新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第9節(jié) 函數(shù)模型及其應(yīng)用學(xué)案 理 北師大版
《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第9節(jié) 函數(shù)模型及其應(yīng)用學(xué)案 理 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第9節(jié) 函數(shù)模型及其應(yīng)用學(xué)案 理 北師大版(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1
2、 1 第九節(jié) 函數(shù)模型及其應(yīng)用 [考綱傳真] (教師用書獨(dú)具)1.了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的增長(zhǎng)特征,結(jié)合具體實(shí)例體會(huì)直線上升、指數(shù)增長(zhǎng)、對(duì)數(shù)增長(zhǎng)等不同函數(shù)類型增長(zhǎng)的含義.2.了解函數(shù)模型(如指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用. (對(duì)應(yīng)學(xué)生用書第29頁(yè)) [基礎(chǔ)知識(shí)填充] 1.常見的幾種函數(shù)模型 (1)一次函數(shù)模型:
3、y=kx+b(k≠0). (2)反比例函數(shù)模型:y=+b(k,b為常數(shù)且k≠0). (3)二次函數(shù)模型:y=ax2+bx+c(a,b,c為常數(shù),a≠0). (4)指數(shù)函數(shù)模型:y=a·bx+c(a,b,c為常數(shù),b>0,b≠1,a≠0). (5)對(duì)數(shù)函數(shù)模型:y=mlogax+n(m,n,a為常數(shù),a>0,a≠1,m≠0). (6)冪函數(shù)模型:y=a·xn+b(a≠0). 2.三種函數(shù)模型之間增長(zhǎng)速度的比較 函數(shù) 性質(zhì) y=ax(a>1) y=logax(a>1) y=xn(n>0) 在(0,+∞)上的增減性 單調(diào)遞增 單調(diào)遞增 單調(diào)遞增 增長(zhǎng)速度 越來(lái)越
4、快 越來(lái)越慢 因n而異 圖像的變化 隨x的增大逐漸表現(xiàn)為與y軸平行 隨x的增大逐漸表現(xiàn)為與x軸平行 隨n值變化而各有不同 值的比較 存在一個(gè)x0,當(dāng)x>x0時(shí),有l(wèi)ogax<xn<ax 3.解函數(shù)應(yīng)用問(wèn)題的步驟(四步八字) (1)審題:弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,初步選擇數(shù)學(xué)模型; (2)建模:將自然語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,將文字語(yǔ)言轉(zhuǎn)化為符號(hào)語(yǔ)言,利用數(shù)學(xué)知識(shí),建立相應(yīng)的數(shù)學(xué)模型; (3)解模:求解數(shù)學(xué)模型,得出數(shù)學(xué)結(jié)論; (4)還原:將數(shù)學(xué)問(wèn)題還原為實(shí)際問(wèn)題. 以上過(guò)程用框圖2-9-1表示如下: 圖2-9-1 [知識(shí)拓展] “對(duì)勾”函數(shù) 形如f
5、(x)=x+(a>0)的函數(shù)模型稱為“對(duì)勾”函數(shù)模型: (1)該函數(shù)在(-∞,-]和[,+∞)上單調(diào)遞增,在[-,0)和(0,]上單調(diào)遞減. (2)當(dāng)x>0時(shí),x=時(shí)取最小值2, 當(dāng)x<0時(shí),x=-時(shí)取最大值-2. [基本能力自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)函數(shù)y=2x的函數(shù)值比y=x2的函數(shù)值大.( ) (2)冪函數(shù)增長(zhǎng)比直線增長(zhǎng)更快.( ) (3)不存在x0,使a<x<logax0.( ) (4)f(x)=x2,g(x)=2x,h(x)=log2x,當(dāng)x∈(4,+∞)時(shí),恒有h(x)<f(x)<g(x).( )
6、 [答案] (1)× (2)× (3)× (4)√ 2.(教材改編)已知某種動(dòng)物繁殖量y(只)與時(shí)間x(年)的關(guān)系為y=alog3(x+1),設(shè)這種動(dòng)物第2年有100只,到第8年它們發(fā)展到( ) A.100只 B.200只 C.300只 D.400只 B [由題意知100=alog3(2+1),∴a=100,∴y=100log3(x+1),當(dāng)x=8時(shí),y=100log3 9=200.] 3.某商品價(jià)格前兩年每年遞增20%,后兩年每年遞減20%,則四年后的價(jià)格與原來(lái)價(jià)格比較,變化的情況是( ) A.減少7.84% B.增加7.84% C.減少9.5% D.不
7、增不減 A [設(shè)某商品原來(lái)價(jià)格為a,依題意得: a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a, (0.921 6-1)a=-0.078 4a, 所以四年后的價(jià)格與原來(lái)價(jià)格比較,減少7.84%.] 4.若一根蠟燭長(zhǎng)20 cm,點(diǎn)燃后每小時(shí)燃燒5 cm,則燃燒剩下的高度h(cm)與燃燒時(shí)間t(h)的函數(shù)關(guān)系用圖像表示為( ) B [由題意h=20-5t(0≤t≤4),其圖像為B.] 5.某市生產(chǎn)總值連續(xù)兩年持續(xù)增加.第一年的增長(zhǎng)率為p,第二年的增長(zhǎng)率為q,則該市這兩年生產(chǎn)總值的年平均增長(zhǎng)率為________. -1 [設(shè)年平均增長(zhǎng)率為x,則(1
8、+x)2=(1+p)·(1+q), 所以x=-1.] (對(duì)應(yīng)學(xué)生用書第30頁(yè)) 用函數(shù)圖像刻畫變化過(guò)程 (1)某工廠6年來(lái)生產(chǎn)某種產(chǎn)品的情況是:前3年年產(chǎn)量的增長(zhǎng)速度越來(lái)越快,后3年年產(chǎn)量保持不變,則該廠6年來(lái)這種產(chǎn)品的總產(chǎn)量C與時(shí)間t(年)的函數(shù)關(guān)系圖像正確的是( ) (2)如圖2-9-2所示的四個(gè)容器高度都相同,將水從容器頂部一個(gè)孔中以相同的速度注入其中,注滿為止.用容器下面所對(duì)的圖像表示該容器中水面的高度h和時(shí)間t之間的關(guān)系,其中正確的有( ) 圖2-9-2 A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) (1)A (2)C [(1)前3年
9、年產(chǎn)量的增長(zhǎng)速度越來(lái)越快,說(shuō)明呈高速增長(zhǎng),只有A、C圖像符合要求,而后3年年產(chǎn)量保持不變,產(chǎn)品的總產(chǎn)量應(yīng)呈直線上升,故選A. (2)將水從容器頂部一個(gè)孔中以相同的速度注入其中,容器中水面的高度h和時(shí)間t之間的關(guān)系可以從高度隨時(shí)間的增長(zhǎng)速度上反映出來(lái),(1)中的增長(zhǎng)應(yīng)該是勻速的,故下面的圖像不正確;(2)中的增長(zhǎng)速度是越來(lái)越慢的,正確;(3)中的增長(zhǎng)速度是先快后慢再快,正確;(4)中的增長(zhǎng)速度是先慢后快再慢,也正確,故(2)(3)(4)正確.選C.] [規(guī)律方法] 判斷函數(shù)圖像與實(shí)際問(wèn)題中兩變量變化過(guò)程相吻合的兩種方法 (1)構(gòu)建函數(shù)模型法:當(dāng)根據(jù)題意易構(gòu)建函數(shù)模型時(shí),先建立函數(shù)模型,再結(jié)
10、合模型選圖像. (2)驗(yàn)證法:當(dāng)根據(jù)題意不易建立函數(shù)模型時(shí),則根據(jù)實(shí)際問(wèn)題中兩變量的變化特點(diǎn),結(jié)合圖像的變化趨勢(shì),驗(yàn)證是否吻合,從中排除不符合實(shí)際的情況,選擇出符合實(shí)際情況的答案. [跟蹤訓(xùn)練] 設(shè)甲、乙兩地的距離為a(a>0),小王騎自行車以勻速?gòu)募椎氐揭业赜昧?0分鐘,在乙地休息10分鐘后,他又以勻速?gòu)囊业胤祷氐郊椎赜昧?0分鐘,則小王從出發(fā)到返回原地所經(jīng)過(guò)的路程y和其所用的時(shí)間x的函數(shù)圖像為( ) 【導(dǎo)學(xué)號(hào):79140066】 D [y為“小王從出發(fā)到返回原地所經(jīng)過(guò)的路程”而不是位移,故排除A,C.又因?yàn)樾⊥踉谝业匦菹?0分鐘,故排除B,故選D.] 應(yīng)用所給函數(shù)
11、模型解決實(shí)際問(wèn)題 (1)某航空公司規(guī)定,乘飛機(jī)所攜帶行李的重量(kg)與其運(yùn)費(fèi)(元)由如圖2-9-3所示的一次函數(shù)圖像確定,那么乘客可免費(fèi)攜帶行李的重量最大為________ kg. 圖2-9-3 (2)一個(gè)容器裝有細(xì)沙a cm3,細(xì)沙從容器底下一個(gè)細(xì)微的小孔慢慢地勻速漏出,t min后剩余的細(xì)沙量為y=ae-b t(cm3),經(jīng)過(guò)8 min后發(fā)現(xiàn)容器內(nèi)還有一半的沙子,則再經(jīng)過(guò)________ min,容器中的沙子只有開始時(shí)的八分之一. (1)19 (2)16 [(1)由圖像可求得一次函數(shù)的解析式為y=30x-570,令30x-570=0,解得x=19. (2)當(dāng)t=0時(shí),
12、y=a,當(dāng)t=8時(shí),y=ae-8b=a, 所以e-8b=,容器中的沙子只有開始時(shí)的八分之一時(shí),即y=ae-b t=a, e-b t==(e-8 b)3=e-24b,則t=24,所以再經(jīng)過(guò)16 min.] [規(guī)律方法] 求解所給函數(shù)模型解決實(shí)際問(wèn)題的關(guān)注點(diǎn) (1)認(rèn)清所給函數(shù)模型,弄清哪些量為待定系數(shù). (2)根據(jù)已知利用待定系數(shù)法,確定模型中的待定系數(shù). (3)利用該模型求解實(shí)際問(wèn)題. 易錯(cuò)警示:解決實(shí)際問(wèn)題時(shí)要注意自變量的取值范圍. [跟蹤訓(xùn)練] (20xx·西城區(qū)二模)某市家庭煤氣的使用量x(m3)和煤氣費(fèi)f(x)(元)滿足關(guān)系f(x)=已知某家庭前三個(gè)月的煤氣費(fèi)如下表:
13、 【導(dǎo)學(xué)號(hào):79140067】 月份 用氣量 煤氣費(fèi) 一月份 4 m3 4元 二月份 25 m3 14元 三月份 35 m3 19元 若四月份該家庭使用了20 m3的煤氣,則其煤氣費(fèi)為( ) A.11.5元 B.11元 C.10.5元 D.10元 A [根據(jù)題意可知f(4)=C=4,f(25)=C+B(25-A)=14,f(35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f(x)=所以f(20)=4+(20-5)=11.5,故選A.] 構(gòu)建函數(shù)模型解決實(shí)際問(wèn)題 (20xx·山西孝義模考)為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,
14、在景區(qū)提供自行車出租.該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超過(guò)6元,則每超出1元,租不出的自行車就增加3輛.為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得). (1)求函數(shù)y=f(x)的解析式及其定義域; (2)試問(wèn)當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多? [解] (1)當(dāng)x≤6時(shí),y=50x-115. 令50x-115>0,解
15、得x>2.3. ∵x∈N+,∴3≤x≤6,x∈N+. 當(dāng)x>6時(shí),y=[50-3(x-6)]x-115. 令[50-3(x-6)]x-115>0,有3x2-68x+115<0. 又x∈N+,∴6<x≤20(x∈N+), 故y= (2)對(duì)于y=50x-115(3≤x≤6,x∈N+),顯然當(dāng)x=6時(shí),ymax=185. 對(duì)于y=-3x2+68x-115=-3+(6<x≤20,x∈N+), 當(dāng)x=11時(shí),ymax=270.又∵270>185, ∴當(dāng)每輛自行車的日租金定為11元時(shí),才能使一日的凈收入最多. [規(guī)律方法] 構(gòu)建函數(shù)模型解決實(shí)際問(wèn)題的常見類型與求解方法 (1)構(gòu)建二次
16、函數(shù)模型,常用配方法、數(shù)形結(jié)合、分類討論思想求解. (2)構(gòu)建分段函數(shù)模型,應(yīng)用分段函數(shù)分段求解的方法. (3)構(gòu)建f(x)=x+(a>0)模型,常用基本不等式、導(dǎo)數(shù)等知識(shí)求解. 易錯(cuò)警示:求解過(guò)程中不要忽視實(shí)際問(wèn)題是對(duì)自變量的限制. [跟蹤訓(xùn)練] (20xx·四川高考)某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入,若該公司全年投入研發(fā)資金130萬(wàn)元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該公司全年投入的研發(fā)資金開始超過(guò)200萬(wàn)元的年份是(參考數(shù)據(jù):lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A. B. C. D.2021年 B [設(shè)后的第n年該公司投入的研發(fā)資金開始超過(guò)200萬(wàn)元.由130(1+12%)n>200,得1.12n>,兩邊取常用對(duì)數(shù),得n>≈=,∴n≥4,∴從開始,該公司投入的研發(fā)資金開始超過(guò)200萬(wàn)元.]
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第十二章抗寄生病藥課件
- 第六章-質(zhì)量與密度復(fù)習(xí)(共46張PPT)
- 十二月花名歌-PPT
- 縱觀近幾的高考試題得知:高考命題的角度主要集中在我國(guó)(與“國(guó)家”有關(guān)的文檔共48張)
- 高三化學(xué)-五年高考三年模擬-專題9-弱電解質(zhì)的電離平衡課件-新課標(biāo)
- 全脊髓麻醉一例-PPT
- 幼兒園教師專業(yè)標(biāo)準(zhǔn)
- 能源資源的開發(fā)
- 便血-診斷學(xué)-PPT
- 麻疹病人的護(hù)理
- 部編版二年級(jí)上冊(cè)語(yǔ)文16-朱德的扁擔(dān)--課件
- 發(fā)揮鄉(xiāng)村一體化優(yōu)勢(shì)探索慢病防治新模式
- adidas_三葉草球鞋如何鑒別真假_最權(quán)威的鑒定方式
- 倉(cāng)庫(kù)規(guī)劃方案
- 第版內(nèi)科學(xué)心內(nèi)科心力衰竭心衰