影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

備戰(zhàn)高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考4系列 8.1 坐標(biāo)系與參數(shù)方程課件 理

上傳人:痛*** 文檔編號(hào):72322172 上傳時(shí)間:2022-04-08 格式:PPT 頁數(shù):26 大小:1,000.51KB
收藏 版權(quán)申訴 舉報(bào) 下載
備戰(zhàn)高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考4系列 8.1 坐標(biāo)系與參數(shù)方程課件 理_第1頁
第1頁 / 共26頁
備戰(zhàn)高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考4系列 8.1 坐標(biāo)系與參數(shù)方程課件 理_第2頁
第2頁 / 共26頁
備戰(zhàn)高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考4系列 8.1 坐標(biāo)系與參數(shù)方程課件 理_第3頁
第3頁 / 共26頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《備戰(zhàn)高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考4系列 8.1 坐標(biāo)系與參數(shù)方程課件 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《備戰(zhàn)高考數(shù)學(xué)大二輪復(fù)習(xí) 專題八 選考4系列 8.1 坐標(biāo)系與參數(shù)方程課件 理(26頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、專題八選修4系列8.1坐標(biāo)系與參數(shù)方程(選修44)考情分析高頻考點(diǎn)-3-3-3-3-考情分析高頻考點(diǎn)-4-4-4-4-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三求直線或曲線的極坐標(biāo)方程和參數(shù)方程【思考】 如何求直線、曲線的極坐標(biāo)方程和參數(shù)方程?例1在直角坐標(biāo)系xOy中,直線C1:x=-2,圓C2:(x-1)2+(y-2)2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.(1)求C1,C2的極坐標(biāo)方程;(2)若直線C3的極坐標(biāo)方程為= (R),設(shè)C2與C3的交點(diǎn)為M,N,求C2MN的面積. 解析 解析關(guān)閉考情分析高頻考點(diǎn)-5-5-5-5-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三題后反思1.對(duì)于幾個(gè)特殊位置的直

2、線與圓的極坐標(biāo)方程要熟記,在求直線與圓的極坐標(biāo)方程時(shí),可直接應(yīng)用記憶的結(jié)論;熟記常用的直線的參數(shù)方程與拋物線、橢圓的參數(shù)方程,如果已知它們的普通方程,在求參數(shù)方程時(shí),可以直接應(yīng)用記憶的結(jié)論.2.求解與極坐標(biāo)方程有關(guān)的問題時(shí),可以轉(zhuǎn)化為熟悉的直角坐標(biāo)方程求解.若最終結(jié)果要求用極坐標(biāo)方程表示,則需將直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程.3.求一般的直線和曲線的極坐標(biāo)方程時(shí),先建立極坐標(biāo)系,再設(shè)直線或曲線上任一點(diǎn)的極坐標(biāo)為(,),根據(jù)已知條件建立關(guān)于,的等式,化簡(jiǎn)后即為所求的極坐標(biāo)方程.考情分析高頻考點(diǎn)-6-6-6-6-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三對(duì)點(diǎn)訓(xùn)練1將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐

3、標(biāo)變?yōu)樵瓉淼?倍,得曲線C.(1)寫出C的參數(shù)方程;(2)設(shè)直線l:2x+y-2=0與C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.解:(1)設(shè)(x1,y1)為圓上的點(diǎn),在已知變換下變?yōu)榍€C上的點(diǎn)(x,y),依題意,得考情分析高頻考點(diǎn)-7-7-7-7-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三考情分析高頻考點(diǎn)-8-8-8-8-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的互化【思考】 如何進(jìn)行直線和曲線的極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程間的互化?例2在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn)

4、,x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為cos =4.(1)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM|OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;(2)設(shè)點(diǎn)A的極坐標(biāo)為 ,點(diǎn)B在曲線C2上,求OAB面積的最大值.考情分析高頻考點(diǎn)-9-9-9-9-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三考情分析高頻考點(diǎn)-10-10-10-10-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三題后反思1.將參數(shù)方程化為普通方程的過程就是消去參數(shù)的過程,常用的消參方法有代入消參、加減消參和三角恒等式消參等,往往需要對(duì)參數(shù)方程進(jìn)行變形,為消去參數(shù)創(chuàng)造條件.2.若極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸正半軸重

5、合,兩坐標(biāo)系的長度單位相同,則極坐標(biāo)方程與直角坐標(biāo)方程可以互化.設(shè)M是平面內(nèi)的任意一點(diǎn),它的直角坐標(biāo)、極坐標(biāo)分別為(x,y)和(,),考情分析高頻考點(diǎn)-11-11-11-11-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三對(duì)點(diǎn)訓(xùn)練2(2018全國,理22)在直角坐標(biāo)系xOy中,曲線C1的方程為y=k|x|+2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為2+2cos -3=0.(1)求C2的直角坐標(biāo)方程;(2)若C1與C2有且僅有三個(gè)公共點(diǎn),求C1的方程.解 (1)由x=cos ,y=sin 得C2的直角坐標(biāo)方程為(x+1)2+y2=4.(2)由(1)知C2是圓心為A(-1,0),半

6、徑為2的圓.由題設(shè)知,C1是過點(diǎn)B(0,2)且關(guān)于y軸對(duì)稱的兩條射線.記y軸右邊的射線為l1,y軸左邊的射線為l2,由于B在圓C2的外面,故C1與C2有且僅有三個(gè)公共點(diǎn)等價(jià)于l1與C2只有一個(gè)公共點(diǎn)且l2與C2有兩個(gè)公共點(diǎn),或l2與C2只有一個(gè)公共點(diǎn)且l1與C2有兩個(gè)公共點(diǎn).考情分析高頻考點(diǎn)-12-12-12-12-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三考情分析高頻考點(diǎn)-13-13-13-13-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三 參數(shù)方程與極坐標(biāo)方程的應(yīng)用 【思考】 求解參數(shù)方程與極坐標(biāo)方程應(yīng)用問題的一般思路是什么?考情分析高頻考點(diǎn)-14-14-14-14-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三考情分析高頻考點(diǎn)-

7、15-15-15-15-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三題后反思對(duì)于極坐標(biāo)和參數(shù)方程的問題,既可以通過極坐標(biāo)和參數(shù)方程來解決,也可以通過直角坐標(biāo)解決,但大多數(shù)情況下,把極坐標(biāo)問題轉(zhuǎn)化為直角坐標(biāo)問題,把參數(shù)方程轉(zhuǎn)化為普通方程更有利于在一個(gè)熟悉的環(huán)境下解決問題.這樣可以減少由于對(duì)極坐標(biāo)和參數(shù)方程理解不到位造成的錯(cuò)誤.考情分析高頻考點(diǎn)-16-16-16-16-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三考情分析高頻考點(diǎn)-17-17-17-17-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三核心歸納-18-規(guī)律總結(jié)拓展演練1.熟記幾個(gè)特殊位置的直線和圓的極坐標(biāo)方程:(1)直線過極點(diǎn):=;(2)直線過點(diǎn)M(a,0)且垂直于極軸:cos

8、 =a;(3)直線過點(diǎn)M 且平行于極軸:sin =b;(4)圓心位于極點(diǎn),半徑為r:=r;(5)圓心位于M(r,0),半徑為r:=2rcos ;(6)圓心位于M ,半徑為r:=2rsin .核心歸納-19-規(guī)律總結(jié)拓展演練2.直線、圓、圓錐曲線的參數(shù)方程: 核心歸納-20-規(guī)律總結(jié)拓展演練3.在與直線、圓、橢圓有關(guān)的題目中,參數(shù)方程的使用會(huì)使問題的解決事半功倍,尤其是求取值范圍和最值問題,可將參數(shù)方程代入相關(guān)曲線的普通方程中,根據(jù)參數(shù)的取值條件求解.4.在平面解析幾何中,有些點(diǎn)的軌跡問題,用直角坐標(biāo)方法求它的方程有時(shí)會(huì)遇到困難,如果適當(dāng)?shù)夭捎脴O坐標(biāo)法來處理,求它的極坐標(biāo)方程會(huì)使問題變得簡(jiǎn)單些.

9、求軌跡的極坐標(biāo)方程所用的方法與在直角坐標(biāo)系里所用的方法基本上相同.核心歸納-21-規(guī)律總結(jié)拓展演練1.(2018北京,理10)在極坐標(biāo)系中,直線cos +sin =a(a0)與圓=2cos 相切,則a=.解析 由題意,可得直線的直角坐標(biāo)方程為x+y=a(a0),圓的直角坐標(biāo)方程為x2+y2-2x=0,即(x-1)2+y2=1.核心歸納-22-規(guī)律總結(jié)拓展演練2.(2018天津,理12)已知圓x2+y2-2x=0的圓心為C,直線 (t為參數(shù))與該圓相交于A,B兩點(diǎn),則ABC的面積為.解析 由圓C的方程為x2+y2-2x=0,可得圓心為C(1,0),半徑為1.核心歸納-23-規(guī)律總結(jié)拓展演練核心歸納-24-規(guī)律總結(jié)拓展演練核心歸納-25-規(guī)律總結(jié)拓展演練(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.核心歸納-26-規(guī)律總結(jié)拓展演練

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!