2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題17 概率與統(tǒng)計(jì)教學(xué)案 理
《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題17 概率與統(tǒng)計(jì)教學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題17 概率與統(tǒng)計(jì)教學(xué)案 理(71頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 專題17 概率與統(tǒng)計(jì) 1.以客觀題形式考查抽樣方法,樣本的數(shù)字特征和回歸分析,獨(dú)立性檢驗(yàn)的基本思路、方法及相關(guān)計(jì)算與推斷. 2.本部分較少命制大題,若在大題中考查多在概率與統(tǒng)計(jì)、算法框圖等知識(shí)交匯處命題,重點(diǎn)考查抽樣方法,頻率分布直方圖和回歸分析或獨(dú)立性檢驗(yàn),注意加強(qiáng)抽樣后繪制頻率分布直方圖,然后作統(tǒng)計(jì)分析或求概率的綜合練習(xí). 3.以客觀題形式考查古典概型與幾何概型、互斥事件與對(duì)立事件的概率計(jì)算. 4.與統(tǒng)計(jì)結(jié)合在大題中考查古典概型與幾何概型. 一、統(tǒng)計(jì)與統(tǒng)計(jì)案例 1.抽樣方法 三種抽樣方法的比較 類別 共同點(diǎn) 各自特點(diǎn) 相互聯(lián)系 適用范圍 簡(jiǎn)
2、單隨機(jī)抽樣 抽樣過程中每個(gè)個(gè)體被抽取的概率相等 從總體中逐個(gè)抽取 總體中的個(gè)體數(shù)較少 系統(tǒng)抽樣 將總體均分成幾部分,按事先確定的規(guī)則在各部分抽取 在起始部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣 總體中的個(gè)體數(shù)較多 分層抽樣 將總體分成幾層,分層進(jìn)行抽取 分層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣 總體由差異明顯的幾部分組成 2.統(tǒng)計(jì)圖表 (1)在頻率分布直方圖中: ①各小矩形的面積表示相應(yīng)各組的頻率,各小矩形的高=;②各小矩形面積之和等于1;③中位數(shù)左右兩側(cè)的直方圖面積相等,因此可以估計(jì)其近似值. (2)莖葉圖 當(dāng)數(shù)據(jù)有兩位有效數(shù)字時(shí),用中間的數(shù)字表示十
3、位數(shù),即第一個(gè)有效數(shù)字,兩邊的數(shù)字表示個(gè)位數(shù),即第二個(gè)有效數(shù)字,它的中間部分像植物的莖,兩邊部分像植物莖上長(zhǎng)出來的葉子,因此通常把這樣的圖叫做莖葉圖. 當(dāng)數(shù)據(jù)有三位有效數(shù)字,前兩位相對(duì)比較集中時(shí),常以前兩位為莖,第三位(個(gè)位)為葉(其余類推). 3.樣本的數(shù)字特征 (1)眾數(shù) 在樣本數(shù)據(jù)中,頻率分布最大值所對(duì)應(yīng)的樣本數(shù)據(jù)(或出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)). (2)中位數(shù) 樣本數(shù)據(jù)中,將數(shù)據(jù)按大小排列,位于最中間的數(shù)據(jù).如果數(shù)據(jù)的個(gè)數(shù)為偶數(shù),就取當(dāng)中兩個(gè)數(shù)據(jù)的平均數(shù)作為中位數(shù). (3)平均數(shù)與方差 樣本數(shù)據(jù)的平均數(shù)=(x1+x2+…+xn). 方差s2=[(x1-)2+(x2-)2+
4、…+(xn-)2]. 注意:(1)現(xiàn)實(shí)中總體所包含的個(gè)體數(shù)往往較多,總體的平均數(shù)與標(biāo)準(zhǔn)差、方差是不知道(或不可求)的,所以我們通常用樣本的平均數(shù)與標(biāo)準(zhǔn)差、方差來估計(jì)總體的平均數(shù)與標(biāo)準(zhǔn)差、方差. (2)平均數(shù)反映了數(shù)據(jù)取值的平均水平,標(biāo)準(zhǔn)差、方差描述了一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大小.標(biāo)準(zhǔn)差、方差越大,數(shù)據(jù)的離散程度越大,越不穩(wěn)定. 4.變量間的相關(guān)關(guān)系 (1)利用散點(diǎn)圖可以初步判斷兩個(gè)變量之間是否線性相關(guān).如果散點(diǎn)圖中的點(diǎn)從整體上看大致分布在一條直線的附近,我們說變量x和y具有線性相關(guān)關(guān)系. (2)用最小二乘法求回歸直線的方程 設(shè)線性回歸方程為=x+,則 . 注意:回歸直線一定經(jīng)過
5、樣本的中心點(diǎn)(,),據(jù)此性質(zhì)可以解決有關(guān)的計(jì)算問題. 5.回歸分析 r=,叫做相關(guān)系數(shù). 相關(guān)系數(shù)用來衡量變量x與y之間的線性相關(guān)程度;|r|≤1,且|r|越接近于1,相關(guān)程度越高,|r|越接近于0,相關(guān)程度越低. 6.獨(dú)立性檢驗(yàn) 假設(shè)有兩個(gè)分類變量X和Y,它們的取值分別為{x1,x2}和{y1,y2},其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為 y1 y2 總計(jì) x1 a b a+b x2 c d c+d 總計(jì) a+c b+d a+b+c+d 則K2=, 若K2>3.841,則有95%的把握說兩個(gè)事件有關(guān); 若K2>6.635,則有99%的把握說
6、兩個(gè)事件有關(guān); 若K2<2.706,則沒有充分理由認(rèn)為兩個(gè)事件有關(guān). 7.隨機(jī)事件的概率 隨機(jī)事件的概率范圍:0≤P(A)≤1; 必然事件的概率為1,不可能事件的概率為0. 8.古典概型 ①計(jì)算一次試驗(yàn)中基本事件的總數(shù)n;②求事件A包含的基本事件的個(gè)數(shù)m;③利用公式P(A)=計(jì)算. 9.一般地,如果事件A、B互斥,那么事件A+B發(fā)生(即A、B中有一個(gè)發(fā)生)的概率,等于事件A、B分別發(fā)生的概率的和,即P(A+B)=P(A)+P(B). 10.對(duì)立事件:在每一次試驗(yàn)中,相互對(duì)立的事件A和不會(huì)同時(shí)發(fā)生,但一定有一個(gè)發(fā)生,因此有P()=1-P(A). 11.互斥事件與對(duì)立事件的關(guān)系
7、 對(duì)立必互斥,互斥未必對(duì)立. 12.幾何概型 一般地,在幾何區(qū)域D內(nèi)隨機(jī)地取一點(diǎn),記事件“該點(diǎn)落在其內(nèi)部區(qū)域d內(nèi)”為事件A,則事件A發(fā)生的概率P(A)=. 考點(diǎn)一 事件與概率 例1.(2016·課標(biāo)Ⅱ,18,12分,中)某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下: 上年度出險(xiǎn)次數(shù) 0 1 2 3 4 ≥5 保費(fèi) 0.85a a 1.25a 1.5a 1.75a 2a 設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下: 一年內(nèi)出險(xiǎn)次數(shù) 0 1 2 3 4 ≥5 概率 0
8、.30 0.15 0.20 0.20 0.10 0.05 (1)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率; (2)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率; (3)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值. (3)記續(xù)保人本年度的保費(fèi)為X,則X的分布列為 X 0.85a a 1.25a 1.5a 1.75a 2a P 0.30 0.15 0.20 0.20 0.10 0.05 EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.
9、因此續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為=1.23. 【變式探究】(2015·廣東,4)袋中共有15個(gè)除了顏色外完全相同的球,其中有10個(gè)白球,5個(gè)紅球.從袋中任取2個(gè)球,所取的2個(gè)球中恰有1個(gè)白球,1個(gè)紅球的概率為( ) A.1 B. C. D. 解析 從袋中任取2個(gè)球共有C=105種取法,其中恰好1個(gè)白球1個(gè)紅球共有CC=50種取法,所以所取的球恰好1個(gè)白球1個(gè)紅球的概率為=. 答案 C 考點(diǎn)二 古典概型 例2.【2017山東,理8】從分別標(biāo)有,,,的張卡片中不放回地隨機(jī)抽取2次,每次抽取1張.則抽到的2張卡片上的數(shù)奇偶性不同的概率是 (A)
10、 (B) (C) (D) 【答案】C 【解析】標(biāo)有, , , 的張卡片中,標(biāo)奇數(shù)的有張,標(biāo)偶數(shù)的有張,所以抽到的2張卡片上的數(shù)奇偶性不同的概率是 ,選C. 【變式探究】袋中共有15個(gè)除了顏色外完全相同的球,其中有10個(gè)白球,5個(gè)紅球.從袋中任取2個(gè)球,所取的2個(gè)球中恰有1個(gè)白球,1個(gè)紅球的概率為( ) A. B. C. D.1 【變式探究】從正方形四個(gè)頂點(diǎn)及其中心這5個(gè)點(diǎn)中,任取2個(gè)點(diǎn),則這2個(gè)點(diǎn)的距離不小于該正方形邊長(zhǎng)的概率為( ) A. B. C. D. 解析 從這5個(gè)點(diǎn)中任取2個(gè),有C=10種取法,滿足兩
11、點(diǎn)間的距離不小于正方形邊長(zhǎng)的取法有C=6種,因此所求概率P==.故選C. 答案 C 考點(diǎn)三 隨機(jī)數(shù)與幾何概型 例3.【2017課標(biāo)1,理】如圖,正方形ABCD內(nèi)的圖形來自中國(guó)古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對(duì)稱.在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是 A. B. C. D. 【答案】B 【解析】設(shè)正方形邊長(zhǎng)為,則圓的半徑為,正方形的面積為,圓的面積為.由圖形的對(duì)稱性可知,太極圖中黑白部分面積相等,即各占圓面積的一半.由幾何概型概率的計(jì)算公式得,此點(diǎn)取自黑色部分的概率是,選B. 【變式探究】 (2016·
12、課標(biāo)Ⅰ,4,易)某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時(shí)刻是隨機(jī)的,則他等車時(shí)間不超過10分鐘的概率是( ) A. B. C. D. 【答案】B 【解析】由題意知,小明在7:50至8:30 之間到達(dá)發(fā)車站,故他只能乘坐8:00或8:30發(fā)的車,所以他等車時(shí)間不超過10分鐘的概率P==. 【變式探究】(2016·課標(biāo)Ⅱ,10,中)從區(qū)間[0,1]隨機(jī)抽取2n個(gè)數(shù)x1,x2,…,xn,y1,y2,…,yn,構(gòu)成n個(gè)數(shù)對(duì)(x1,y1),(x2,y2),…,(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對(duì)共有m個(gè),則用隨
13、機(jī)模擬的方法得到的圓周率π的近似值為( ) A. B. C. D. 【答案】C 【解析】由題意知,=,故π=,即圓周率π的近似值為. 考點(diǎn)四 條件概率與相互獨(dú)立事件的概率 例4.【2017課標(biāo)II,理18】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg)某頻率分布直方圖如下: (1) 設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg, 新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率; (2) 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法
14、有關(guān): 箱產(chǎn)量<50kg 箱產(chǎn)量≥50kg 舊養(yǎng)殖法 新養(yǎng)殖法 (3) 根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01) 附: 【答案】(1);(2)見解析;(3). (2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表 箱產(chǎn)量 箱產(chǎn)量 舊養(yǎng)殖法 62 38 新養(yǎng)殖法 34 66 由于 故有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān). (3)因?yàn)樾吗B(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中,箱產(chǎn)量低于的直方圖面積為 , 箱產(chǎn)量低于的直方圖面積為 故新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的
15、估計(jì)值為 . 【變式探究】投籃測(cè)試中,每人投3次,至少投中2次才能通過測(cè)試.已知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過測(cè)試的概率為( ) A.0.648 B.0.432 C.0.36 D.0.312 解析 該同學(xué)通過測(cè)試的概率為p=0.6×0.6+C×0.4×0.62=0.648. 答案 A 【變式探究】(2014·新課標(biāo)全國(guó)Ⅱ,5)某地區(qū)空氣質(zhì)量監(jiān)測(cè)資料表明,一天的空氣質(zhì)量為優(yōu)良的概率是0.75,連續(xù)兩天為優(yōu)良的概率是0.6,已知某天的空氣質(zhì)量為優(yōu)良,則隨后一天的空氣質(zhì)量為優(yōu)良的概率是( ) A.0.8 B.0.75
16、C.0.6 D.0.45 解析 由條件概率可得所求概率為=0.8,故選A. 答案 A 考點(diǎn)五 正態(tài)分布 例5.【2017課標(biāo)1,理19】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布. (1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望; (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查. (ⅰ)試說明上述監(jiān)控生產(chǎn)
17、過程方法的合理性; (ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 經(jīng)計(jì)算得,,其中為抽取的第個(gè)零件的尺寸,.用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01). 附:若隨機(jī)變量服從正態(tài)分布,則, ,. 【答案】(1).(2)(i)見解析;(ii). 【解析】 (1)抽取的
18、一個(gè)零件的尺寸在之內(nèi)的概率為0.9974,從而零件的尺寸在之外的概率為0.0026,故.因此 . 的數(shù)學(xué)期望為. (2)(i)如果生產(chǎn)狀態(tài)正常,一個(gè)零件尺寸在之外的概率只有0.0026,一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件的概率只有0.0408,發(fā)生的概率很小.因此一旦發(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的. (ii)由,得的估計(jì)值為, 的估計(jì)值為,由樣本數(shù)據(jù)可以看出有一個(gè)零件的尺寸在之外,因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查. 剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為,因此的估計(jì)
19、值為10.02. ,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為, 因此的估計(jì)值為. 【變式探究】在如圖所示的正方形中隨機(jī)投擲10 000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(0,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( ) 附:若X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.682 6, P(μ-2σ<X≤μ+2σ)=0.954 4. A.2 386 B.2 718 C.3 413 D.4 772 答案 C 【變式探究】(2014·新課標(biāo)全國(guó)Ⅰ,18)從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布
20、直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)x和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)x,σ2近似為樣本方差s2.
(ⅰ)利用該正態(tài)分布,求P(187.8 21、4 4.
解 (1)抽取產(chǎn)品的質(zhì)量指標(biāo)值的樣本平均數(shù)x和樣本方差s2分別為
=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.
(2)(ⅰ)由(1)知,Z~N(200,150),從而
P(187.8 22、12.2)的概率為0.682 6,依題意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.
考點(diǎn)六 離散型隨機(jī)變量的分布列
例6.【2017天津,理16】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)解:隨機(jī)變量的所有可能取值為0,1,2,3.
,
,
,
.
所以,隨機(jī)變量的分布列為
0 23、
1
2
3
隨機(jī)變量的數(shù)學(xué)期望.
(Ⅱ)解:設(shè)表示第一輛車遇到紅燈的個(gè)數(shù), 表示第二輛車遇到紅燈的個(gè)數(shù),則所求事件的概率為
.
所以,這2輛車共遇到1個(gè)紅燈的概率為.
【變式探究】(2016·山東,19,12分,中)甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ).在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響,各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(1)“星隊(duì)”至少猜對(duì)3 24、個(gè)成語(yǔ)的概率;
(2)“星隊(duì)”兩輪得分之和X的分布列和數(shù)學(xué)期望EX.
解:(1)記事件A:“甲第一輪猜對(duì)”,記事件B:“乙第一輪猜對(duì)”,記事件C:“甲第二輪猜對(duì)”,記事件D:“乙第二輪猜對(duì)”,記事件E:“‘星隊(duì)’至少猜對(duì)3個(gè)成語(yǔ)”.
由題意,E=ABCD+BCD+ACD+ABD+ABC.
由事件的獨(dú)立性與互斥性,得
P(E)=P(ABCD)+P(BCD)+P(ACD)+P(ABD)+P(ABC)
=P(A)P(B)P(C)P(D)+P()P(B)·P(C)P(D)+P(A)P()P(C)P(D)+P(A)P(B)P()P(D)+P(A)P(B)P(C)·P()
=×××+2××= 25、.
所以“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率為.
(2)由題意,隨機(jī)變量X可能的取值為0,1,2,3,4,6.
由事件的獨(dú)立性與互斥性,得
可得隨機(jī)變量X的分布列為
X
0
1
2
3
4
6
P
所以數(shù)學(xué)期望EX=0×+1×+2×+3×+4×+6×=.
【變式探究】(2015·安徽,17)已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)果.
(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;
(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)X表 26、示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求X的分布列和均值(數(shù)學(xué)期望).
解 (1)記“第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品”為事件A.
P(A)==.
(2)X的可能取值為200,300,400.
P(X=200)==,
P(X=300)==,
P(X=400)=1-P(X=200)-P(X=300)=1--=.
故X的分布列為
X
200
300
400
P
E(X)=200×+300×+400×=350.
考點(diǎn)七 均值與方差
例7.【2016高考江蘇卷】已知一組數(shù)據(jù)4.7,4.8,5.1,5.4,5.5,則該組 27、數(shù)據(jù)的方差是________▲________.
【答案】0.1
【解析】這組數(shù)據(jù)的平均數(shù)為,.故答案應(yīng)填:0.1,
【變式探究】如圖,將一個(gè)各面都涂了油漆的正方體,切割為125個(gè)同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個(gè)小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )
A. B.
C. D.
解析 由題意可知涂漆面數(shù)X的可能取值為0,1,2,3.
由于P(X=0)=,P(X=1)=,P(X=2)=,
P(X=3)=,故E(X)=0×+1×+2×+3×==.
答案 B
考點(diǎn)八 抽樣方法
例8.【2017 28、天津,理16】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)解:隨機(jī)變量的所有可能取值為0,1,2,3.
,
,
,
.
所以,隨機(jī)變量的分布列為
0
1
2
3
隨機(jī)變量的數(shù)學(xué)期望.
(Ⅱ)解:設(shè)表示第一輛車遇到紅燈的個(gè)數(shù), 表示第二輛車遇到紅燈的個(gè)數(shù),則所求事件的概率為
.
所以,這2輛車共 29、遇到1個(gè)紅燈的概率為.
【變式探究】(2016·山東,3,易)某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20, 22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是( )
A.56 B.60 C.120 D.140
(2015·陜西,2)某中學(xué)初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校女教師的人數(shù)為( )
A.167 B 30、.137 C.123 D.93
解析 由題干扇形統(tǒng)計(jì)圖可得該校女教師人數(shù)為:110×70%+150×(1-60%)=137.故選B.
答案 B
【變式探究】(2014·湖南,2)對(duì)一個(gè)容量為N的總體抽取容量為n的樣本,當(dāng)選取簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣三種不同方法抽取樣本時(shí),總體中每個(gè)個(gè)體被抽中的概率分別為p1,p2,p3,則( )
A.p1=p2 31、
例9.(2015·安徽,6)若樣本數(shù)據(jù)x1,x2,…,x10的標(biāo)準(zhǔn)差為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的標(biāo)準(zhǔn)差為( )
A.8 B.15 C.16 D.32
解析 法一 由題意知,x1+x2+…+x10=10x,
s1=,
則=[(2x1-1)+(2x2-1)+…+(2x10-1)]
=[2(x1+x2+…+x10)-n]=2-1,
所以S2=
==2s1,故選C.
答案 C
【變式探究】(2015·重慶,3)重慶市2013年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如下:
則這組數(shù)據(jù)的中位數(shù)是( )
0
1
2
2
8 9
2 5 32、 8
0 0 0 3 3 8
1 2
A.19 B.20 C.21.5 D.23
解析 從莖葉圖知所有數(shù)據(jù)為8,9,12,15,18,20,20,23,23,28,31,32,中間兩個(gè)數(shù)為20,20,故中位數(shù)為20,選B.
答案 B
考點(diǎn)十 變量間的相關(guān)關(guān)系及統(tǒng)計(jì)案例
例10.(2015·新課標(biāo)全國(guó)Ⅱ,31)根據(jù)下面給出的2004年至2013年我國(guó)二氧化硫排放量(單位:萬(wàn)噸)柱形圖.以下結(jié)論不正確的是( )
A.逐年比較,2008年減少二氧化硫排放量的效果最顯著
B.2007年我國(guó)治理二氧化硫排放顯現(xiàn)成效
C.2006年以來我國(guó)二氧 33、化硫年排放量呈減少趨勢(shì)
D.2006年以來我國(guó)二氧化硫年排放量與年份正相關(guān)
解析 從2006年,將每年的二氧化硫排放量與前一年作差比較,得到2008年二氧化硫排放量與2007年排放量的差最大,A選項(xiàng)正確;
2007年二氧化硫排放量較2006年降低了很多,B選項(xiàng)正確;
雖然2011年二氧化硫排放量較2010年多一些,但自2006年以來,整體呈遞減趨勢(shì),即C選項(xiàng)正確;自2006年以來我國(guó)二氧化硫年排放量與年份負(fù)相關(guān),D選項(xiàng)錯(cuò)誤,故選D.
答案 D
【變式探究】(2015·福建,4)為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬(wàn)元 34、)
8.2
8.6
10.0
11.3
11.9
支出y(萬(wàn)元)
6.2
7.5
8.0
8.5
9.8
根據(jù)上表可得回歸直線方程=x+,其中=0.76,=y(tǒng)-x.據(jù)此估計(jì),該社區(qū)一戶年收入為15萬(wàn)元家庭的年支出為( )
A.11.4萬(wàn)元 B.11.8萬(wàn)元
C.12.0萬(wàn)元 D.12.2萬(wàn)元
解析 回歸直線一定過樣本點(diǎn)中心(10,8),∵=0.76,∴=0.4,由=0.76x+0.4得當(dāng)x=15萬(wàn)元時(shí),=11.8萬(wàn)元.故選B.
答案 B
1.【2017課標(biāo)1,理】如圖,正方形ABCD內(nèi)的圖形來自中國(guó)古代的太極圖.正方形內(nèi)切圓中的黑色部分和 35、白色部分關(guān)于正方形的中心成中心對(duì)稱.在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是
A. B.
C. D.
【答案】B
2.【2017浙江,8】已知隨機(jī)變量滿足P(=1)=pi,P(=0)=1—pi,i=1,2. 若0 36、據(jù)此估計(jì)其身高為
(A) (B) (C) (D)
【答案】C
【解析】由已知 ,選C.
4.【2017山東,理8】從分別標(biāo)有,,,的張卡片中不放回地隨機(jī)抽取2次,每次抽取1張.則抽到的2張卡片上的數(shù)奇偶性不同的概率是
(A) (B) (C) (D)
【答案】C
【解析】標(biāo)有, , , 的張卡片中,標(biāo)奇數(shù)的有張,標(biāo)偶數(shù)的有張,所以抽到的2張卡片上的數(shù)奇偶性不同的概率是 ,選C.
5.【2017課標(biāo)II,理13】一批產(chǎn)品的二等品率為,從這批產(chǎn)品中每次隨機(jī)取一件,有放回地抽取次,表示 37、抽到的二等品件數(shù),則 。
【答案】1.96
【解析】由題意可得,抽到二等品的件數(shù)符合二項(xiàng)分布,即,由二項(xiàng)分布的期望公式可得.
6.【2017山東,理18】(本小題滿分12分)在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(I)求接受甲種心理暗示的志 38、愿者中包含A1但不包含的頻率。
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.
【答案】(I)(II)X的分布列為
X
0
1
2
3
4
P
X的數(shù)學(xué)期望是.
【解析】(I)記接受甲種心理暗示的志愿者中包含但不包含的事件為M,則
(II)由題意知X可取的值為: .則
因此X的分布列為
X
0
1
2
3
4
P
X的數(shù)學(xué)期望是
=
7.【2017課標(biāo)1,理19】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單 39、位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(?。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10 40、.04
10.05
9.95
經(jīng)計(jì)算得,,其中為抽取的第個(gè)零件的尺寸,.用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01).
附:若隨機(jī)變量服從正態(tài)分布,則,
,.
【答案】(1).(2)(i)見解析;(ii).
【解析】
(1)抽取的一個(gè)零件的尺寸在之內(nèi)的概率為0.9974,從而零件的尺寸在之外的概率為0.0026,故.因此
.
的數(shù)學(xué)期望為.
(ii)由,得的估計(jì)值為, 的估計(jì)值為,由樣本數(shù)據(jù)可以看出有一個(gè)零件的尺寸在之外,因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
剔除之 41、外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為,因此的估計(jì)值為10.02.
,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為,
因此的估計(jì)值為.
8.【2017課標(biāo)II,理18】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg)某頻率分布直方圖如下:
(4) 設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg, 新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率;
(5) 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg
箱產(chǎn)量≥50 42、kg
舊養(yǎng)殖法
新養(yǎng)殖法
(6) 根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01)
附:
【答案】(1);(2)見解析;(3).
【解析】(1)記B表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于” , 表示事件“新養(yǎng)殖法的箱產(chǎn)量不低于”
由題意知
舊養(yǎng)殖法的箱產(chǎn)量低于的頻率為
故的估計(jì)值為0.62
新養(yǎng)殖法的箱產(chǎn)量不低于的頻率為
故的估計(jì)值為0.66
因此,事件A的概率估計(jì)值為
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表
箱產(chǎn)量
箱產(chǎn)量
舊養(yǎng)殖法
62
38
新養(yǎng)殖 43、法
34
66
由于
故有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)因?yàn)樾吗B(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中,箱產(chǎn)量低于的直方圖面積為
,
箱產(chǎn)量低于的直方圖面積為
故新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值為
.
9.【2017北京,理17】為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥.一段時(shí)間后,記錄了兩組患者的生理指標(biāo)x和y的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者.
(Ⅰ)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)y的值小于60的概率;
(Ⅱ)從圖中A,B,C,D四人中隨機(jī).選出兩人,記為選出的兩人中指 44、標(biāo)x的值大于1.7的人數(shù),求的分布列和數(shù)學(xué)期望E();
(Ⅲ)試判斷這100名患者中服藥者指標(biāo)y數(shù)據(jù)的方差與未服藥者指標(biāo)y數(shù)據(jù)的方差的大小.(只需寫出結(jié)論)
【答案】(1)0.3(2)見解析(3)在這100名患者中,服藥者指標(biāo)數(shù)據(jù)的方差大于未服藥者指標(biāo)數(shù)據(jù)的方差.
所以的分布列為
0
1
2
故的期望.
(Ⅲ)在這100名患者中,服藥者指標(biāo)數(shù)據(jù)的方差大于未服藥者指標(biāo)數(shù)據(jù)的方差.
10.【2017天津,理16】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求 45、隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)解:隨機(jī)變量的所有可能取值為0,1,2,3.
,
,
,
.
所以,隨機(jī)變量的分布列為
0
1
2
3
隨機(jī)變量的數(shù)學(xué)期望.
(Ⅱ)解:設(shè)表示第一輛車遇到紅燈的個(gè)數(shù), 表示第二輛車遇到紅燈的個(gè)數(shù),則所求事件的概率
為
.
所以,這2輛車共遇到1個(gè)紅燈的概率為.
11. 【2017江蘇,23】 已知一個(gè)口袋有個(gè)白球,個(gè)黑球(),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放 46、入如圖所示的編號(hào)為的抽屜內(nèi),其中第次取出的球放入編號(hào)為的抽屜.
1
2
3
(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率;
(2)隨機(jī)變量表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),是的數(shù)學(xué)期望,證明:
【答案】(1)(2)見解析
【解析】解:(1)?編號(hào)為2的抽屜內(nèi)放的是黑球的概率為: .?
(2)?隨機(jī)變量?X?的概率分布為:
X
…
…
P
…
…
隨機(jī)變量?X?的期望為:
.
所以
.
12.【2017江蘇,3】 某工廠生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為200, 47、400,300,100件.為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取 ▲ 件.
【答案】18
【解析】所求人數(shù)為,故答案為18.
13.【2017江蘇,7】 記函數(shù)的定義域?yàn)?在區(qū)間上隨機(jī)取一個(gè)數(shù),則的概率是 ▲ .
【答案】
1. 【2016高考新課標(biāo)1卷】某公司的班車在7:00,8:00,8:30發(fā)車,小明在7:50至8:30之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時(shí)刻是隨機(jī)的,則他等車時(shí)間不超過10分鐘的概率是( )
(A) (B) (C) (D)
【答案】B
【解析】如 48、圖所示,畫出時(shí)間軸:
小明到達(dá)的時(shí)間會(huì)隨機(jī)的落在圖中線段中,而當(dāng)他的到達(dá)時(shí)間落在線段或時(shí),才能保證他等車的時(shí)間不超過10分鐘根據(jù)幾何概型,所求概率.故選B.
2.【2016高考新課標(biāo)3理數(shù)】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中點(diǎn)表示十月的平均最高氣溫約為,點(diǎn)表示四月的平均最低氣溫約為.下面敘述不正確的是( )
(A)各月的平均最低氣溫都在以上 (B)七月的平均溫差比一月的平均溫差大
(C)三月和十一月的平均最高氣溫基本相同 (D)平均氣溫高于的月份有5個(gè)
【答案】D
【解析】由題圖可知各月的 49、平均最低氣溫都在0C以上,A正確;由題圖可知七月的平均溫差大于7.5C,而一月的平均溫差小于7.5C,所以七月的平均溫差比一月的平均溫差大,B正確;由題圖可知三月和十一月的平均最高氣溫都大約在10C,基本相同,C正確;由題圖可知平均最高氣溫高于20℃的月份有3個(gè),所以不正確.故選D.
3.【2016高考山東理數(shù)】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí) 50、間不少于22.5小時(shí)的人數(shù)是( )
(A)56 (B)60 (C)120 (D)140
【答案】D
【解析】由頻率分布直方圖知,自習(xí)時(shí)間不少于22.5小時(shí)為后三組,有(人),選D.
4.【2016高考新課標(biāo)2理數(shù)】從區(qū)間隨機(jī)抽取個(gè)數(shù),,…,,,,…,,構(gòu)成n個(gè)數(shù)對(duì),,…,,其中兩數(shù)的平方和小于1的數(shù)對(duì)共有個(gè),則用隨機(jī)模擬的方法得到的圓周率的近似值為
(A) (B) (C) (D)
【答案】C
【解析】利用幾何概型,圓形的面積和正方形的面積比為,所以.選C.
5.【2016年高考北京理數(shù)】 51、袋中裝有偶數(shù)個(gè)球,其中紅球、黑球各占一半.甲、乙、丙是三個(gè)空盒.每次從袋中任意取出兩個(gè)球,將其中一個(gè)球放入甲盒,如果這個(gè)球是紅球,就將另一個(gè)球放入乙盒,否則就放入丙盒.重復(fù)上述過程,直到袋中所有球都被放入盒中,則()
A.乙盒中黑球不多于丙盒中黑球 B.乙盒中紅球與丙盒中黑球一樣多
C.乙盒中紅球不多于丙盒中紅球 D.乙盒中黑球與丙盒中紅球一樣多
【答案】C
【解析】若乙盒中放入的是紅球,則須保證抽到的兩個(gè)均是紅球;若乙盒中放入的是黑球,則須保證抽到的兩個(gè)球是一紅一黑,且紅球放入甲盒;若丙盒中放入的是紅球,則須保證抽到的兩個(gè)球是一紅一黑:且黑球放入 52、甲盒;若丙盒中放入的是黑球,則須保證抽到的兩個(gè)球都是黑球.由于抽到兩個(gè)紅球的次數(shù)與抽到兩個(gè)黑球的次數(shù)應(yīng)是相等的,故乙盒中紅球與丙盒中黑球一樣多,選B.
6.【2016高考江蘇卷】將一顆質(zhì)地均勻的骰子(一種各個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點(diǎn)數(shù)之和小于10的概率是 ▲ .
【答案】
【解析】點(diǎn)數(shù)小于10的基本事件共有30種,所以所求概率為
7.【2016年高考四川理數(shù)】同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,當(dāng)至少有一枚硬幣正面向上時(shí),就說這次試驗(yàn)成功,則在2次試驗(yàn)中成功次數(shù)X的均值是 .
【答案】
【解析】同時(shí)拋擲兩枚質(zhì) 53、地均勻的硬幣,可能的結(jié)果有(正正),(正反),(反正),(反反),所以在1次試驗(yàn)中成功次數(shù)的取值為,其中
在1次試驗(yàn)中成功的概率為,
所以在2次試驗(yàn)中成功次數(shù)的概率為,,
則.
8.【2016高考新課標(biāo)2理數(shù)】有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是 .
【答案】1和3
【解析】由題意分析可知甲的卡片上數(shù)字為1和3,乙的卡片上數(shù)字為2和3,丙卡片上數(shù)字為1和2.
9 54、.【2016高考江蘇卷】已知一組數(shù)據(jù)4.7,4.8,5.1,5.4,5.5,則該組數(shù)據(jù)的方差是________▲________.
【答案】0.1
【解析】這組數(shù)據(jù)的平均數(shù)為,.故答案應(yīng)填:0.1,
10.【2016高考山東理數(shù)】在上隨機(jī)地取一個(gè)數(shù)k,則事件“直線y=kx與圓相交”發(fā)生的概率為 .
【答案】
11.【2016高考新課標(biāo)1卷】(本小題滿分12分)某公司計(jì)劃購(gòu)買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí) 55、應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購(gòu)買2臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù).
(I)求的分布列;
(II)若要求,確定的最小值;
(III)以購(gòu)買易損零件所需費(fèi)用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?
【答案】(I)見解析(II)19(III)
【解析】(Ⅰ)由柱狀圖并以頻率代替概率可得,一臺(tái)機(jī)器在三年內(nèi)需更換的易損零件數(shù)為8,9,10,11的概率分別為0.2,0.4,0.2,0.2 56、,從而
;
;
;
;
;
;
.
所以的分布列為
16
17
18
19
20
21
22
(Ⅱ)由(Ⅰ)知,,故的最小值為19.
(Ⅲ)記表示2臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元).
當(dāng)時(shí),
.
當(dāng)時(shí),
.
可知當(dāng)時(shí)所需費(fèi)用的期望值小于時(shí)所需費(fèi)用的期望值,故應(yīng)選.
12.【2016高考新課標(biāo)2理數(shù)】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費(fèi)與其上年度的出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù)
0
1
2
3
4
5
保費(fèi)
0.85
1.2 57、5
1.5
1.75
2
設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險(xiǎn)次數(shù)
0
1
2
3
4
5
概率
0.30
0.15
0.20
0.20
0.10
0.05
(Ⅰ)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(Ⅱ)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;
(Ⅲ)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.
【答案】(Ⅰ)0.55;(Ⅱ);(Ⅲ).
【解析】(Ⅰ)設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于1,故
(Ⅱ)設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)比 58、基本保費(fèi)高出”,則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于3,故
又,故
因此所求概率為
(Ⅲ)記續(xù)保人本年度的保費(fèi)為,則的分布列為
因此續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為
13.【2016年高考四川理數(shù)】(本小題滿分12分)
我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5), 59、[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中a的值;
(II)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(III)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.
【答案】(Ⅰ);(Ⅱ)36000;(Ⅲ)2.9.
(Ⅱ)由(Ⅰ),100位居民每人月均用水量不低于3噸的頻率為0.06+0.04+0.02=0.12.
由以上樣本的頻率分布,可以估計(jì)全市30萬(wàn)居民中月均用水量不低于3噸的人數(shù)為
300 000×0.12=36 000.
(Ⅲ)因?yàn)榍?組的頻率之和 60、為0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,
而前5組的頻率之和為0.04+0.08+0.15+0.20+0.26=0.73<0.85,
所以2.5≤x<3.
由0.3×(x–2.5)=0.85–0.73,
解得x=2.9.
所以,估計(jì)月用水量標(biāo)準(zhǔn)為2.9噸時(shí),85%的居民每月的用水量不超過標(biāo)準(zhǔn).
14.【2016年高考北京理數(shù)】(本小題13分)
A、B、C三個(gè)班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí));
A班
6 6.5 7 7.5 8
61、
B班
6 7 8 9 10 11 12
C班
3 4.5 6 7.5 9 10.5 12 13.5
(1)試估計(jì)C班的學(xué)生人數(shù);
(2)從A班和C班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,C班選出的人記為乙,假設(shè)所有學(xué)生的鍛煉時(shí)間相對(duì)獨(dú)立,求該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)的概率;
(3)再?gòu)腁、B、C三個(gè)班中各隨機(jī)抽取一名學(xué)生,他們?cè)撝艿腻憻挄r(shí)間分別是7,9,8.25(單位:小時(shí)),這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記 ,表格中數(shù)據(jù)的平均數(shù)記為 ,試判斷和的大小, 62、(結(jié)論不要求證明)
【答案】(1)40;(2);(3).
【解析】
(1)由題意知,抽出的名學(xué)生中,來自班的學(xué)生有名,根據(jù)分層抽樣方法,班的學(xué)生人數(shù)估計(jì)為;(2)設(shè)事件為“甲是現(xiàn)有樣本中班的第個(gè)人”,,
事件為“乙是現(xiàn)有樣本中班的第個(gè)人”,,
由題意可知,,;,,
,,.
設(shè)事件為“該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)”,由題意知,
因此
(3)根據(jù)平均數(shù)計(jì)算公式即可知,.
15.【2016高考山東理數(shù)】(本小題滿分12分)
甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“ 63、星隊(duì)”得1分;如果兩人都沒猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響,各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(I)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(Ⅱ)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.
【答案】(Ⅰ)(Ⅱ)分布列見解析,
【解析】
(Ⅰ)記事件A:“甲第一輪猜對(duì)”,記事件B:“乙第一輪猜對(duì)”,
記事件C:“甲第二輪猜對(duì)”,記事件D:“乙第二輪猜對(duì)”,
記事件E:“‘星隊(duì)’至少猜對(duì)3個(gè)成語(yǔ)”.
由題意,
由事件的獨(dú)立性與互斥性,
,
所以“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率為 64、.
(Ⅱ)由題意,隨機(jī)變量的可能取值為0,1,2,3,4,6.
可得隨機(jī)變量X的分布列為
X
0
1
2
3
4
6
P
所以數(shù)學(xué)期望.
16.【2016高考天津理數(shù)】(本小題滿分13分)
某小組共10人,利用假期參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4,.現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(I)設(shè)A為事件“選出的2人參加義工活動(dòng)次數(shù)之和為4”,求事件A發(fā)生的概率;
(II)設(shè)為選出的2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ)(Ⅱ)詳見解析
【解 65、析】解:由已知,有
所以,事件發(fā)生的概率為.
隨機(jī)變量的所有可能取值為
,
,
.
所以,隨機(jī)變量分布列為
隨機(jī)變量的數(shù)學(xué)期望.
17.【2016高考新課標(biāo)3理數(shù)】下圖是我國(guó)2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(I)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(II)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):,,,≈2.646.
參考公式:相關(guān)系數(shù)
回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:
.
【答案 66、】(Ⅰ)理由見解析;(Ⅱ)1.82億噸.
【解析】
(Ⅰ)由折線圖這數(shù)據(jù)和附注中參考數(shù)據(jù)得
,,,
,
.
因?yàn)榕c的相關(guān)系數(shù)近似為0.99,說明與的線性相關(guān)相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.
(Ⅱ)由及(Ⅰ)得,
,
所以,關(guān)于的回歸方程為:.
將2016年對(duì)應(yīng)的代入回歸方程得:,
所以預(yù)測(cè)2016年我國(guó)生活垃圾無害化處理量將約1.82億噸.
18. 【2016高考上海理數(shù)】某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).
【答案】1.76
【解析】將這6位同學(xué)的身高按照從低到高排列為:1.69,1.72,1.75,1.77,1.78,1.80,這六個(gè)數(shù)的中位數(shù)是1.75與1.77的平均數(shù),顯然為1.76.
19.【2016高考上海理數(shù)】在的二項(xiàng)式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為256,則常數(shù)項(xiàng)等于_________.
【答案】
【解析】因?yàn)槎?xiàng)式所有項(xiàng)的二項(xiàng)系數(shù)之和為,所以,所以,
二項(xiàng)式展開式的通項(xiàng)為,令,得,所以.
1.(2015·北京,1
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)部控制評(píng)價(jià)體系概述
- 班組長(zhǎng)專題培訓(xùn)資料
- 來電來人接聽接待技巧
- 兒童青少年心理健康
- 作文修改符號(hào)講解
- 模塊5 三維的應(yīng)用教學(xué)課件 After Effects CC影視后期合成案例教程
- 工信版Photoshop平面圖像處理實(shí)例教程第2章
- 機(jī)制工藝08
- 果樹整形修剪——主要樹形課件
- 心臟重癥的理論支撐點(diǎn)和臨床實(shí)踐ppt課件
- 醫(yī)藥行業(yè)信息化首選時(shí)空智友
- 物聯(lián)網(wǎng)層次結(jié)構(gòu)PPT課件
- 中糧集團(tuán)戰(zhàn)略十步法
- 寶潔產(chǎn)品組合中文
- (精品)平面設(shè)計(jì)23