)的值. 解:(I)∵ ;所以==. (II)由, 于是. 第3課 兩角和與差及倍角公式(一) 【考點導讀】 1.掌握兩角和與差,二倍角的正弦,余弦,正切公式,了解它們的內(nèi)在聯(lián)系; 2.能運用上述公式進行簡單的恒等變換; 3.三角式變換的關鍵是條件和結(jié)論之間在角,函數(shù)名稱及次數(shù)三方面的差異及聯(lián)系,然后通過“角變換”,“名稱變換”,“升降冪變換”找到已知式與所求式之間的聯(lián)系;

13、 4.證明三角恒等式的基本思路:根據(jù)等式兩端的特征,通過三角恒等變換,應用化繁為簡,左右歸一,變更命題等方法將等式兩端的“異”化“同”. 【基礎練習】 1. ___________. 3+cos2x 2. 化簡_____________. 3. 若f(sinx)=3-cos2x,則f(cosx)=___________ . 4.化簡:___________ . 【范例解析】 例 .化簡:(1); (2). (1)分析一:降次,切化弦. 解法一:原式=. 分析二:變“復角”為“單角”. 解法二:原式. (2)原式= ,,,原式=. 點評:化簡本質(zhì)

14、就是化繁為簡,一般從結(jié)構,名稱,角等幾個角度入手.如:切化弦,“復角”變“單角”,降次等等. 【反饋演練】 1.化簡. 2.若,化簡_________. 3.若0<α<β<,sin α+cos α = α,sin β+cos β= b,則與的大小關系是_________. 4.若,則的取值范圍是___________. 5.已知、均為銳角,且,則= 1 . 6.化簡:. 解:原式=. 7.求證:. 證明:左邊==右邊. 8.化簡:. 解:原式= . 第4課 兩角和與差及倍角公式(二) 【考點導讀】 1.能

15、熟練運用兩角和與差公式,二倍角公式求三角函數(shù)值; 2.三角函數(shù)求值類型:“給角求值”,“給值求值”,“給值求角” . 【基礎練習】 1.寫出下列各式的值: (1)_________; (2)_________; (3)_________; (4)____1_____. 2.已知則=_________. 3.求值:(1)_______;(2)_________. - 4.求值:____1____. 5.已知,則________. 6.若,則_________. 【范例解析】 例1.求值:(1); (2). 分析:切化弦,通分. 解

16、:(1)原式== . (2),又. 原式=. 點評:給角求值,注意尋找所給角與特殊角的聯(lián)系,如互余,互補等,利用誘導公式,和與差公式,二倍角公式進行轉(zhuǎn)換. 例2.設,,且,,求,. 分析:, . 解:由,,得,同理,可得 ,同理,得. 點評:尋求“已知角”與“未知角”之間的聯(lián)系,如:,等. 例3.若,,求的值. 分析一:. 解法一:,, 又,,. ,,. 所以,原式=. 分析二:. 解法二:原式= 又, 所以,原式. 點評:觀察“角”之間的聯(lián)系以尋找解題思路. 【反饋演練】 1.設,若,則=__________. 2.已知tan =2,則tanα的值為_______,tan的值為___________?。? 3.若,則=___________. 4.若,則   ?。? 5.求值:_________. 6.已知.求的值 解: 又 從而,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!