《高三數(shù)學(xué)北師大版理一輪教師用書:第9章 經(jīng)典微課堂 突破疑難系列2 圓錐曲線 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)北師大版理一輪教師用書:第9章 經(jīng)典微課堂 突破疑難系列2 圓錐曲線 Word版含解析(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
解析幾何研究的問(wèn)題是幾何問(wèn)題,研究的方法是代數(shù)法(坐標(biāo)法).因此,求解解析幾何問(wèn)題最大的思維難點(diǎn)是轉(zhuǎn)化,即幾何條件代數(shù)化.如何在解析幾何問(wèn)題中實(shí)現(xiàn)代數(shù)式的轉(zhuǎn)化,找到常見(jiàn)問(wèn)題的求解途徑,是突破解析幾何問(wèn)題難點(diǎn)的關(guān)鍵所在.為此,從以下幾個(gè)途徑,結(jié)合數(shù)學(xué)思想在解析幾何中的切入為視角,突破思維難點(diǎn).
途徑一 “圖形”引路,“斜率”搭橋
高考示例
方法與思維
1.(2015·全國(guó)卷Ⅰ)在直角坐標(biāo)系xOy中,曲線C:y=與直線l:y=kx+a(a>0)交于M,N兩點(diǎn).
(1)當(dāng)k=0時(shí),分別求C在點(diǎn)M和N處的切線方程;
(2)y軸上是否存在點(diǎn)P,使得當(dāng)k變動(dòng)時(shí),總有∠OPM=∠OPN?
2、(說(shuō)明理由)
[解] (1)x-y-a=0和x+y+a=0.(步驟省略)
(2)存在符合題意的點(diǎn).證明如下:
設(shè)P(0,b)為符合題意的點(diǎn),M(x1,y1),N(x2,y2),
直線PM,PN的斜率分別為k1,k2.
將y=kx+a代入C的方程,得x2-4kx-4a=0.
故x1+x2=4k,x1x2=-4a.
從而k1+k2=+==.【關(guān)鍵點(diǎn)1:建立斜率之間的關(guān)系】
當(dāng)b=-a時(shí),有k1+k2=0,則直線PM的傾斜角與直線PN的傾斜角互補(bǔ),【關(guān)鍵點(diǎn)2:把斜率間的關(guān)系轉(zhuǎn)化為傾斜角之間的關(guān)系】
故∠OPM=∠OPN,所以點(diǎn)P(0,-a)符合題意.
【點(diǎn)評(píng)】 破解此類解析幾
3、何題的關(guān)鍵:一是“圖形”引路,一般需畫出大致圖形,把已知條件翻譯到圖形中,利用直線方程的點(diǎn)斜式或兩點(diǎn)式,即可快速表示出直線方程;二是“轉(zhuǎn)化”橋梁,即先把要證的兩角相等,根據(jù)圖形的特征,轉(zhuǎn)化為斜率之間的關(guān)系,再把直線與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系,以及斜率公式即可證得結(jié)論.
2.(2019·全國(guó)卷Ⅱ)已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AM與BM的斜率之積為-.記M的軌跡為曲線C.
(1)求C的方程,并說(shuō)明C是什么曲線;
(2)過(guò)坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,PE⊥x軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G,證明:(ⅰ)△PQG是直角三角形;
4、
[解] (1)由題設(shè)得·=-,化簡(jiǎn)得+=1(|x|≠2),【關(guān)鍵點(diǎn)1:指明斜率公式中變量隱含的范圍】
所以C為中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓,不含左右頂點(diǎn).
(2)設(shè)直線PQ的斜率為k,則其方程為y=kx(k>0).
由得x=±.記u=,則P(u,uk),Q(-u,-uk),E(u,0).
于是直線QG的斜率為,方程為y=(x-u).
由 得(2+k2)x2-2uk2x+k2u2-8=0.①
設(shè)G(xG,yG),則-u和xG是方程①的解,故xG=,由此得yG=.
從而直線PG的斜率為=-.【關(guān)鍵點(diǎn)2:利用斜率之積為-1說(shuō)明線段PQ與PG的幾何關(guān)系】
所以PQ⊥PG,即△P
5、QG是直角三角形.
【點(diǎn)評(píng)】 (1)求曲線的軌跡時(shí)務(wù)必檢驗(yàn)幾何圖形的完備性,謹(jǐn)防增漏點(diǎn);(2)幾何關(guān)系的證明問(wèn)題常轉(zhuǎn)化為代數(shù)式的運(yùn)算問(wèn)題,此時(shí)常借助斜率公式、平面向量等實(shí)現(xiàn)數(shù)與形的轉(zhuǎn)化.
途徑二 “換元”轉(zhuǎn)化,方便運(yùn)算
高考示例
方法與思維
(2019·全國(guó)卷Ⅱ)已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AM與BM的斜率之積為-.記M的軌跡為曲線C.
(1)求C的方程,并說(shuō)明C是什么曲線;
(2)過(guò)坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,PE⊥x軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G,
(ⅰ)△PQG是直角三角形;
(ⅱ)求△PQG面積的最大值.
6、
……
(ⅱ)由(ⅰ)得|PQ|=2u,|PG|=,
所以△PQG的面積S=|PQ‖PG|==.【關(guān)鍵點(diǎn)1:分子分母同除以k2】
設(shè)t=k+,則由k>0得t≥2,當(dāng)且僅當(dāng)k=1時(shí)取等號(hào).【關(guān)鍵點(diǎn)2:整體代換,指明范圍】
因?yàn)镾=在[2,+∞)單調(diào)遞減,所以當(dāng)t=2,即k=1時(shí),S取得最大值,最大值為.【關(guān)鍵點(diǎn)3:用活“對(duì)勾”函數(shù)及復(fù)合函數(shù)的單調(diào)性】
因此,△PQG面積的最大值為.
【點(diǎn)評(píng)】 基本不等式求最值的5種典型情況分析
(1)s=(先換元,注意“元”的范圍,再利用基本不等式).
(2)s=≥(基本不等式).
(3)s=(基本不等式).
(4)s==(先分離參數(shù),
7、再利用基本不等式).
(5)s==(上下同時(shí)除以k2,令t=k+換元,再利用基本不等式).
途徑三 性質(zhì)主導(dǎo),向量解題
高考示例
方法與思維
(2019·全國(guó)卷Ⅰ)已知點(diǎn)A,B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱,|AB| =4,⊙M過(guò)點(diǎn)A,B且與直線x+2=0相切.
(1)若A在直線x+y=0上,求⊙M的半徑;
(2)是否存在定點(diǎn)P,使得當(dāng)A運(yùn)動(dòng)時(shí),│MA│-│MP│為定值?并說(shuō)明理由.
[解] (1)因?yàn)椤袽過(guò)點(diǎn)A,B,所以圓心M在AB的垂直平分線上.【關(guān)鍵點(diǎn)1:圓的幾何性質(zhì)】
由已知A在直線x+y=0上,且A,B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱,【關(guān)鍵點(diǎn)2:圓的幾何性質(zhì)】
所以M在直線y=x上,
8、故可設(shè)M(a,a).
因?yàn)椤袽與直線x+2=0相切,
所以⊙M的半徑為r=|a+2|.【關(guān)鍵點(diǎn)3:直線與圓相切的幾何性質(zhì)】
由已知得|AO|=2,又⊥,【關(guān)鍵點(diǎn)4:圓的幾何性質(zhì)向量化】
故可得2a2+4=(a+2)2,解得a=0或a=4.
故⊙M的半徑r=2或r=6.
(2)存在定點(diǎn)P(1,0),使得|MA|-|MP|為定值.
理由如下:
設(shè)M(x,y),由已知得⊙M的半徑為r=|x+2|,|AO|=2.
由于⊥,【關(guān)鍵點(diǎn)5:圓的幾何性質(zhì)向量化】
故可得x2+y2+4=(x+2)2,化簡(jiǎn)得M的軌跡方程為y2=4x.
因?yàn)榍€C:y2=4x是以點(diǎn)P(1,0)為焦點(diǎn),以直線x
9、=-1為準(zhǔn)線的拋物線,所以|MP|=x+1.
因?yàn)閨MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在滿足條件的定點(diǎn)P.
【點(diǎn)評(píng)】 從本題可以看出,圓的幾何性質(zhì)與數(shù)量關(guān)系的轉(zhuǎn)化涵蓋在整個(gè)解題過(guò)程中,向量在整個(gè)其解過(guò)程中起了“穿針引線”的作用,用活圓的幾何性質(zhì)可以達(dá)到事半功倍的效果.
途徑四 設(shè)而不求,化繁為簡(jiǎn)
高考示例
方法與思維
(2018·全國(guó)卷Ⅲ)已知斜率為k的直線l與橢圓C:+=1交于A,B兩點(diǎn),線段AB的中點(diǎn)為M(1,m)(m>0).
(1)證明:k<-;
(2)設(shè)F為C的右焦點(diǎn),P為C上一點(diǎn),且++=0.證明:||,||,||成等差數(shù)列,并求該數(shù)列的公
10、差.
[解] (1)證明:設(shè)A(x1,y1),B(x2,y2),
則+=1,+=1.
兩式相減,并由=k得+·k=0.【關(guān)鍵點(diǎn)1: “點(diǎn)差法”使直線的斜率與弦的中點(diǎn)緊緊地聯(lián)系在一起,運(yùn)算上大大簡(jiǎn)化】
由題設(shè)知=1,=m,于是k=-.①
由于點(diǎn)M(1,m)(m>0)在橢圓+=1內(nèi),
∴+<1,解得0
11、,達(dá)到設(shè)而不求的目的】
又點(diǎn)P在C上,所以m=,
從而P,||=.
于是||===2-.
同理||=2-.
所以||+||=4-(x1+x2)=3.
故2||=||+||,即||,||,||成等差數(shù)列.
設(shè)該數(shù)列的公差為d,則
2|d|=|||-|||=|x1-x2|=.②
將m=代入①得k=-1.
所以l的方程為y=-x+,代入C的方程,并整理得7x2-14x+=0.
故x1+x2=2,x1x2=,
代入②解得|d|=.【關(guān)鍵點(diǎn)3:借用根與系數(shù)的關(guān)系,達(dá)到設(shè)而不求的目的】
所以該數(shù)列的公差為或-.
【點(diǎn)評(píng)】 本題(1)涉及弦的中點(diǎn)坐標(biāo),可以采用“點(diǎn)差法”求解,設(shè)出點(diǎn)A、B的坐標(biāo),代入橢圓方程并作差,再將弦AB的中點(diǎn)坐標(biāo)代入所得的差,可得直線AB的斜率;對(duì)于(2)圓錐曲線中的證明問(wèn)題,常采用直接法證明,證明時(shí)常借助等價(jià)轉(zhuǎn)化思想,化幾何關(guān)系為數(shù)量關(guān)系,然后借助方程思想給予解答.