《直線與平面垂直的判定》教學(xué)設(shè)計(jì).doc
《《直線與平面垂直的判定》教學(xué)設(shè)計(jì).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《《直線與平面垂直的判定》教學(xué)設(shè)計(jì).doc(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
《直線與平面垂直的判定》教學(xué)設(shè)計(jì) 一、內(nèi)容和內(nèi)容解析 本節(jié)課是在學(xué)生學(xué)習(xí)了空間點(diǎn)、直線、平面之間的位置關(guān)系和直線、平面平行的判定及其性質(zhì)之后進(jìn)行的,其主要內(nèi)容是直線與平面垂直的定義、直線與平面垂直的判定定理及其應(yīng)用。直線與平面垂直是直線和平面相交中的一種特殊情況,它是空間中直線與直線垂直位置關(guān)系的拓展,又是平面與平面垂直的基礎(chǔ),是空間中垂直位置關(guān)系間轉(zhuǎn)化的重心,同時(shí)它又是直線和平面所成的角、直線與平面、平面與平面距離等內(nèi)容的基礎(chǔ),因而它是空間點(diǎn)、直線、平面間位置關(guān)系中的核心概念之一。 直線與平面垂直是通過(guò)直線和平面內(nèi)的任意一條直線(無(wú)一例外)都垂直來(lái)定義的,定義本身也表明了直線與平面垂直的意義,即如果一條直線垂直于一個(gè)平面,那么這條直線就垂直于這個(gè)平面內(nèi)的所有直線,這也可以看成是線線垂直的一個(gè)判定方法;直線與平面垂直的判定定理,本節(jié)是通過(guò)折紙?jiān)囼?yàn)來(lái)感悟的,即一條直線只要與平面內(nèi)的兩條相交直線垂直就可以判定直線與平面垂直了,它把原來(lái)定義中要求與任意一條(無(wú)限)垂直轉(zhuǎn)化為只要與兩條(有限)相交直線垂直就行了,概言之,線不在多,相交就行。直線與平面垂直的判定方法除了定義法、判定定理外,還有如果兩條平行直線中的一條直線垂直于一個(gè)平面,那么另一條直線也垂直于這個(gè)平面,這是直線與平面 垂直判定的一種間接方法,也是十分重要的。 本節(jié)學(xué)習(xí)內(nèi)容蘊(yùn)含豐富的數(shù)學(xué)思想,即“空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題”,“無(wú)限轉(zhuǎn)化為有限”“線線垂直與線面垂直互相轉(zhuǎn)化”等數(shù)學(xué)思想。直線與平面垂直是研究空間中的線線關(guān)系和線面關(guān)系的橋梁,為后繼面面垂直的學(xué)習(xí)、距離的學(xué)習(xí)奠定基礎(chǔ)。 二、學(xué)情分析 (1)學(xué)生的起點(diǎn)能力分析 學(xué)生已有的認(rèn)知基礎(chǔ)是熟悉的日常生活中的具體直線與平面垂直的直觀形象(學(xué)生的客觀現(xiàn)實(shí))和直線與直線垂直的定義、直線與平面平行的判定定理等數(shù)學(xué)知識(shí)結(jié)構(gòu)(學(xué)生的數(shù)學(xué)現(xiàn)實(shí)),這為學(xué)生學(xué)習(xí)直線與平面垂直定義和判定定理等新知識(shí)奠定基礎(chǔ)。 學(xué)生學(xué)習(xí)的困難在于如何從直線與平面垂直的直觀形象中提煉出直線與平面垂直的定義,感悟直線與平面垂直的意義;以及如何從折 紙?jiān)囼?yàn)中探究出直線與平面垂直的判定定理。 (2)學(xué)習(xí)行為分析 本節(jié)課安排在立體幾何的初始階段,是學(xué)生空間觀念形成的關(guān)鍵時(shí)期,課堂上學(xué)生通過(guò)感知、觀察、提煉直線與平面垂直的定義,進(jìn)而通過(guò)辨析討論,深化對(duì)定義的理解。進(jìn)一步,在一個(gè)具體的數(shù)學(xué)問(wèn)題情境中猜想直線與平面垂直的判定定理,并在教師的指導(dǎo)下,通過(guò)動(dòng)手操作、觀察分析、自主探索等活動(dòng),切身感受直線與平面垂直判定定理的形成過(guò)程,體會(huì)蘊(yùn)涵在其中的思想方法。繼而,通過(guò)課本例1的學(xué)習(xí)概括直線與平面垂直的幾種常用判定方法。再通過(guò)練習(xí)與課后小結(jié),使學(xué)生進(jìn)一步加深對(duì)直線與平面垂直的判定定理的理解。 三、教學(xué)目標(biāo) 知識(shí)與技能目標(biāo):通過(guò)觀察圖片和折紙?jiān)囼?yàn),使學(xué)生理解直線與平面垂直的定義,歸納和確認(rèn)直線與平面垂直的判定定理,并能簡(jiǎn)單應(yīng)用定義和判定定理; 過(guò)程與方法目標(biāo):通過(guò)對(duì)判定定理的探究和運(yùn)用,初步培養(yǎng)學(xué)生的幾何直觀能力和抽象概括能力; 情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)對(duì)探索過(guò)程的引導(dǎo),努力提高學(xué)生學(xué)習(xí) 數(shù)學(xué)的熱情,培養(yǎng)學(xué)生主動(dòng)探究的習(xí)慣. 四、教學(xué)重難點(diǎn) 教學(xué)重點(diǎn):對(duì)直線與平面垂直的定義和判定定理的理解及其簡(jiǎn)單應(yīng)用。 教學(xué)難點(diǎn):探究、歸納直線與平面垂直的判定定理,體會(huì)定義和定理中所包含的轉(zhuǎn)化思想. 五、教學(xué)方式 啟發(fā)式與試驗(yàn)探究式相結(jié)合。 六、教學(xué)過(guò)程設(shè)計(jì) (一)、觀察歸納直線與平面垂直的定義 1、直觀感知 問(wèn)題1:請(qǐng)同學(xué)們觀察圖片,說(shuō)出旗桿與地面、大橋橋柱與水面是什么位置 關(guān)系?你能舉出一些類似的例子嗎? 設(shè)計(jì)意圖:從實(shí)際背景出發(fā),直觀感知直線和平面垂直的位置關(guān)系,使學(xué)生在頭腦中產(chǎn)生直線與地面垂直的初步印象,為下一步的數(shù)學(xué)抽象做準(zhǔn)備。 師生活動(dòng):觀察圖片,引導(dǎo)學(xué)生舉出更多直線與平面垂直的例子,如教室內(nèi)直立的墻角線和地面位置關(guān)系,桌子腿與地面的位置關(guān)系,直立書(shū)的書(shū)脊與桌面的位置關(guān)系等,由此引出課題。 2、觀察思考 思考:如何定義一條直線與一個(gè)平面垂直呢? 我們已經(jīng)學(xué)過(guò)直線和平面平行的判定和性質(zhì),知道直線和平面平行的問(wèn)題可轉(zhuǎn)化為考察直線和平面內(nèi)直線平行的關(guān)系, 直線和平面垂直的問(wèn)題同樣可以轉(zhuǎn)化為考察一條直線和一個(gè)平面內(nèi)直線的關(guān)系,然后加以解決。 問(wèn)題2:(1)如圖1,在陽(yáng)光下觀察直立于地面旗桿AB及它在地面的影子BC,旗桿所在的直線與影子所在直線位置關(guān)系是什么? (2)旗桿AB與地面上任意一條不過(guò)旗桿底部B的直線B1C1的位置關(guān)系又是什么? 設(shè)計(jì)意圖:引導(dǎo)學(xué)生用“平面化”的思想來(lái)思考問(wèn)題,通過(guò)觀察,感知直線與平面垂直的本質(zhì)屬性。 師生活動(dòng):教師用多媒體課件演示旗桿在地面上的影子隨著時(shí)間的變化而移動(dòng)的過(guò)程,引導(dǎo)學(xué)生得出旗桿所在直線與地面內(nèi)的直線都垂直。 3、抽象概括 問(wèn)題3、通過(guò)上述觀察分析,你認(rèn)為應(yīng)該如何定義一條直線與一個(gè)平面垂直? 設(shè)計(jì)意圖:讓學(xué)生歸納、概括出直線與平面垂直的定義。 師生活動(dòng):學(xué)生思考作答,教師補(bǔ)充完善,指出定義中的“任意一條直線”與“所有直線”是同意詞,定義是說(shuō)這條直線和平面內(nèi)所有直線垂直。同時(shí)給出線面垂直的記法與畫(huà)法。 定義:如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說(shuō)直線 l與平面α互相垂直,記作: l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時(shí),它們唯一的公共點(diǎn)P叫做垂足。 畫(huà)法:畫(huà)直線與平面垂直時(shí),通常把直線畫(huà)成與表示平面的平行四邊形的一邊垂直,如圖2。 4、辯析舉例 辨析:下列命題是否正確,為什么? (1)如果一條直線垂直于一個(gè)平面內(nèi)的無(wú)數(shù)條直線,那么這條直線與這個(gè)平面垂直。 (2)如果一條直線垂直一個(gè)平面,那么這條直線就垂直于這個(gè)平面內(nèi)的任一直線。 設(shè)計(jì)意圖:通過(guò)問(wèn)題辨析,加深概念的理解,掌握概念的本質(zhì)屬性。由(1)使學(xué)生明確定義中的“任意一條直線”是“所有直線”的意思,定義的實(shí)質(zhì)就是直線與平面內(nèi)所有直線都垂直。由(2)使學(xué)生明確,線面垂直的定義既是線面垂直的判定又是性質(zhì),線線垂直與線面垂直可以相互轉(zhuǎn)化。 師生活動(dòng):命題(1)判斷中引導(dǎo)學(xué)生用鐵絲表直線,用三角板兩直角邊表兩垂直直線,桌面表平面舉出反例。教師利用三角板和教鞭進(jìn)行演示,將一塊大直角三角板的一條直角邊AC放在講臺(tái)上演示,這時(shí)另一 條直角邊BC就和講臺(tái)上的一條直線(即三角板與桌面的交線AC)垂直,但它不一定和講臺(tái)桌面垂直.在此基礎(chǔ)上在講臺(tái)上放一根和AC平行的教鞭EF并平行移動(dòng),那么BC始終和EF垂直,但它不一定和講臺(tái)桌面垂直,最后教師用多媒體課件展示反例的直觀圖,如圖3。 由命題(2)給出下列常用命題: 這個(gè)命題體現(xiàn)了平行關(guān)系與垂直關(guān)系的聯(lián)系,它是判斷線線垂直的常用方法。 (二)、探究發(fā)現(xiàn)直線與平面垂直的判定定理 1、觀察猜想 思考:我們?cè)撊绾螜z驗(yàn)學(xué)校廣場(chǎng)上的旗桿是否與地面垂直? 雖然可以根據(jù)定義判定直線與平面垂直,但這種方法實(shí)際上難以實(shí)施。有沒(méi)有比較方便可行的方法來(lái)判斷直線和平面垂直呢? 問(wèn)題4、觀察跨欄、簡(jiǎn)易木架等實(shí)物,你能猜想出判斷一條直線與一個(gè)平面垂直的方法嗎? 設(shè)計(jì)意圖:通過(guò)問(wèn)題思考與實(shí)例分析,尋找具有可操作性的判定方法,體驗(yàn)有限與無(wú)限之間的辯證關(guān)系。 師生活動(dòng):引導(dǎo)學(xué)生觀察思考,給出猜想:一條直線與一個(gè)平面內(nèi)兩相交直線都垂直,則該直線與此平面垂直。 2、操作確認(rèn) 問(wèn)題5:如圖4,請(qǐng)同學(xué)們拿出準(zhǔn)備好的一塊(任意)三角形的紙片,我們一起來(lái)做一個(gè)實(shí)驗(yàn):過(guò)△ABC的頂點(diǎn)A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上,(BD、DC與桌面接觸).觀察并思考: (1)折痕AD與桌面垂直嗎?如何翻折才能使折痕AD與桌面所在的平面垂直? (2)由折痕AD⊥BC,翻折之后垂直關(guān)系,即AD⊥CD,AD⊥BD發(fā)生變化嗎?由此你能得到什么結(jié)論? 設(shè)計(jì)意圖:通過(guò)實(shí)驗(yàn),引導(dǎo)學(xué)生獨(dú)立發(fā)現(xiàn)直線與平面垂直的條件,培養(yǎng)學(xué)生的動(dòng)手操作能力和幾何直觀能力。 師生活動(dòng):在折紙?jiān)囼?yàn)中,學(xué)生會(huì)出現(xiàn)“垂直”與“不垂直”兩種情況,引導(dǎo)學(xué)生進(jìn)行交流,根據(jù)直線與平面垂直的定義分析“不垂直”的原因。學(xué)生再次折紙,進(jìn)而探究直線與平面垂直的條件,經(jīng)過(guò)討論交流,使學(xué)生發(fā)現(xiàn)只要保證折痕AD是BC邊上的高,即AD⊥BC,翻折后折痕AD就與桌面垂直,再利用多媒體演示翻折過(guò)程,增強(qiáng)幾何直觀性。 3、合情推理 問(wèn)題6:根據(jù)上面的試驗(yàn),結(jié)合兩條相交直線確定一個(gè)平面的事實(shí),你能給出直線與平面垂直的判定方法嗎? 設(shè)計(jì)意圖:引導(dǎo)學(xué)生根據(jù)直觀感知及已有知識(shí)經(jīng)驗(yàn),進(jìn)行合情推理,獲得判定定理。 師生活動(dòng):教師引導(dǎo)學(xué)生回憶出“兩條相交直線確定一個(gè)平面”,以及直觀過(guò)程中獲得的感知,將“與平面內(nèi)所有直線垂直”逐步歸結(jié)到“與平面內(nèi)兩條相交直線垂直”,進(jìn)而歸納出直線與平面垂直的判定定理。同時(shí)指出要判斷一條直線與一個(gè)平面是否垂直,取決于在這個(gè)平面內(nèi)能否找到兩條相交直線和已知直線垂直,至于這兩條相交直線是否和已知直線有公共點(diǎn)是無(wú)關(guān)緊要的.定理充分體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”相互轉(zhuǎn)化的數(shù)學(xué)思想。 定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。 用符號(hào)語(yǔ)言表示為: 4、質(zhì)疑深化 辨析:如果一條直線與一個(gè)梯形的兩條邊垂直,那么這條直線垂直于梯形所在的平面嗎? 設(shè)計(jì)意圖:通過(guò)辨析,強(qiáng)化定理中“兩條相交直線”的條件。 師生活動(dòng):學(xué)生思考作答,教師再次強(qiáng)調(diào)“相交”條件。 (三)、直線與平面垂直的判定定理的初步應(yīng)用 嘗試練習(xí)1、求證:與三角形的兩條邊同時(shí)垂直的直線必與第三條邊垂直。 設(shè)計(jì)意圖:初步感受如何運(yùn)用直線與平面垂直的判定定理與定義解決問(wèn)題,明確運(yùn)用線面垂直判定定理的條件。 師生活動(dòng):學(xué)生根據(jù)題意畫(huà)圖(如圖6),將其轉(zhuǎn)化為幾何命題:不妨設(shè)a⊥AC,a⊥BC求證:a⊥AB。請(qǐng)兩位同學(xué)板演,其余同學(xué)在練習(xí)本上完成,師生共同評(píng)析,明確運(yùn)用線面垂直判定定理時(shí)的具體步驟,防止缺少條件,特別是“相交”的條件。 嘗試練習(xí)2、如圖7,已知a∥b,a⊥α,求證:b⊥α。 設(shè)計(jì)意圖:進(jìn)一步感受如何運(yùn)用直線與平面垂直的判定定理證明線面垂直,體會(huì)轉(zhuǎn)化思想在證題中的作用,發(fā)展學(xué)生的幾何直觀能力與一定的推理論證能力。 師生活動(dòng):教師引導(dǎo)學(xué)生分析思路,可利用線面垂直的定義證,也可用判定定理證,提示輔助線的添法,將思路集中在如何在平面內(nèi)α內(nèi)找到兩條與直線b垂直的相交直線上。另外,再引導(dǎo)學(xué)生將已知條件具體化的過(guò)程中,逐步明確根據(jù)異面直線所成角的概念解決問(wèn)題。學(xué)生練習(xí)本上完成,對(duì)照課本P73例1,完善自己的解題步驟。同時(shí)指出:本例結(jié)果可以作為直線和平面垂直的又一個(gè)判定定理.這樣判定一條直線與已知平面垂直,可以用這條直線垂直于平面兩條相交直線來(lái)證明,也可以用這條直線的平行直線垂直于平面來(lái)證明. (四)、總結(jié)反思 (1)通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些判斷直線與平面垂直的方法? (2)上述判斷直線與平面垂直的方法體現(xiàn)的什么數(shù)學(xué)思想? (3)關(guān)于直線與平面垂直你還有什么問(wèn)題? 設(shè)計(jì)意圖:培養(yǎng)學(xué)生反思的習(xí)慣,鼓勵(lì)學(xué)生對(duì)問(wèn)題多質(zhì)疑、多概括。 師生活動(dòng):學(xué)生發(fā)言,互相補(bǔ)充,教師點(diǎn)評(píng)完善,歸納出判斷直線與平面垂直的方法,給出框圖(投影展示)。 七、目標(biāo)檢測(cè)設(shè)計(jì) 1、如圖,點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),O是對(duì)角線AC與BD的交點(diǎn),且PA=PC,PB=PD. 求證:PO⊥平面ABCD 2、課本P74 練習(xí)1、2 3、課本P86 A組10 4、如圖,PA⊥圓O所在平面,AB是圓O的直徑,C是圓周上一點(diǎn),則圖中有幾個(gè)直角三角形?由此你認(rèn)為三棱錐中最多有幾個(gè)直角三角形? (板書(shū)設(shè)計(jì))- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 直線與平面垂直的判定 直線 平面 垂直 判定 教學(xué) 設(shè)計(jì)
鏈接地址:http://www.820124.com/p-6624488.html