《江蘇省宿豫區(qū)丁嘴中心學校九年級數(shù)學上冊 2.1 圓課件 (新版)蘇科版》由會員分享,可在線閱讀,更多相關(guān)《江蘇省宿豫區(qū)丁嘴中心學校九年級數(shù)學上冊 2.1 圓課件 (新版)蘇科版(30頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、一石激起千層浪一石激起千層浪 摩天輪摩天輪欣賞圖片欣賞圖片 奧運五環(huán)奧運五環(huán) 車輪車輪欣賞圖片欣賞圖片初中數(shù)學九年級上冊(蘇科版)初中數(shù)學九年級上冊(蘇科版)第二章第二章 對稱圖形對稱圖形圓圓 2.1 圓圓 學習目標1 1 理解圓的概念,點與圓理解圓的概念,點與圓的三種位置關(guān)系。的三種位置關(guān)系。2 2 會運用點到圓心的距離會運用點到圓心的距離與圓的半徑之間的數(shù)量關(guān)與圓的半徑之間的數(shù)量關(guān)系判斷點與圓的位置關(guān)系系判斷點與圓的位置關(guān)系。 將線段將線段OPOP的一個端點的一個端點O O固定,使線段固定,使線段OPOP繞著繞著點點O O在在平面內(nèi)旋轉(zhuǎn)一周平面內(nèi)旋轉(zhuǎn)一周,端點端點P P運動所形成的圖形叫做
2、運動所形成的圖形叫做圓圓。其中其中點點O O叫叫做做圓心圓心。線段。線段OPOP叫做圓的叫做圓的半徑半徑。符號表示:符號表示: 記作記作“O”“O”, 讀作讀作“圓圓O”O(jiān)”。注注:(1)圓是一條封閉的曲線;圓是一條封閉的曲線;(2)確定一個圓需要兩個要素:圓心和半徑。)確定一個圓需要兩個要素:圓心和半徑。 觀察:點觀察:點A A、B B、C C到圓心到圓心O O的距離相等嗎?的距離相等嗎?oBC A想一想:在平面內(nèi)還有到點想一想:在平面內(nèi)還有到點O O距離等于半徑的點嗎?距離等于半徑的點嗎? 這些點構(gòu)成什么圖形?這些點構(gòu)成什么圖形?圓的定義圓的定義2 2:到定點的距離等于定長的點的集合:到定
3、點的距離等于定長的點的集合. .其中定點為圓心,定長為半徑其中定點為圓心,定長為半徑. .AB1 1、如圖,圓心為、如圖,圓心為_,_,半徑為半徑為_,_, 該圓記作該圓記作_._.AAB點點A2 2、判斷、判斷: 半徑為半徑為2cm2cm的圓有無數(shù)個。的圓有無數(shù)個。 ( ) 以點以點P P為圓心的圓有無數(shù)個。(為圓心的圓有無數(shù)個。( ) 以點以點P P為圓心,為圓心,2cm2cm為半徑的圓有無數(shù)個。(為半徑的圓有無數(shù)個。( )3 3、到點、到點O O的距離等于的距離等于3cm3cm的點的集合的點的集合, ,表示以表示以_為圓心,以為圓心,以_為半徑的圓。為半徑的圓。點點O3cm 在紙上畫一個
4、圓、一個點,在紙上畫一個圓、一個點,(2 2)這個點到圓心的距離與圓的半徑的大?。┻@個點到圓心的距離與圓的半徑的大小關(guān)系有幾種?關(guān)系有幾種?(1 1)這個點與圓有幾種位置關(guān)系?)這個點與圓有幾種位置關(guān)系? 如圖,設(shè)如圖,設(shè)O O 的半徑為的半徑為r r,OCr反過來也成立反過來也成立, ,如果已知點到圓心的距離和圓如果已知點到圓心的距離和圓的半徑的關(guān)系,也可以判斷點和圓的位置關(guān)系。的半徑的關(guān)系,也可以判斷點和圓的位置關(guān)系。ABCro點點A A在圓內(nèi)在圓內(nèi)點點B B在圓上在圓上點點C C在圓外在圓外OBrOAr符號符號 ,讀作:等價于,表示:從左邊可,讀作:等價于,表示:從左邊可以推出右邊,從右
5、邊也可以推出左邊。以推出右邊,從右邊也可以推出左邊。1 1、已知、已知O O的半徑為的半徑為5cm5cm,點點P P在在O_;O_;在在O_;O_;在在O_;O_;2 2、已知已知O O的半徑為的半徑為rcmrcm,OP=8cm.OP=8cm.O O外,則外,則r r的取值范圍為的取值范圍為r_;r_;O O內(nèi),則內(nèi),則r r的取值范圍為的取值范圍為r_;r_;O O上,則上,則r_;r_;內(nèi)內(nèi)上上外外8cm8cm1、如圖、如圖:已知點已知點P,Q.且且PQ=3cm,畫出下列圖形:,畫出下列圖形:PQ(1)(1) 到點到點P P的距離等于的距離等于2cm2cm的點的集合的點的集合; ; 到點到
6、點Q Q的距離等于的距離等于2cm2cm的點的集合的點的集合; ;(2)(2)在所畫圖中,到點在所畫圖中,到點P P、點、點Q Q的距離都等于的距離都等于2cm2cm的點有的點有幾個?請在圖中將它們表示出來。幾個?請在圖中將它們表示出來。(3)(3)在所畫圖中,到點在所畫圖中,到點P P小于小于2cm2cm的點集合。的點集合。(4)(4)在所畫圖中,到點在所畫圖中,到點P P、點、點Q Q的距離都小于的距離都小于2cm2cm的點集合。的點集合。 如圖已知矩形如圖已知矩形ABCDABCD的對角線的對角線ACAC、BDBD相交于點相交于點O O,點,點A A、B B、C C、D D是否在以點為圓心
7、的同一個圓上?為什么?是否在以點為圓心的同一個圓上?為什么?若點若點E E、F F、G G、H H分別為分別為OAOA、OBOB、OCOC、ODOD的中點,的中點,點點E E、F F、G G、H H在同一個圓上嗎?在同一個圓上嗎?E EF FH HG G 如圖已知直角三角形如圖已知直角三角形ABCABC,B=90B=900 0, ,點為點為ACAC中點,中點,A A、B B、C C是否在以點為圓心的同一個圓上?為什么?是否在以點為圓心的同一個圓上?為什么?ABC O 這節(jié)課的收獲是這節(jié)課的收獲是2.2.如圖已知矩形如圖已知矩形ABCDABCD的邊的邊AB=3AB=3厘米,厘米,AD=4AD=4
8、厘米厘米ADCB(1 1)以點)以點A A為圓心,為圓心,3 3厘米為半徑作厘米為半徑作圓圓A A,則點,則點B B、C C、D D與圓與圓A A的位置關(guān)系的位置關(guān)系如何?如何?(2 2)以點)以點A A為圓心,為圓心,4 4厘米為半徑作圓厘米為半徑作圓A A,則點則點B B、C C、D D與圓與圓A A的位置關(guān)系如何?的位置關(guān)系如何?(3 3)以點)以點A A為圓心,為圓心,5 5厘米為半徑作圓厘米為半徑作圓A A,則點,則點B B、C C、D D與圓與圓A A的位置關(guān)系如何?的位置關(guān)系如何?-5555xy 在直角坐標系中作以坐標原點為圓心,在直角坐標系中作以坐標原點為圓心,5 5為半為半徑
9、的圓,徑的圓,(1 1)點)點 A A(3,43,4)與)與O O 的位置關(guān)系?的位置關(guān)系?(2 2)點)點 B B(-2,3-2,3)與)與O O 的位置關(guān)系?的位置關(guān)系?(3 3)點)點C C(-6,-8-6,-8)與)與O O 的位置關(guān)系?的位置關(guān)系?圓外的點圓外的點圓內(nèi)的點圓內(nèi)的點圓上的點圓上的點 分成三分成三部分部分:圓上的點,圓內(nèi)的點和圓外的點。:圓上的點,圓內(nèi)的點和圓外的點。平面上的一個圓把平面上的點分成哪幾部分?平面上的一個圓把平面上的點分成哪幾部分?思考:圓是到定點距離等于定長的點的集合圓是到定點距離等于定長的點的集合. 可以看成是到圓心的距離小于半徑的的點的集合; 可以看成
10、是 。如圖如圖:已知點已知點P,Q.且且PQ=4cm.PQ(1)畫出下列圖形畫出下列圖形:到點到點P的距離等于的距離等于2cm的點的集合的點的集合;到點到點Q的距離等于的距離等于3cm的點的集合的點的集合;(2)在所畫圖中,到點在所畫圖中,到點P的距離等于的距離等于2cm,且到點,且到點Q的的距離等于距離等于3cm的點有幾個?請在圖中將它們表示出來;的點有幾個?請在圖中將它們表示出來;(3)在所畫圖中,到點在所畫圖中,到點P的距離小于或等于的距離小于或等于2cm,且到,且到點點Q的距離大于或等于的距離大于或等于3cm的點的集合是怎樣的圖形?的點的集合是怎樣的圖形?把它畫出來。把它畫出來。 圓外
11、的點圓外的點圓內(nèi)的點圓內(nèi)的點圓上的點圓上的點 平面上的一個圓,把平面上的點分成三類:圓上的點,圓內(nèi)的點和圓外的點。 可以看成是到圓心的距離小于半徑的的點的集合; 可以看成是 。 思考:平面上的一個圓把平面上的點分成哪幾部分?圓上各點到圓心圓上各點到圓心(定點定點)的距離都等于半徑的距離都等于半徑(定長定長);到圓心到圓心距離等于半徑的點都在圓上距離等于半徑的點都在圓上.也就是說也就是說:圓是到定點距離等于定長的點的集合圓是到定點距離等于定長的點的集合.設(shè)設(shè)O O 的半徑為的半徑為r r,點,點P P到圓心的距離到圓心的距離OP=OP=d d,則有:則有:點點P在在 O內(nèi)內(nèi) dr 點點P在在 O
12、上上 d=r 點點P在在 O外外 drrpprd Prd圓上各點到圓心圓上各點到圓心(定點定點)的距離都等于半的距離都等于半徑徑(定長定長);到圓心距離等于半徑的點都到圓心距離等于半徑的點都在圓上在圓上.也就是說也就是說:圓是到定點距離等于圓是到定點距離等于定長的點的集合定長的點的集合.圓內(nèi)各點到圓心的距離都小于半徑圓內(nèi)各點到圓心的距離都小于半徑;到圓心到圓心 距離小于半徑的點都在圓距離小于半徑的點都在圓內(nèi)內(nèi).也就是說也就是說:圓的內(nèi)部可以看作是到圓心距離小于半徑的點的集合圓的內(nèi)部可以看作是到圓心距離小于半徑的點的集合.圓外的點到圓心的距離都大于半徑圓外的點到圓心的距離都大于半徑;到圓心距離大
13、于半徑的點都在圓外到圓心距離大于半徑的點都在圓外.也也就是說就是說:圓的外部可以看作是到圓心距離大于半徑的點的集合圓的外部可以看作是到圓心距離大于半徑的點的集合.例例2. 2013年年8月月22日,第十二號臺風日,第十二號臺風“潭美潭美”登陸福建,登陸福建,A市接到臺風警報時,臺風中心位市接到臺風警報時,臺風中心位于于A市正南方向市正南方向125km的的B處,正以處,正以15km/h的的速度沿速度沿BC方向移動。已知方向移動。已知A市到市到BC的距離的距離AD=35km,如果在距離臺風中心,如果在距離臺風中心40km(包括(包括40km)的區(qū)域內(nèi)都將受到臺風影響,試問)的區(qū)域內(nèi)都將受到臺風影響
14、,試問A市市受到臺風影響的時間是多長?受到臺風影響的時間是多長? C A B D E F問題問題1:請用點與圓的位置關(guān)系:請用點與圓的位置關(guān)系描述描述A市何時受到臺風影響?市何時受到臺風影響?問題問題2:請用點到圓心的距離和:請用點到圓心的距離和圓的半徑的大小關(guān)系表示出圓的半徑的大小關(guān)系表示出A市市何時受臺風影響?何時受臺風影響?-5555xyo例例3.3.如圖所示,如圖所示,P(x,y)是以坐標原點為圓心,)是以坐標原點為圓心,5為半徑為半徑的圓周上的點,若的圓周上的點,若x,y都是整數(shù),問這樣的點共有多少個?都是整數(shù),問這樣的點共有多少個?坐標分別是什么?坐標分別是什么? 例例4. 已知:
15、如圖,已知:如圖,BD、CE是是ABC的的高,高,M是是BC的中點。試問:點的中點。試問:點B、C、D、E在以點在以點M為圓心的圓上嗎?為圓心的圓上嗎? 1、 O的半徑的半徑10cm,A、B、C三點到圓心的距離分別為三點到圓心的距離分別為8cm、10cm、12cm,則點,則點A、B、C與與 O的位置關(guān)系是:的位置關(guān)系是:點點A在在 ;點;點B在在 ;點;點C在在 。 2、 O的半徑的半徑6cm,當,當OP=6時,點時,點P在在 ;當當OP 時點時點P在圓內(nèi);當在圓內(nèi);當OP 時,點時,點P不在圓外。不在圓外。 3、正方形、正方形ABCD的邊長為的邊長為2cm,以,以A為圓心為圓心2cm為半徑為
16、半徑作作 A,則點,則點B在在 A ;點;點C在在 A ;點;點D在在 A 。 4、已知、已知AB為為 O的的直徑直徑P為為 O 上任意一點,則點關(guān)上任意一點,則點關(guān)于于AB的對稱點的對稱點P與與 O的位置為的位置為( ) (A)在在 O內(nèi)內(nèi) (B)在在 O 外外 (C)在在 O 上上 (D)不能確定不能確定 通過本課的學習,你又有通過本課的學習,你又有什么收獲?什么收獲?以下是作業(yè)講解以下是作業(yè)講解2、矩形、矩形ABCD中,邊中,邊AB=6cm,AD=8cm。BACD(2)若作若作 A,使,使B、C、D三點三點至少至少有一個點在有一個點在 A內(nèi),內(nèi),至少至少有一點在有一點在 A外,則外,則
17、A的半徑的半徑r的取值范圍是的取值范圍是_。BACD68學案習題講評學案習題講評6、ABC中,中,C=90,AC=BC=4cm,D是是AB邊的中點,邊的中點,以以A為圓心,為圓心,4cm長為半徑作圓,則長為半徑作圓,則A,B,C,D中在圓內(nèi)的中在圓內(nèi)的點有(點有( )A、1個個 B、2個個 C、3個個 D、4個個DBCA學案習題講評學案習題講評ABCD*9、如圖,梯形、如圖,梯形ABCD中,中,ABCD,AD=BC,AB=16cm,CD=10cm,高為,高為9cm(1) A、B、C、D四點在同一個圓上嗎,為什么?四點在同一個圓上嗎,為什么?(2)若在同一個圓上,求此圓的半徑若在同一個圓上,求此圓的半徑 BMNEFO學案習題講評學案習題講評ABC 愛好運動的小華、小強、小兵三人相邀搞愛好運動的小華、小強、小兵三人相邀搞一次擲飛鏢比賽。他們把靶子釘在一面土墻一次擲飛鏢比賽。他們把靶子釘在一面土墻上,規(guī)則是誰擲出落點離紅心越近,誰就勝。上,規(guī)則是誰擲出落點離紅心越近,誰就勝。如下圖中如下圖中A A、B B、C C三點分別是他們?nèi)四骋惠喨c分別是他們?nèi)四骋惠啍S鏢的落點,你認為這一輪中誰的成績好?擲鏢的落點,你認為這一輪中誰的成績好?