2、n+1=an+1(n∈N*),則此數(shù)列是( )
A.遞增數(shù)列 B.遞減數(shù)列
C.常數(shù)列 D.?dāng)[動(dòng)數(shù)列
解析:選C ∵Sn+Sn+1=an+1,∴當(dāng)n≥2時(shí),Sn-1+Sn=an.
兩式相減,得an+an+1=an+1-an,∴an=0(n≥2).
當(dāng)n=1時(shí),a1+(a1+a2)=a2,∴a1=0,∴an=0(n∈N*).
4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1(n∈N*),則a5=( )
A.-16 B.16 C.31 D.32
解析:選B 當(dāng)n=1時(shí),S1=a1=2a1
3、-1,∴a1=1,
又Sn-1=2an-1-1(n≥2),∴Sn-Sn-1=an=2(an-an-1).
∴=2.∴an=1×2n-1,∴a5=24=16.
5.已知數(shù)列{an}滿(mǎn)足a1=0,an+1=(n∈N*),則a20= ( )
A.0 B.- C. D.
解析:選B 利用a1=0和遞推公式可求得a2=-,a3=,a4=0,a5=-,以此類(lèi)推,數(shù)列{an}的項(xiàng)周期性出現(xiàn),其周期為3.所以a20=a2=-.
6.(20xx·衢州模擬)將石子擺成如圖的梯形形狀,稱(chēng)數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第2 014項(xiàng)與5的
4、差即a2 014-5=( )
A.2 020×2 012 B.2 020×2 013
C.1 010×2 012 D.1 010×2 013
解析:選D 結(jié)合圖形可知,該數(shù)列的第n項(xiàng)an=2+3+4+…+(n+2).所以a2 014-5=4+5+…+2 016=1 010×2 013.
7.在數(shù)列{xn}中,若x1=1,xn+1=-1,則x2 013=________.
解析:將x1=1代入xn+1=-1,得x2=-,再將x2代入xn+1=-1,得x3=1,所以數(shù)列{xn}的周期為2,故x2 013=x1=1.
答案:1
8.?dāng)?shù)列{a
5、n}的通項(xiàng)公式an=-n2+10n+11,則該數(shù)列前________項(xiàng)的和最大.
解析:易知a1=20>0,顯然要想使和最大,則應(yīng)把所有的非負(fù)項(xiàng)求和即可,這樣只需求數(shù)列{an}的最后一個(gè)非負(fù)項(xiàng).令an≥0,則-n2+10n+11≥0,∴-1≤n≤11,可見(jiàn),當(dāng)n=11時(shí),a11=0,故a10是最后一個(gè)正項(xiàng),a11=0,故前10或11項(xiàng)和最大.
答案:10或11
9.已知數(shù)列{an}滿(mǎn)足a1=1,且an=n(an+1-an)(n∈N*),則a2=________,an=________.
解析:由an=n(an+1-an),可得=,
則an=···…··a1=×××…××1=n,故a2
6、=2,an=n.
答案:2 n
10.已知數(shù)列{an}.
(1)若an=n2-5n+4,
①數(shù)列中有多少項(xiàng)是負(fù)數(shù)?
②n為何值時(shí),an有最小值?并求出最小值.
(2)若an=n2+kn+4且對(duì)于n∈N*,都有an+1>an成立.求實(shí)數(shù)k的取值范圍.
解:(1)①由n2-5n+4<0,解得1an,知該數(shù)列是一個(gè)遞增數(shù)列,又因?yàn)橥?xiàng)公式an=n2+kn+4
7、,可以看成是關(guān)于n的二次函數(shù),又考慮到n∈N*,當(dāng)-=時(shí)a1=a2,所以-<,即得k>-3.
故實(shí)數(shù)k的取值范圍是(-3,+∞).
11.已知Sn為正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且滿(mǎn)足Sn=a+an(n∈N*).
(1)求a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
解:(1)由Sn=a+an(n∈N*),可得a1=a+a1,解得a1=1;
S2=a1+a2=a+a2,解得a2=2;同理,a3=3,a4=4.
(2)Sn=a+an,①
當(dāng)n≥2時(shí),Sn-1=a+an-1,②
①-②得(an-an-1-1)(an+an-1)=0.
由于an+an-1≠0,所
8、以an-an-1=1,又由(1)知a1=1,
故數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,故an=n.
12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a,an+1=Sn+3n,n∈N*.
(1)記bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.
解:(1)依題意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n,
由此得Sn+1-3n+1=2(Sn-3n),即bn+1=2bn,
∴數(shù)列{bn}是首項(xiàng)b1=a-3,公比為2的等比數(shù)列.
因此,所求通項(xiàng)公式為bn=Sn-3n=(a-3)×2n-1,n∈N*.
(2
9、)由(1)知,Sn=3n+(a-3)×2n-1,n∈N*,
于是,當(dāng)n≥2時(shí),
an=Sn-Sn-1=3n+(a-3)×2n-1-3n-1-(a-3)×2n-2=2×3n-1+(a-3)2n-2,
an+1-an=4×3n-1+(a-3)×2n-2=2n-2×12×n-2+a-3,
∵an+1≥an,∴12×n-2+a-3≥0,∴a≥-9.
又a2=a1+3>a1,綜上,所求的a的取值范圍是[-9,+∞).
[沖擊名校]
1.在數(shù)列{an}中,an=,則該數(shù)列前100項(xiàng)中的最大項(xiàng)與最小項(xiàng)分別是( )
A.a(chǎn)1,a50 B.a(chǎn)1,a44 C.a(chǎn)45,a
10、44 D.a(chǎn)45,a50
解析:選C an===1+.
所以當(dāng)n∈[1,44]時(shí),{an}是遞減數(shù)列且an<0,當(dāng)n∈[45,100]時(shí),{an}是遞減數(shù)列且an>0,所以(an)max=a45,(an)min=a44.
2.?dāng)?shù)列{an}滿(mǎn)足an+1=若a1=,則a2 013=________.
解析:因?yàn)閍1=∈,所以a2=2a1-1=2×-1=.
因?yàn)閍2=∈,所以a3=2a2-1=2×-1=.
因?yàn)閍3=∈,所以a4=2a3=2×=.
顯然a4=a1,根據(jù)遞推關(guān)系,逐步代入,得a5=a2,a6=a3,…故該數(shù)列的項(xiàng)呈周期性出現(xiàn),其周期為3,根據(jù)上述求解結(jié)果,可得a3k+1=,a3k+2=,a3k+3=(k∈N).
所以a2 013=a3=.