購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢Q:1304139763
SY-025-BY-2
畢業(yè)設(shè)計(論文)任務(wù)書
學(xué)生姓名
杭天宇
系部
汽車與交通工程院
專業(yè)、班級
車輛工程07-9
指導(dǎo)教師姓名
孫遠(yuǎn)濤
職稱
實驗師
從事
專業(yè)
車輛工程
是否外聘
□是否
題目名稱
吉利微型車轉(zhuǎn)向系設(shè)計
一、設(shè)計(論文)目的、意義
汽車行駛中,駕駛員通過操縱轉(zhuǎn)向盤,經(jīng)過一套傳動機構(gòu),使轉(zhuǎn)向輪在路面上偏轉(zhuǎn)一定的角度來改變其行駛方向,確保汽車穩(wěn)定安全的正常行駛。能使轉(zhuǎn)向輪偏轉(zhuǎn)以實現(xiàn)汽車轉(zhuǎn)向的一整套機構(gòu)稱為汽車轉(zhuǎn)向系。轉(zhuǎn)向系的作用就是通過駕駛員轉(zhuǎn)動轉(zhuǎn)向盤,根據(jù)需要改變汽車行駛方向。主要形式有:機械式、液壓式及電動式動力轉(zhuǎn)向系。
機械式轉(zhuǎn)向系由轉(zhuǎn)向操縱機構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)三部分組成,汽車轉(zhuǎn)向時,駕駛員作用于轉(zhuǎn)向盤上的力,經(jīng)過轉(zhuǎn)向軸(轉(zhuǎn)向柱)傳到轉(zhuǎn)向器,轉(zhuǎn)向器將轉(zhuǎn)向力放大后,又通過轉(zhuǎn)向傳動機構(gòu)的傳遞,推動轉(zhuǎn)向輪偏轉(zhuǎn),致使汽車行駛方向改變。汽車的轉(zhuǎn)向,完全由駕駛員所付的操縱力來實現(xiàn)的,操縱較費力,勞動強度較大,但其具有結(jié)構(gòu)簡單、工作可靠、路感性好、維護方便等優(yōu)點,多應(yīng)用于中小型貨車或轎車上。
二、設(shè)計(論文)內(nèi)容、技術(shù)要求(研究方法)
設(shè)計內(nèi)容:在查閱大量相關(guān)文獻后,深入了解國內(nèi)外微型車轉(zhuǎn)向系的發(fā)展現(xiàn)狀。設(shè)計的主要內(nèi)容有:確定轉(zhuǎn)向器的結(jié)構(gòu)形式,并進行轉(zhuǎn)向器及轉(zhuǎn)向梯形的結(jié)構(gòu)設(shè)計,轉(zhuǎn)向器的結(jié)構(gòu)強度校核。
技術(shù)要求:在充分了解并掌握國內(nèi)外微型車轉(zhuǎn)向系的結(jié)構(gòu)及工作原理的基礎(chǔ)上,設(shè)計出結(jié)構(gòu)合理、經(jīng)濟實用、安全穩(wěn)定的微型車轉(zhuǎn)向系。主要技術(shù)指標(biāo):轉(zhuǎn)向系的效率、轉(zhuǎn)向系的角傳動比和力傳動比、轉(zhuǎn)向系的剛度、轉(zhuǎn)向盤的總轉(zhuǎn)動圈數(shù)。
要求:在充分了解并掌握國內(nèi)外微型車轉(zhuǎn)向系的結(jié)構(gòu)及工作原理的基礎(chǔ)上,設(shè)計出結(jié)構(gòu)合理、經(jīng)濟實用、安全穩(wěn)定的微型車轉(zhuǎn)向系。說明書內(nèi)容充實,結(jié)構(gòu)合理、書寫規(guī)范。
三、設(shè)計(論文)完成后應(yīng)提交的成果
1. 轉(zhuǎn)向系總成圖1張(A0圖);
2. 轉(zhuǎn)向系零件圖折合成2張以上零號圖:轉(zhuǎn)向器總成圖(A1圖1張)、轉(zhuǎn)向梯形總成圖(A1圖1張)及斜齒圓柱齒輪、齒條等零件圖(A2圖若干張);
3. 撰寫設(shè)計說明書1份,1.5萬字以上。
四、設(shè)計(論文)進度安排
1. 調(diào)研,收集資料,撰寫開題報告,進行開題答辯 第1~2周(2月28日-3月13日)
2. 轉(zhuǎn)向系的結(jié)構(gòu)方案設(shè)計 第3~4 周(3月14日-3月27日)
3. 繪制轉(zhuǎn)向系總成圖及零部件圖,完成設(shè)計計算,進行中期檢查
第5~8 周(3月28日-4月24日)
4. 完善圖紙設(shè)計 第9~11 周(4月25日-5月15日)
5. 撰寫設(shè)計說明書 第12周(5月16日-5月22日)
6. 完善設(shè)計,提交指導(dǎo)老師審核并修改 第13~14周(5月23日-6月5日)
7. 提交系里評閱并修改,準(zhǔn)備答辯 第15~16周(6月6日-6月19日)
8. 畢業(yè)設(shè)計答辯 第17周(6月20日-6月26日)
五、主要參考資料
[1] 周松盛. 汽車雙前橋轉(zhuǎn)向系統(tǒng)的分析、建模仿真與優(yōu)化[D].武漢理工大學(xué),2009.4.
[2] 陳德鑫.基于虛擬樣機技術(shù)的多軸車輛液壓動力轉(zhuǎn)向系統(tǒng)性能分析[D].吉林大學(xué),2007.5.
[3]? 汪珊. 重型汽車雙前橋轉(zhuǎn)向系統(tǒng)的建模及優(yōu)化[D].武漢理工大學(xué),2009.6.
[4] 呂明,方宗德,張國勝,顏克志,李儉波.基于Pro/E的汽車轉(zhuǎn)向梯形機構(gòu)的設(shè)計[J].機械傳動,2006
[5] 王望予.汽車設(shè)計[M].北京.機械工業(yè)出版社.2004.
[6] 劉惟信.汽車設(shè)計[M].北京.清華大學(xué)出版社.2001.
[7] 唐金松.簡明機械設(shè)計手冊[M].上??茖W(xué)技術(shù)出版社,2000.
[8] 鄭建榮編著.ADAMS—虛擬樣機技術(shù)入門與提高[M].北京:機械工業(yè)出版社.2001.11
[9] 李增剛編著.ADAMS入門詳解與實例[M].北京:國防工業(yè)出版社.2008.8
六、備注
指導(dǎo)教師簽字:
年 月 日
教研室主任簽字:
年 月 日
本科學(xué)生畢業(yè)設(shè)計
吉利微型車轉(zhuǎn)向系設(shè)計
院系名稱: 汽車與交通工程學(xué)院
專業(yè)班級: 車輛工程 B07-9班
學(xué)生姓名: 杭天宇
指導(dǎo)教師: 孫遠(yuǎn)濤
職 稱: 實驗師
黑 龍 江 工 程 學(xué) 院
二○一一年六月
The Graduation Design for Bachelor's Degree
Design of mini-vehicle steering system of Geely
Candidate:Hang Tianyu
Specialty:Vehicle Engineering
Class:B07-9
Supervisor:Experimental division Sun Yuantao
Heilongjiang Institute of Technology
2011-06·Harbin
畢業(yè)設(shè)計(論文)開題報告
設(shè)計(論文)題目: 吉利微型車轉(zhuǎn)向系設(shè)計
院 系 名 稱: 汽車與交通工程學(xué)院
專 業(yè) 班 級: 車輛工程07-9
學(xué) 生 姓 名: 杭天宇
導(dǎo) 師 姓 名: 孫遠(yuǎn)濤
開 題 時 間: 2011年3月16日
指導(dǎo)委員會審查意見:
簽字: 年 月 日
畢業(yè)設(shè)計(論文)開題報告
學(xué)生姓名
杭天宇
系部
汽車與交通工程院
專業(yè)、班級
車輛工程07-9
指導(dǎo)教師姓名
孫遠(yuǎn)濤
職稱
實驗師
從事
專業(yè)
車輛工程
是否外聘
□是否
題目名稱
吉利微型車轉(zhuǎn)向系設(shè)計
一、課題研究現(xiàn)狀、選題目的和意義
1、研究現(xiàn)狀
隨著汽車工業(yè)的迅速發(fā)展,轉(zhuǎn)向裝置的結(jié)構(gòu)也有很大變化。汽車轉(zhuǎn)向器的結(jié)構(gòu)很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有4種:有蝸桿指銷式、蝸桿滾輪式、循環(huán)球式、齒條齒輪式。這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛使用在汽車上。
據(jù)了解,在世界范圍內(nèi),汽車循環(huán)球式轉(zhuǎn)向器占45%左右,齒條齒輪式轉(zhuǎn)向器占40%左右,蝸桿滾輪式轉(zhuǎn)向器占10%左右,其它型式的轉(zhuǎn)向器占5%。循環(huán)球式轉(zhuǎn)向器一直在穩(wěn)步發(fā)展。在西歐小客車中,齒條齒輪式轉(zhuǎn)向器有很大的發(fā)展。日本汽車轉(zhuǎn)向器的特點是循環(huán)球式轉(zhuǎn)向器占的比重越來越大,日本裝備不同類型發(fā)動機的各類型汽車,采用不同類型轉(zhuǎn)向器,在公共汽車中使用的循環(huán)球式轉(zhuǎn)向器,已由60年代的62.5%,發(fā)展到現(xiàn)今的100%了(蝸桿滾輪式轉(zhuǎn)向器在公共汽車上已經(jīng)被淘汰)。大、小型貨車大都采用循環(huán)球式轉(zhuǎn)向器,但齒條齒輪式轉(zhuǎn)向器也有所發(fā)展。微型貨車用循環(huán)球式轉(zhuǎn)向器占65%,齒條齒輪式占 35%。
微型汽車一般是指發(fā)動機排量不超過1.1L,車身長度、寬度、高度不超過3.8m、1.6m和2m,最大載貨量不超過600kg的汽車。微型汽車產(chǎn)品具有燃料消耗少、使用費用低、占地面積小、用途多、適應(yīng)性廣等特點,包括微型轎車、微型客車和微型貨車。
作為中國最早進入汽車工業(yè)并獲得迅速發(fā)展的民營企業(yè),吉利控股集團已成為國內(nèi)轎車制造業(yè)“3+6”格局的重要成員,并正以“中國自主品牌”的資格和自主創(chuàng)新的姿態(tài),引人注目地登上國際汽車工業(yè)舞臺,成為中國轎車走向世界當(dāng)之無愧的代言人。
短短幾年,吉利已經(jīng)成功研發(fā)并投產(chǎn)九大系列不同的車型,其中美人豹、自由艦已在國內(nèi)外成為中國自主品牌轎車的代名詞,近期投產(chǎn)的還有6款新車型。
????? 在開發(fā)手段上,吉利已迅速向世界先進水平靠攏,目前已完全具備了全數(shù)模的開發(fā)方式,擁有每年開發(fā)2-3款新車型的研發(fā)能力。
????? 逐步掌握轎車核心部件研發(fā)技術(shù),實現(xiàn)了中國第一臺也是迄今中國唯一的自動變速器的設(shè)計制造、電子智能助力轉(zhuǎn)向系統(tǒng)的設(shè)計生產(chǎn)、世界領(lǐng)先國內(nèi)領(lǐng)先的大升功率發(fā)動機的設(shè)計制造和整車設(shè)計、匹配、試驗、驗證技術(shù)的全面應(yīng)用。
如今,吉利已經(jīng)形成豪情、美日、優(yōu)利歐、SRV、美人豹、華普、自由艦、吉利金剛、遠(yuǎn)景等9大系列30多個品種的產(chǎn)品譜,擁有1.0L到1.8L的8大系列發(fā)動機和JLS160、Z110等8大系列變速器。
2、選題的目的及意義
汽車行駛中,駕駛員通過操縱轉(zhuǎn)向盤,經(jīng)過一套傳動機構(gòu),使轉(zhuǎn)向輪在路面上偏轉(zhuǎn)一定的角度來改變其行駛方向,確保汽車穩(wěn)定安全的正常行駛。能使轉(zhuǎn)向輪偏轉(zhuǎn)以實現(xiàn)汽車轉(zhuǎn)向的一整套機構(gòu)稱為汽車轉(zhuǎn)向系。轉(zhuǎn)向系的作用就是通過駕駛員轉(zhuǎn)動轉(zhuǎn)向盤,根據(jù)需要改變汽車行駛方向。主要形式有:機械式、液壓式及電動式動力轉(zhuǎn)向系。
機械式轉(zhuǎn)向系由轉(zhuǎn)向操縱機構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)三部分組成,汽車轉(zhuǎn)向時,駕駛員作用于轉(zhuǎn)向盤上的力,經(jīng)過轉(zhuǎn)向軸(轉(zhuǎn)向柱)傳到轉(zhuǎn)向器,轉(zhuǎn)向器將轉(zhuǎn)向力放大后,又通過轉(zhuǎn)向傳動機構(gòu)的傳遞,推動轉(zhuǎn)向輪偏轉(zhuǎn),致使汽車行駛方向改變。汽車的轉(zhuǎn)向,完全由駕駛員所付的操縱力來實現(xiàn)的,操縱較費力,勞動強度較大,但其具有結(jié)構(gòu)簡單、工作可靠、路感性好、維護方便等優(yōu)點,多應(yīng)用于中小型貨車或轎車上。
汽車轉(zhuǎn)向盤是關(guān)系著駕駛員與乘客生命安危的重要部件,它控制著車輛的行使方向。早期的蒸汽汽車上安裝的轉(zhuǎn)向盤都心愛用垂直安裝方式,專項通過向上或下旋轉(zhuǎn)實現(xiàn)。這種安裝方式不利于駕駛員操縱,也常常妨礙駕駛視線。這一切在1887年秋因一次意外事故而發(fā)生了改變。1887年,一輛戴姆勒?弗頓汽車唄送往英國考文垂的戴姆勒工廠作一次大修,當(dāng)時汽車上的轉(zhuǎn)向器仍能使用。大修需要把 車身與底盤分離,當(dāng)車身落到轉(zhuǎn)向柱上,把轉(zhuǎn)向柱崖城傾斜狀態(tài)。當(dāng)一個工人上車做到駕駛員座位上時,立即發(fā)現(xiàn)轉(zhuǎn)向柱和轉(zhuǎn)向盤的傾斜角使駕駛條件大為改善。這個偶然的發(fā)現(xiàn),促成了戴妙勒?帕利生于1890年制成世界上第一輛轉(zhuǎn)向柱與轉(zhuǎn)向盤傾斜的汽車,從此,人類的汽車駕駛就踏上了更舒適、安全的旅程。此后,各國汽車公司紛紛效仿,使轉(zhuǎn)向盤日臻完善并最終定性,于是轉(zhuǎn)向盤就以現(xiàn)在的樣子出現(xiàn)在我們的面前。
最早采用的傳動減速機構(gòu)蝸輪副,被安裝在轉(zhuǎn)向柱的末端。蝸桿驅(qū)動一個蝸輪,再有蝸輪副被裝配在鑄鐵殼里,這個殼被固定在汽車的大橋梁上。基于蝸輪副的減速機構(gòu)在汽車工業(yè)中應(yīng)用已有很多年了,但還有兩種結(jié)構(gòu)是值得注意的。其中一種是于1908年投產(chǎn)的美國福特T型車采用的轉(zhuǎn)向齒輪結(jié)構(gòu)(行星齒輪轉(zhuǎn)向器)。福特T型車裝置了一套周轉(zhuǎn)(或行星)輪系,把齒輪安裝在減速器殼體內(nèi)直接固定到轉(zhuǎn)向盤的下方,行星齒輪盤直接驅(qū)動緊固在轉(zhuǎn)軸上的主齒輪。這就把轉(zhuǎn)向裝置置于駕駛員的手下方,即轉(zhuǎn)向柱的上端,而不是在轉(zhuǎn)向柱的下端。
所謂“現(xiàn)在”齒輪齒條式轉(zhuǎn)向器,是奔馳汽車于1885年首先采用的。這種形式的轉(zhuǎn)向器同樣也使用在1905年生產(chǎn)的凱迪拉克汽車和1911~1920年制造的許多其他型式的汽車上。
在20世紀(jì)初,汽車已經(jīng)是一個沉重而又高速疾馳的車輛,充氣輪胎代替了實心車輪。由于轉(zhuǎn)向柱直接于轉(zhuǎn)向節(jié)連接,所以轉(zhuǎn)動車輪式很費勁的。即使是一個健壯的駕駛員,要控制轉(zhuǎn)向仍然是很勞累的事情。因此,汽車常常沖出路外。于是,降低轉(zhuǎn)向操縱力的問題就變得賜教迫切了。
為了使轉(zhuǎn)向操縱輕便,工程師設(shè)計了在轉(zhuǎn)向盤和轉(zhuǎn)向節(jié)之間安裝齒輪減速機構(gòu)的轉(zhuǎn)向器。從那時起,轉(zhuǎn)向機構(gòu)就一直被這樣沿用下來。
二、設(shè)計(論文)的基本內(nèi)容、擬解決的主要問題
1、設(shè)計的基本內(nèi)容
(1)轉(zhuǎn)向系的方案設(shè)計。
(2)轉(zhuǎn)向系操縱機構(gòu)的設(shè)計。
(3)轉(zhuǎn)向系傳動機構(gòu)的設(shè)計。
(4)轉(zhuǎn)向器的設(shè)計。
(5)轉(zhuǎn)向梯形的設(shè)計。
(6)轉(zhuǎn)向系各組成部件的強度校核。
2、擬解決的主要問題
(1)轉(zhuǎn)向系轉(zhuǎn)向不足的問題。
(2)低速時轉(zhuǎn)向盤作用力過于沉重的問題。
三、技術(shù)路線(研究方法)
查找文獻、資料,確定參數(shù)
完成設(shè)計
不合格
合
格
轉(zhuǎn)向系各部件
的強度校核
轉(zhuǎn)向系的
方案設(shè)計
轉(zhuǎn)向器
的設(shè)計
轉(zhuǎn)向系操縱機構(gòu)的設(shè)計
轉(zhuǎn)向系傳動機構(gòu)的設(shè)計
轉(zhuǎn)向梯形
的設(shè)計
其他
四、進度安排
1. 調(diào)研,收集資料,撰寫開題報告,進行開題答辯 第1~2周(2月28日-3月13日)
2. 轉(zhuǎn)向系的結(jié)構(gòu)方案設(shè)計 第3~4 周(3月14日-3月27日)
3. 繪制轉(zhuǎn)向系總成圖及零部件圖,完成設(shè)計計算,進行中期檢查
第5~8 周(3月28日-4月24日)
4. 完善圖紙設(shè)計 第9~11 周(4月25日-5月15日)
5. 撰寫設(shè)計說明書 第12周(5月16日-5月22日)
6. 完善設(shè)計,提交指導(dǎo)老師審核并修改 第13~14周(5月23日-6月5日)
7. 提交系里評閱并修改,準(zhǔn)備答辯 第15~16周(6月6日-6月19日)
8. 畢業(yè)設(shè)計答辯 第17周(6月20日-6月26日)
五、參考文獻
[1] 周松盛. 汽車雙前橋轉(zhuǎn)向系統(tǒng)的分析、建模仿真與優(yōu)化[D].武漢理工大學(xué),2009.4.
[2] 陳德鑫.基于虛擬樣機技術(shù)的多軸車輛液壓動力轉(zhuǎn)向系統(tǒng)性能分析[D].吉林大學(xué),2007.5.
[3]?汪珊. 重型汽車雙前橋轉(zhuǎn)向系統(tǒng)的建模及優(yōu)化[D].武漢理工大學(xué),2009.6.
[4] 呂明,方宗德,張國勝,顏克志,李儉波.基于Pro/E的汽車轉(zhuǎn)向梯形機構(gòu)的設(shè)計[J].機械傳動,2006.
[5] 王望予.汽車設(shè)計[M].北京.機械工業(yè)出版社.2004.
[6] 劉惟信.汽車設(shè)計[M].北京.清華大學(xué)出版社.2001.
[7] 唐金松.簡明機械設(shè)計手冊[M].上海科學(xué)技術(shù)出版社,2000.
[8] 臧杰,閻巖.汽車構(gòu)造:下冊[M].北京:機械工業(yè)出版社.2005.8.
[9] 魯民巧.汽車構(gòu)造[M].北京:機械工業(yè)出版社.2003.9
[10] 鐘兵.低速汽車轉(zhuǎn)向系設(shè)計[J].農(nóng)業(yè)裝備與車輛工程.2006.4.
[11] 鄭校英.上海桑塔納轎車齒輪齒條轉(zhuǎn)向系設(shè)計剖析[J].當(dāng)代汽車.1990.5.
[12] 方立.汽車轉(zhuǎn)向系統(tǒng)的綜述[M].哈爾濱:國防工業(yè)出版社.2008.
[13] 李建成.汽車轉(zhuǎn)向原理[M]北京:機械工業(yè)出版社.2003.
[14] QingHui Yuan and Bo Xie. Modeling and Simulation of a Hydraulic Steering System[M] SAE Int. J. Commer. Veh., Apr 2009; 1: 488 - 494.
[15] Takamitsu Tajima, Hideyuki Fujita, Kouichi Sato, and Yoshimi Nakasato.Development of the Next-generation Steering System[M] SAE Int. J. Passeng. Cars ? Mech. Syst., Aug 2010; 3: 633 - 643.
六、備注
指導(dǎo)教師意見:
簽字: 年 月 日
SY-025-BY-4
畢業(yè)設(shè)計(論文)指導(dǎo)記錄
日期
三月四日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
與老師見了面,傳看了《畢業(yè)設(shè)計(論文)指導(dǎo)手冊》,老師簡單介紹畢業(yè)設(shè)計(論文)的應(yīng)交作業(yè)及基本要求,對畢業(yè)設(shè)計(論文)的具體寫作工作提了要求,解釋了選題的含義及基本思路,回答了同學(xué)的有關(guān)疑問,互留聯(lián)系方式,布置主要工作是廣泛搜集資料,進度快的可寫出開題報告。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
三月十一日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
老師介紹了畢業(yè)論文(設(shè)計)的目標(biāo)、任務(wù)等具體要求,同學(xué)設(shè)計過程中常見的認(rèn)識誤區(qū)及需要注意的問題,利用好時間進行畢業(yè)論文(設(shè)計)的資料搜集,以便師生共同做好畢業(yè)論文(設(shè)計)工作。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
三月十八日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
開始進行轉(zhuǎn)向系的結(jié)構(gòu)方案設(shè)計,在老師的指導(dǎo)下收集了一些相關(guān)資料,并確定了需要的基本數(shù)據(jù)。準(zhǔn)備開始開題答辯。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
SY-025-BY-4
畢業(yè)設(shè)計(論文)指導(dǎo)記錄
日期
三月二十五日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
將初步方案設(shè)計交給老師審查,對老師指出的錯誤和不足進行改進。
完成開題答辯,并對答辯中出現(xiàn)的問題再次進行改進。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
四月一日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
開始對轉(zhuǎn)向系中齒輪軸進行計算。并針對計算中出現(xiàn)的問題與老師交流,最后得到老師滿意的情況。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
四月八日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
完善齒輪軸計算,并開始齒條計算與齒輪軸的繪圖工作,對繪圖中出現(xiàn)的問題,老師給予一一指出,并得到改善。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
SY-025-BY-4
畢業(yè)設(shè)計(論文)指導(dǎo)記錄
日期
四月十五日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
完成轉(zhuǎn)向器齒條的計算,開始繪制個部件圖與轉(zhuǎn)向器整體圖。
針對計算中出現(xiàn)的問題,老師一一指出并得到改正,繪圖中出現(xiàn)表示不清楚的部分在老師的提醒下得以改進。
并開始準(zhǔn)備中期答辯。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
四月十二日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
完成中期答辯。
與老師針對大便中出現(xiàn)的問題一一請教,并完善圖紙及計算步驟。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
四月二十九日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
進行部件圖繪制,老師在指導(dǎo)時指出圖紙中出現(xiàn)的問題,如:剖面線的線寬、圖紙中線寬不整齊等。并于回寢室后得以改進。
開始撰寫設(shè)計說明書。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
SY-025-BY-4
畢業(yè)設(shè)計(論文)指導(dǎo)記錄
日期
五月六日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
進行轉(zhuǎn)向系整體圖的繪制,并于老師討論設(shè)計說明書中內(nèi)容分布情況,得到了很大的幫助,使設(shè)計說明書的編寫更加流暢。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
五月十三日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
本周通過與老師的交流,完善的圖紙中的小問題,以及設(shè)計說明書中的格式問題。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
五月二十日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
本周基本完成圖紙的繪制與設(shè)計說明書的編寫,對于其中存在的問題,指導(dǎo)老師一一找出并使我的設(shè)計更加完善。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
SY-025-BY-4
畢業(yè)設(shè)計(論文)指導(dǎo)記錄
日期
五月二十七日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
本周把所有設(shè)計材料交給指導(dǎo)老師,并在指導(dǎo)老師的仔細(xì)審閱下找出了很多小問題,并把這些小問題一一糾正。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
六月三日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
本周把完整材料交與老師,并準(zhǔn)備預(yù)答辯,根據(jù)老師給出的思路進行完善。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
日期
六月十日
地點
土木樓
指導(dǎo)方式
面談
指導(dǎo)記錄
(指導(dǎo)內(nèi)容、存在問題及解決思路)
本周進行了預(yù)答辯,并根據(jù)答辯中出現(xiàn)的問題與老師交流,并再次進行整體改進,以求精益求精。
學(xué)生(記錄人)簽名: 指導(dǎo)教師簽名:
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計
摘 要
在汽車行駛中,轉(zhuǎn)向運動是最基本的運動。我們通過方向盤來操縱和控制汽車的行駛方向,從而實現(xiàn)自己的行駛意圖。在現(xiàn)代汽車上,轉(zhuǎn)向系統(tǒng)是必不可少的最基本的系統(tǒng)之一,它也是決定汽車主動安全性的關(guān)鍵總成,如何設(shè)計汽車的轉(zhuǎn)向特性,使汽車具有良好的操縱性能,始終是各汽車廠家和科研機構(gòu)的重要課題。特別是在車輛高速化、駕駛?cè)藛T非職業(yè)化、車流密集化的今天,針對更多不同的駕駛?cè)巳?,汽車的操縱性設(shè)計顯得尤為重要。
本文主要介紹汽車轉(zhuǎn)向系的組成和作用,并且采用相關(guān)數(shù)據(jù)進行設(shè)計機械式轉(zhuǎn)向系統(tǒng)的設(shè)計,考慮各種機械轉(zhuǎn)向器的利弊進行分析和計算設(shè)計相應(yīng)的轉(zhuǎn)向操縱和轉(zhuǎn)向傳動機構(gòu)。
首先,根據(jù)給定車型確定主要參數(shù)并確定轉(zhuǎn)向器形式及類型;其次,進行轉(zhuǎn)向系的總體設(shè)計;再次,進行轉(zhuǎn)向器的結(jié)構(gòu)設(shè)計并根據(jù)使用要求進行校核;最后,針對設(shè)計的轉(zhuǎn)向器確定轉(zhuǎn)向操縱機構(gòu)及轉(zhuǎn)向傳動機構(gòu)的選擇及設(shè)計。
關(guān)鍵詞:轉(zhuǎn)向系統(tǒng);轉(zhuǎn)向器;齒輪齒條;轉(zhuǎn)向梯形;轉(zhuǎn)向節(jié);轉(zhuǎn)向節(jié)臂
ABSTRACT
Changing to motion in running in the automobile, is the most fundamental motion. We pass the intention and controlling automobile direction running , running realizing self thereby to come to control the steering wheel. On Hyundai Motor, changing to system is one of essential the most fundamental system , it is also the assembly deciding active security of automobile key, characteristic property how to design the automobile vergence, the automobile has a messenger fine control a function , be every automobile manufacturer and important institution for scientific research problem all the time. The personnel who high speed-rization , drives especially in the vehicle is not occupation-rization, vehicle stream concentrated -rization today, nature designs that specifically for still more different driving crowd , the automobile controlling appearing especially important.
The automobile the main body of a book is introduced mainly changes to the composition and effect being , the advantages and disadvantages adopt the relevance data to carry out the implement designing that machinery style changes to systematic design , thinking that various machinery gets lost carries out analysis and calculates the organization designing that corresponding vergence controls and changes to drive and.
First, according to a given model and determine the main parameters determining the form and type of steering gear; Secondly, the overall design of the steering system; again, the structural design of the steering gear and in accordance with the requirements of verification; Finally, the design of the steering Determine the steering control mechanism and the steering linkage of the selection and design.
Key words:Steering system;Steering gear;Rack and pinion;Steering trapezoidal;Steering knuckle;Steering knuckle arm
II
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計
目 錄
摘要 ………………………………………………………………………………Ⅰ
Abstract …………………………………………………………………………Ⅱ
第1章 緒論 ……………………………………………………………………1
1.1 轉(zhuǎn)向系設(shè)計的目的及意義 ………………………………………………1
1.2 轉(zhuǎn)向系的發(fā)展現(xiàn)狀 ………………………………………………………2
1.3 設(shè)計的主要內(nèi)容 …………………………………………………………7
第2章 轉(zhuǎn)向系的方案設(shè)計 …………………………………………………8
2.1 汽車轉(zhuǎn)向系的功用和設(shè)計要求……………………………………………8
2.2 主要參數(shù)的確定 …………………………………………………………9
2.3 轉(zhuǎn)向器形式的選擇 ………………………………………………………9
2.3.1 機械轉(zhuǎn)向系組成及其功用 ………………………………………9
2.3.2 動力轉(zhuǎn)向系組成及其功用 ………………………………………10
2.3.3 轉(zhuǎn)向系統(tǒng)選擇 ……………………………………………………10
2.4 機械式轉(zhuǎn)向器的類型選擇 ………………………………………………11
2.4.1 齒輪齒條式轉(zhuǎn)向器 ………………………………………………11
2.4.2 循環(huán)球式轉(zhuǎn)向器 …………………………………………………12
2.4.3 蝸桿滾輪式轉(zhuǎn)向器 ………………………………………………13
2.5 本章小結(jié) …………………………………………………………………13
第3章 機械式轉(zhuǎn)向系總體設(shè)計 ……………………………………………14
3.1 轉(zhuǎn)向系的主要性能參數(shù) …………………………………………………14
3.1.1 轉(zhuǎn)向系的效率 ……………………………………………………14
3.1.2 轉(zhuǎn)向系傳動比 ……………………………………………………15
3.1.3 轉(zhuǎn)向器的傳動副的間隙特性 ……………………………………16
3.1.4 轉(zhuǎn)向盤的總轉(zhuǎn)動圈數(shù) ……………………………………………17
3.1.5 轉(zhuǎn)向盤的選擇 ……………………………………………………17
3.2 機械式轉(zhuǎn)向器總體布置 …………………………………………………19
3.3 本章小結(jié) …………………………………………………………………20
第4章 齒輪齒條轉(zhuǎn)向器的結(jié)構(gòu)設(shè)計 ……………………………………21
4.1 轉(zhuǎn)向器齒輪的設(shè)計 ……………………………………………………21
4.2 轉(zhuǎn)向器齒條的設(shè)計 ……………………………………………………22
4.3 轉(zhuǎn)向器齒輪齒條的強度校核 …………………………………………23
4.4 本章小結(jié) ………………………………………………………………25
第5章 轉(zhuǎn)向操縱機構(gòu)的布置形式 …………………………………………26
5.1 轉(zhuǎn)向操縱機構(gòu)的功用和組成 …………………………………………26
5.2 安全式轉(zhuǎn)向柱 …………………………………………………………27
5.3 可調(diào)節(jié)式轉(zhuǎn)向柱 ………………………………………………………31
5.4 萬向節(jié) …………………………………………………………………33
5.5 轉(zhuǎn)向操縱機構(gòu)的布置方案 ……………………………………………34
5.6 本章小結(jié) ………………………………………………………………34
第6章 轉(zhuǎn)向傳動機構(gòu)的布置形式 …………………………………………35
6.1 轉(zhuǎn)向傳動機構(gòu)的功用 …………………………………………………35
6.2 轉(zhuǎn)向傳動機構(gòu)的組成及構(gòu)造 …………………………………………35
6.2.1 與非獨立懸架配用的轉(zhuǎn)向傳動機構(gòu) …………………………35
6.2.2 與獨立懸架配用的轉(zhuǎn)向傳動機構(gòu) ……………………………39
6.3 轉(zhuǎn)向節(jié) ………………………………………………………………41
6.3.1轉(zhuǎn)向節(jié)簡介 …………………………………………………………41
6.3.2主銷后傾角γ ………………………………………………………42
6.3.3主銷內(nèi)傾角β ………………………………………………………42
6.3.4轉(zhuǎn)向節(jié)軸的選擇 …………………………………………………43
6.3.5轉(zhuǎn)向節(jié)的參數(shù) ……………………………………………………43
6.4本章小結(jié) …………………………………………………………………43
結(jié)論 ……………………………………………………………………………44
參考文獻 ………………………………………………………………………45
致謝 ……………………………………………………………………………46
附錄 ………………………………………………………………………………47
附錄A 英文文獻 ……………………………………………………………47
附錄B 文獻翻譯 ……………………………………………………………53
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計
第1章 緒 論
1.1 汽車轉(zhuǎn)向系設(shè)計的目的及意義
汽車在行駛過程中,為了適應(yīng)各種道路情況和行駛條件,經(jīng)常需要改變行駛方向或修正行駛方向,如轉(zhuǎn)向、超車和避讓等。因此,轉(zhuǎn)向系對汽車行駛的適應(yīng)性、安全性都具有重要的意義,轉(zhuǎn)向系統(tǒng)的性能直接影響著汽車的操縱穩(wěn)定性。如何設(shè)計汽車的轉(zhuǎn)向系統(tǒng),使汽車具有良好的操縱性能,始終是各汽車廠家和科研機構(gòu)的重要課題。特別是在車輛高速化、駕駛?cè)藛T非職業(yè)化、車流密集化的今天,針對更多不同的駕駛?cè)巳?,汽車的操縱性設(shè)計顯得尤為重要。
汽車是在一個世紀(jì)前出現(xiàn)的,大規(guī)模的汽車制造可以遠(yuǎn)溯到1911年[1]。相關(guān)技術(shù)的發(fā)展及二次世界大戰(zhàn)中的技術(shù)更新促進了汽車工業(yè)的發(fā)展和進步。今天,汽車工業(yè)在世界上大部分國家的經(jīng)濟中起到了中心作用。1999年,全球轎車的總產(chǎn)量大約為3866萬輛,比1998年增加大約2.2%;2000年世界汽車產(chǎn)量達到5733萬輛,比1999年增長2.8%,創(chuàng)歷史新記錄。汽車生產(chǎn)大國日本在1999年生產(chǎn)了810萬輛汽車,比1998年增加了0.6%。由于中國及其他亞洲國家汽車市場的擴大,這種增長趨勢還會持續(xù)下去。1992-2001年的10年里,我國汽車產(chǎn)量平均年增長15%,是同期世界汽車年均增長率的10倍。然而這種增長也具有負(fù)面影響,那就是會導(dǎo)致空氣污染和其他負(fù)面的社會和環(huán)保問題。
對轉(zhuǎn)向系統(tǒng)產(chǎn)品的需求隨著汽車化的提高而發(fā)生著變化。最初駕駛員們只希望比較容易地操縱轉(zhuǎn)向系統(tǒng),而后則追求在高速行駛時的穩(wěn)定性、舒適性和良好的操縱感。傳統(tǒng)的汽車轉(zhuǎn)向系統(tǒng)是機械系統(tǒng),汽車的轉(zhuǎn)向運動是由駕駛員操縱方向盤,通過轉(zhuǎn)向器和一系列的桿件傳遞到轉(zhuǎn)向車輪而實現(xiàn)的。普通的轉(zhuǎn)向系統(tǒng)建立在機械轉(zhuǎn)向的基礎(chǔ)上,通常根據(jù)機械式轉(zhuǎn)向器形式可以分為:齒輪齒條式、循環(huán)球式、蝸桿滾輪式、蝸桿指銷式。常用的有兩種是齒輪齒條式和循環(huán)球式(用于需要較大的轉(zhuǎn)向力時)。這種轉(zhuǎn)向系統(tǒng)是我們最常見的,目前大部分低端轎車采用的就是齒輪齒條式機械轉(zhuǎn)向系統(tǒng)。
從上世紀(jì)四十年代起,為減輕駕駛員體力負(fù)擔(dān),在機械轉(zhuǎn)向系統(tǒng)基礎(chǔ)上增加了液壓助力系統(tǒng)它是建立在機械系統(tǒng)的基礎(chǔ)之上的,額外增加了一個液壓系統(tǒng)HPS(hydraulic?power?steering),一般有油泵、V形帶輪、油管、供油裝置、助力裝置和控制閥。由于其工作可靠、技術(shù)成熟至今仍被廣泛應(yīng)用?,F(xiàn)在液壓助力轉(zhuǎn)向系統(tǒng)在實際中應(yīng)用的最多,根據(jù)控制閥形式有轉(zhuǎn)閥式和滑閥式之分。這個助力轉(zhuǎn)向系統(tǒng)最重要的新功能是液力支持轉(zhuǎn)向的運動,因此可以減少駕駛員作用在方向盤上的力。
近年來,隨著電子技術(shù)的不斷發(fā)展,轉(zhuǎn)向系統(tǒng)中愈來愈多的采用電子器件。相應(yīng)的就出現(xiàn)了電液助力轉(zhuǎn)向系統(tǒng)。電液助力轉(zhuǎn)向可以分為兩大類:電動液壓助力轉(zhuǎn)向系統(tǒng)EHPS、電控液壓助力轉(zhuǎn)向ECHPS[2]。EHPS是在液壓助力系統(tǒng)基礎(chǔ)上發(fā)展起來的,其特點是原來有發(fā)動機帶動的液壓助力泵改由電機驅(qū)動,取代了由發(fā)動機驅(qū)動的方式,節(jié)省了燃油消耗。ECHPS是在傳統(tǒng)的液壓助力轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上增加了電控裝置構(gòu)成的。電液助力轉(zhuǎn)向系統(tǒng)的助力特性可根據(jù)轉(zhuǎn)向速率、車速等參數(shù)設(shè)計為可變助力特性,使駕駛員能夠更輕松便捷的操縱汽車。?現(xiàn)代電液動力轉(zhuǎn)向系統(tǒng)主要通過車速傳感器將車速傳遞給電子元件,或微型計算機系統(tǒng),控制電液轉(zhuǎn)換裝置改變動力轉(zhuǎn)向的助力特性,使駕駛員的轉(zhuǎn)向手力根據(jù)車速和行駛條件變化而改變,即在低速行駛或轉(zhuǎn)急彎時能以很小的轉(zhuǎn)向手力進行操作,在高速行駛時能以稍重的轉(zhuǎn)向手力進行穩(wěn)定操作,使操縱輕便性和穩(wěn)定性達到最合適的平衡狀態(tài)。?為了保證轉(zhuǎn)向輕便性,要求增大轉(zhuǎn)向器的傳動比。但是,增大角傳動比雖然可以減小轉(zhuǎn)向盤上的手力,但同時也造成汽車對操縱的反應(yīng)減慢,甚至有可能導(dǎo)致駕駛員沒有能力來轉(zhuǎn)動轉(zhuǎn)向盤進行緊急避障等轉(zhuǎn)向操作,即不夠“靈”。 EHPS相比傳統(tǒng)HPS降低了能源損耗。但電液動力轉(zhuǎn)向系統(tǒng),不論ECHPS還是EHPS都與傳統(tǒng)的HPS一樣存在液壓油泄漏問題。
上世紀(jì)50年代,通用汽車公司推出循環(huán)球式液壓動力轉(zhuǎn)向系統(tǒng)。上世紀(jì)80年代出現(xiàn)的電動轉(zhuǎn)向系統(tǒng)為動力轉(zhuǎn)向器增添了品種,歐洲汽車制造商在研究配有電動轉(zhuǎn)向系統(tǒng)的汽車比較早,日本的KOYO、NSK、HONDA及美國的DELPHI等公司也開發(fā)了多種類型的電動轉(zhuǎn)向系統(tǒng)[3]?,F(xiàn)在人們更加關(guān)注具有節(jié)能、環(huán)保特點的產(chǎn)品,因此也可預(yù)測從液壓轉(zhuǎn)向系統(tǒng)到電動轉(zhuǎn)向系統(tǒng)的轉(zhuǎn)變過程會在將來很快的發(fā)生。
因現(xiàn)代汽車發(fā)動機功率在不斷增大,行車速度也不斷提高,對于兩輪轉(zhuǎn)向的汽車在高速行駛時將使其操縱穩(wěn)定性變差。從20世紀(jì)80年代末四輪轉(zhuǎn)向系統(tǒng)已進入實用階段,不僅保證了汽車低速行駛的轉(zhuǎn)向靈活,也保證了汽車高速行駛的操縱穩(wěn)定性[3]。
1.2 汽車轉(zhuǎn)向系統(tǒng)現(xiàn)狀
改革開放以來,我國汽車工業(yè)發(fā)展迅猛。作為汽車關(guān)鍵部件之一的轉(zhuǎn)向系統(tǒng)也得到了相應(yīng)的發(fā)展,基本已形成了專業(yè)化、系列化生產(chǎn)的局面。有資料顯示,國外有很多國家的轉(zhuǎn)向器廠,都已發(fā)展成大規(guī)模生產(chǎn)的專業(yè)廠,年產(chǎn)超過百萬臺,壟斷了轉(zhuǎn)向器的產(chǎn)生,并且銷售點遍布了世界。
現(xiàn)代汽車轉(zhuǎn)向系統(tǒng)應(yīng)適應(yīng)汽車高速行駛的需要,從操縱輕便性、穩(wěn)定性及安全行駛的角度,汽車制造廣泛使用更先進的工藝方法,使用變速比轉(zhuǎn)向器、高剛性轉(zhuǎn)向器?!白兯俦群透邉傂浴笔悄壳笆澜缟仙a(chǎn)的轉(zhuǎn)向器結(jié)構(gòu)的方向[4]。還應(yīng)該充分考慮安全性、輕便性。隨著汽車車速的提高,駕駛員和乘客的安全非常重要,目前國內(nèi)外在許多汽車上已普遍增設(shè)能量吸收裝置,如防碰撞安全轉(zhuǎn)向柱、安全帶、安全氣囊等,并逐步推廣。從人類工程學(xué)的角度考慮操縱的輕便性,已逐步采用可調(diào)整的轉(zhuǎn)向管柱和動力轉(zhuǎn)向系統(tǒng)。隨著國際經(jīng)濟形勢的惡化,石油危機造成經(jīng)濟衰減,汽車生產(chǎn)愈來愈重經(jīng)濟性,因此,要設(shè)計成本、低油耗的汽車和低成本、合理化生產(chǎn)線,盡量實現(xiàn)大批量專業(yè)化生產(chǎn)。對零部件生產(chǎn),特別是轉(zhuǎn)向器的生產(chǎn),更表現(xiàn)突出。人類逐漸意識到全球變暖的問題,從而需要改進燃燒效率,并且對具有環(huán)保、節(jié)能型特點的產(chǎn)品需求不斷增加。因此,可以預(yù)測從液壓轉(zhuǎn)向系統(tǒng)到電動轉(zhuǎn)向系統(tǒng)的轉(zhuǎn)變過程會在將來很快發(fā)生。未來汽車的轉(zhuǎn)向器裝置,必定是以電腦化為唯一的發(fā)展途徑。
隨著汽車電子技術(shù)的迅猛發(fā)展,人們對汽車轉(zhuǎn)向操縱性能的要求也日益提高。汽車轉(zhuǎn)向系統(tǒng)已從傳統(tǒng)機械轉(zhuǎn)向、液壓助力轉(zhuǎn)向(Hydraulic Power Steering)、電控液壓助力轉(zhuǎn)向(Electric Hydraulic Power),發(fā)展到電動助力轉(zhuǎn)向系統(tǒng)(Electric Power Steering),最終還將過渡到線控轉(zhuǎn)向系統(tǒng)(Steer By Wire)。
在早期的汽車上,轉(zhuǎn)向機械非常簡單,主要由一級齒輪傳動機構(gòu)和轉(zhuǎn)向拉桿等構(gòu)成。其基本功能是將駕駛員的手動旋轉(zhuǎn)操作轉(zhuǎn)變?yōu)檗D(zhuǎn)向拉桿的左右移動,從而帶動車輪轉(zhuǎn)動,實現(xiàn)汽車的轉(zhuǎn)向。隨著汽車技術(shù)的發(fā)展,出現(xiàn)了更為復(fù)雜的機械式轉(zhuǎn)向機構(gòu)。
機械轉(zhuǎn)向機械中的一個重要性能參數(shù)是傳動效率。因轉(zhuǎn)向器結(jié)構(gòu)的不同,轉(zhuǎn)向效率也有較大的差別。一般應(yīng)要求正效率高而逆效率適當(dāng)。若逆效率太低,則“路感”差,且不能保證車輪自動回正。有關(guān)資料介紹正、逆效率之差最好保持在10%左右。
對于機械式轉(zhuǎn)向機構(gòu)不斷提高轉(zhuǎn)向器的傳動效率已成為產(chǎn)品競爭的重要方面,它對轉(zhuǎn)向輕便性影響極大。另一個影響轉(zhuǎn)向輕便性的參數(shù)是轉(zhuǎn)向系統(tǒng)的角傳動比,其中轉(zhuǎn)向器傳動比是系統(tǒng)傳動比的主要構(gòu)成部分。轉(zhuǎn)向的輕便性要求系統(tǒng)具有較大的傳動比,同時方向盤旋轉(zhuǎn)圈數(shù)不宜太多。
現(xiàn)在國外變速比轉(zhuǎn)向器正進入完全成熟的階段,可以看出它是解決汽車轉(zhuǎn)向輕便性的一個最廉價而有效的措施。我們要想減小轉(zhuǎn)向時的操舵力,提高傳動效率和提高傳動比效果是相同的,但傳動效率每提高一個百分之二、三,在結(jié)構(gòu)和工藝上都要付出巨大的努力,然而若使兩端的傳動比高出中間位置20%,或者50%,都是比較容易辦到的,而部件的制造成本增加甚少。此外,轉(zhuǎn)向系統(tǒng)的剛性對操縱穩(wěn)定性和前輪擺振的問題也是一個很重要的指標(biāo)。一般來說,轉(zhuǎn)向操縱的不靈敏區(qū)是自由行程和低剛度區(qū)造成。為了縮小不靈敏區(qū),一是限制自由行程,一般認(rèn)為自由行程超過方向盤轉(zhuǎn)角 是不能允許的,其次是增大系統(tǒng)剛度。為此,歐洲一些國家已經(jīng)取消了縱拉桿內(nèi)的彈蓋,日本也在淘汰這種結(jié)構(gòu)。
隨著車輛載重的增加以及人們對車輛操縱性能要求的提高,簡單的機械式轉(zhuǎn)向系統(tǒng)已經(jīng)無法滿足需要,動力轉(zhuǎn)向系統(tǒng)應(yīng)運而生,它能在駕駛員轉(zhuǎn)動方向盤的同時提供助力,動力轉(zhuǎn)向系統(tǒng)分為液壓轉(zhuǎn)向系統(tǒng)和電動轉(zhuǎn)向系統(tǒng)兩種。其中液壓轉(zhuǎn)向系統(tǒng)是目前使用最為廣泛的轉(zhuǎn)向系統(tǒng)。
液壓轉(zhuǎn)向系統(tǒng)在機械系統(tǒng)的基礎(chǔ)上增加了液壓系統(tǒng),包括液壓泵、 形帶輪、油管、供油裝置、助力裝置和控制閥。它借助于汽車發(fā)動機的動力驅(qū)動液壓泵、空氣壓縮機和發(fā)電機等,以液力、氣力或電力增大駕駛員操縱前輪轉(zhuǎn)向的力量,使駕駛員可以輕便靈活地操縱汽車轉(zhuǎn)向,減輕了勞動強度,提高了行駛安全性。
液壓助力轉(zhuǎn)向系統(tǒng)從發(fā)明到現(xiàn)在已經(jīng)有了大約半個世紀(jì)的歷史,可以說是一種比較完善的系統(tǒng),由于其工作可靠、技術(shù)成熟至今仍被廣泛應(yīng)用。它由液壓泵作為動力源,經(jīng)油管道控制閥向動力液壓缸供油,通過活塞桿帶動轉(zhuǎn)向機構(gòu)動作,可通過改變缸徑及油壓的大小來改變助力的大小,由此達到轉(zhuǎn)向助力的作用。傳統(tǒng)液壓式動力轉(zhuǎn)向系統(tǒng)一般按液流的形式可以分為:常流式和常壓式兩種類型,也可以根據(jù)控制閥形式分為轉(zhuǎn)閥式和滑閥式。
隨著液壓動力轉(zhuǎn)向系統(tǒng)在汽車上的日益普及,人們對操作時的輕便性和路感的要求也日益提高,然而液壓動力轉(zhuǎn)向系統(tǒng)卻存在許多缺點:由于其本身的結(jié)構(gòu)決定了其無法保證車輛在任何工況下轉(zhuǎn)動轉(zhuǎn)向盤實,都有較理想的操縱穩(wěn)定性,即無法同時保證低速時的轉(zhuǎn)向輕便性和高速時的操縱穩(wěn)定性;汽車的轉(zhuǎn)向特性受駕駛員的駕駛技術(shù)的嚴(yán)重影響;轉(zhuǎn)向傳動比固定,使汽車轉(zhuǎn)向響應(yīng)特性隨車速、側(cè)向加速度等變化而變化,駕駛員必須提前針對汽車轉(zhuǎn)向特性幅值和相位的變化進行一定的操作補償,從而控制汽車按其意愿行駛。這樣增加了駕駛員的操縱負(fù)擔(dān),也使汽車轉(zhuǎn)向行駛中存在不安全隱患;而此后出現(xiàn)了電控液壓助力系統(tǒng),它在傳統(tǒng)的液壓動力轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上增加了速度傳感器,使汽車能夠隨著車速的變化自動調(diào)節(jié)操縱力的大小,在一定程度上緩和了傳統(tǒng)的液壓轉(zhuǎn)向系統(tǒng)存在的問題。
目前我國生產(chǎn)的商用車和轎車上采用的大多是電控液壓助力轉(zhuǎn)向系統(tǒng),它是比較成熟和應(yīng)用廣泛的轉(zhuǎn)向系統(tǒng)。
電動助力轉(zhuǎn)向系統(tǒng)是現(xiàn)在汽車轉(zhuǎn)向系統(tǒng)的發(fā)展方向,其工作原理是:EPS系統(tǒng)的ECU對來自轉(zhuǎn)向盤轉(zhuǎn)矩傳感器和車速傳感器的信號進行分析處理后,控制電機產(chǎn)生適當(dāng)?shù)闹D(zhuǎn)矩,協(xié)助駕駛員完成轉(zhuǎn)向操作。
近幾年來,隨著電子技術(shù)的發(fā)展,大幅度降低EPS的成本已成為可能,日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司、美國的Delphi汽車系統(tǒng)公司、TRW公司及德國的ZF公司都相繼研制出EPS。到目前為止,EPS系統(tǒng)在輕微型。
電動助力轉(zhuǎn)向系統(tǒng)主要是在機械式轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上加上了傳感器(包括車速傳感器、轉(zhuǎn)矩傳感器和小齒輪位置傳感器)、電子控制單元(ECU)、助力電機、電磁離合器和減速機構(gòu)而構(gòu)成。
電動助力轉(zhuǎn)向系統(tǒng)可根據(jù)減速機構(gòu)的不同分為蝸輪蝸桿式助力機構(gòu)和差動輪系式的主力機構(gòu)兩種形式。差動輪系機構(gòu)具有轉(zhuǎn)向路感平滑穩(wěn)定、轉(zhuǎn)向靈敏性可調(diào),更適合前軸負(fù)載小且對高速操縱性能要求較高的轎車上,而蝸輪蝸桿機構(gòu)具有助力大小可調(diào)整,適合前軸負(fù)載大、轉(zhuǎn)向沉重、主要目的是降低轉(zhuǎn)向力且對高速操縱性能要求不高的載貨汽車上。
另外電動助力轉(zhuǎn)向系統(tǒng)還可以根據(jù)電動機和減速機構(gòu)位置的不同分為:軸助力式EPS(電機和減速裝置裝在轉(zhuǎn)向傳動軸上),轉(zhuǎn)向小齒輪助力式(電機和減速裝置裝在輸入小齒輪上),另端小齒輪助力式(電機和減速裝置裝在另端小齒輪上),齒條助力式(電機和減速裝置套在齒條外側(cè))。
電動助力轉(zhuǎn)向系統(tǒng)主要的優(yōu)點有:自由度高,助力特性可以靈活的依據(jù)轉(zhuǎn)向時的車速、橫向加速度、汽車重量、電池電壓、車輪氣壓等產(chǎn)生不同的助力,且修改方便;結(jié)構(gòu)簡單,相交與液壓助力轉(zhuǎn)向系統(tǒng)少了液壓泵、轉(zhuǎn)閥、液壓管道等復(fù)雜的液壓機構(gòu),不僅節(jié)省了大量的空間,也減少了4—6kg的重量;節(jié)能,對于駕駛員來說,最大的優(yōu)點就是ESP能相較于傳統(tǒng)的液壓助力式的轉(zhuǎn)向系統(tǒng)提升約5%的燃油經(jīng)濟性。這是由于EPS只在轉(zhuǎn)向時才工作,而液壓轉(zhuǎn)向系統(tǒng)不管需不需要助力都一直在運行,尤其在汽車高速行駛時,原本這時是最不需要轉(zhuǎn)向助力的,而這時液壓泵的功率消耗卻是最大的;減振,EPS系統(tǒng)具有較高的慣性力矩,對于來自輪胎的外部干擾可起到緩沖振動的作用。在高速相較于液壓轉(zhuǎn)向系統(tǒng)減振25%-30%;環(huán)保,由于不存在液壓油泄漏等問題使得EPS相較于液壓轉(zhuǎn)向更為環(huán)保。
從整體上來講國內(nèi)近年來對于EPS的研究發(fā)展很快,尤其是在控制策略的研究上,已經(jīng)將不同的控制方法引如ECU中,并通過實驗和分析不斷地完善和改進,但是在對于細(xì)節(jié)的優(yōu)化上距離國外還有相當(dāng)?shù)牟罹?,而且目前國?nèi)除了吉利汽車,還尚未自主知識產(chǎn)權(quán)的EPS,距離EPS的批量化生產(chǎn)也還有一段路要走。
盡管電控液壓助力裝置從一定程度上緩解了傳統(tǒng)的液壓轉(zhuǎn)向中輕便性和路感之間的矛盾,然而它還是沒有從根本上解決HPS系統(tǒng)存在的不足,隨著汽車微電子技術(shù)的發(fā)展,汽車燃油節(jié)能的要求以及全球性倡導(dǎo)環(huán)保,其在布置、安裝、密封性、操縱靈敏度、能量消耗、磨損與噪聲等方面的不足已越來越明顯,轉(zhuǎn)向系統(tǒng)向著電動助力轉(zhuǎn)向系統(tǒng)發(fā)展。
動力轉(zhuǎn)向系是在駕駛員的控制下,借助于汽車發(fā)動機產(chǎn)生的液壓力或電動機驅(qū)動力來實現(xiàn)車論轉(zhuǎn)向。由于采用動力轉(zhuǎn)向可以減少駕駛員手動轉(zhuǎn)向力矩,改善汽車的轉(zhuǎn)向輕便性和汽車的操縱穩(wěn)定性,因此在國外不僅在商用車上,而且在中高級轎車和輕型車上也逐漸普遍應(yīng)用。動力轉(zhuǎn)向系統(tǒng)主要有液壓助力式、氣動助力式和電動助力式等三種形式。其中液壓助力轉(zhuǎn)向系統(tǒng)由于其工作壓力大,結(jié)構(gòu)緊湊,而廣泛應(yīng)用。
液壓助力轉(zhuǎn)向器自五十年代發(fā)展以來,已日趨成熟,得到廣泛應(yīng)用,近幾年主要是提高現(xiàn)機構(gòu)的輕量化,簡化結(jié)構(gòu);提升工作油壓。用壓鑄鋁代替鑄鐵的轉(zhuǎn)向器殼體;用塑料油箱代替鋼板沖壓油箱;對于微型車和轎車,用鋁合金轉(zhuǎn)向軸萬向節(jié)等措施,這些均可減輕50%以上重量,其次,改進“路感”特性,為了滿足高速直行位置附近“路感”效果,改變閥特性,使其靜特性曲線的中間部位比較平坦。
傳統(tǒng)的液壓助力動力轉(zhuǎn)向系統(tǒng)在多采用固定的放大倍率存在著一些缺點:如果所設(shè)計的固定放大倍率的動力轉(zhuǎn)向系統(tǒng)是為了減少汽車在停車或低速行駛狀態(tài)下轉(zhuǎn)向盤的操舵力,則當(dāng)汽車以高速行駛時,這一固定放大倍率會使轉(zhuǎn)向盤的操舵力顯得太小,高速行駛時“路感”差,不利于汽車的方向控制;反之,如果設(shè)計的固定放大倍率的動力轉(zhuǎn)向系統(tǒng)是為了增加汽車在高速行駛時轉(zhuǎn)向力,則當(dāng)汽車低速行駛時,轉(zhuǎn)向轉(zhuǎn)向盤的力顯得太大,破壞了低速狀況下的操縱輕便性,為了解決這個問題,目前汽車界將電子控制技術(shù)應(yīng)用在汽車動力轉(zhuǎn)向系統(tǒng)中,使汽車轉(zhuǎn)向性能達到令人滿意的程度。迄今為止,電子控制液壓動力轉(zhuǎn)向系統(tǒng)已在轎車上獲得應(yīng)用。電子控制液壓動力轉(zhuǎn)向是在傳統(tǒng)的液壓助力轉(zhuǎn)向基礎(chǔ)上增設(shè)了控制液體流量的電磁閥,車速傳感器和電子控制單元等。
現(xiàn)在,世界各國著名零件廠商正在大力研究開發(fā)一種新型的動力轉(zhuǎn)向系統(tǒng),即電子控制電動動力轉(zhuǎn)向系統(tǒng)。電子控制電動動力轉(zhuǎn)向系統(tǒng)是在機械轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上,根據(jù)作用在轉(zhuǎn)向盤上的轉(zhuǎn)矩信號和車速信號,通過電子控制裝置使電機產(chǎn)生相應(yīng)大小和方向的輔助力,協(xié)助駕駛員進行轉(zhuǎn)向操縱,并獲得最佳轉(zhuǎn)向特性的伺服系統(tǒng)。
電子控制電動動力轉(zhuǎn)向系統(tǒng)(EPS)技術(shù)發(fā)展趨勢可歸結(jié)為:
(1)電力驅(qū)動技術(shù):EPS系統(tǒng)中的電機要求端電壓、轉(zhuǎn)速較低、輸出轉(zhuǎn)矩相對較高、尺寸小。由于電機端電壓低,而功率相對較高。所以電機電流較大,這給驅(qū)動單元的電子器件選擇和電路設(shè)計帶來一定困難。
(2)非接觸式傳感器技術(shù):EPS系統(tǒng)中的轉(zhuǎn)向盤轉(zhuǎn)矩傳感器要求結(jié)構(gòu)簡單、工作可靠、價格便宜,精度適中??紤]到可靠性問題,目前國外多采用非接觸式。而接觸式傳感器應(yīng)用較少。
(3)轉(zhuǎn)向控制技術(shù):由于EPS系統(tǒng)在原有的機械式轉(zhuǎn)向系統(tǒng)中增加了電機和減速器,使得轉(zhuǎn)向操縱機構(gòu)的慣性增大,為此需引入慣性控制和阻力控制,避免在電機開始助力和結(jié)束助力時對轉(zhuǎn)向操縱產(chǎn)生影響。同時,為獲得更好的“路感”,必需根據(jù)汽車的行駛速度和轉(zhuǎn)向狀態(tài)確定合理的助力大小和方向。
(4)EPS系統(tǒng)與整車性能匹配:汽車本身是由各子系統(tǒng)組成的既相互聯(lián)系又相互制約的有機整體,當(dāng)汽車某個子系統(tǒng)改變時,整車性能也產(chǎn)生相應(yīng)的變化。因此,必須對EPS系統(tǒng)與汽車上的其它子系統(tǒng)進行匹配,以利整車性能達到最優(yōu)化。
隨著電子技術(shù)和控制方法的進一步發(fā)展,有人提出了一個大膽的假設(shè):即取消轉(zhuǎn)向盤與轉(zhuǎn)向輪之間的機械連接,完全由電能實現(xiàn)轉(zhuǎn)向,這就是線控轉(zhuǎn)向系統(tǒng)。
線控電動轉(zhuǎn)向系統(tǒng)的特點:提高了駕駛員的安全性,由于減少了轉(zhuǎn)向柱等機械機構(gòu),使得駕駛員周圍空間變大,正面碰撞時對駕駛員的傷害得到了大大的降低。另外同樣安全氣囊與駕駛員間的距離加大,使得安全氣囊可以張得更大,以增加對駕駛員的保護;提高了汽車的操縱性,由于可以實現(xiàn)傳動比的任意設(shè)置,并針對不同的車速,轉(zhuǎn)向狀況進行參數(shù)補償,從而提高汽車的操縱性;提高汽車的全面智能化,線控轉(zhuǎn)向系統(tǒng)可以和其它的設(shè)備如ABS、防碰撞、自動導(dǎo)航、自動駕駛等系統(tǒng)結(jié)合起來,最終實現(xiàn)汽車的全面智能化;改善駕駛員的路感,在SBW中路感由模擬生成,使得在回正力矩控制方面可以從信號中提出最能夠反應(yīng)汽車實際行駛狀態(tài)和路面狀況的信息,作為方向盤回正力矩的控制變量,使方向盤僅僅向駕駛員提供有用的信息,從而為駕駛員提供更為真實的“路感”。
線控轉(zhuǎn)向系統(tǒng)還存在著可靠性的問題,目前歐洲汽車法規(guī)還要求駕駛員與轉(zhuǎn)向車輪之間必須有機械連接,而閑空轉(zhuǎn)向系統(tǒng)作為一個還不成熟的技術(shù)目前還不能有足夠的證據(jù)證明其可靠性。其次,線控轉(zhuǎn)向系統(tǒng)還需要在可靠性與成本之間做出較好的平衡;線控轉(zhuǎn)向還將與其它的汽車電氣系統(tǒng)通過CAN總線連接在中央控制器上,由中央控制器統(tǒng)一協(xié)調(diào)控制汽車的運用,從而實現(xiàn)汽車電氣的一體化和智能化;
總之,線控轉(zhuǎn)向在EPS的基礎(chǔ)上,將轉(zhuǎn)向系統(tǒng)的發(fā)展又推進了一步,它將為實現(xiàn)汽車智能化駕駛提供技術(shù)支持。
1.3 設(shè)計的主要內(nèi)容
根據(jù)題目確定轉(zhuǎn)向器的結(jié)構(gòu)形式,并進行轉(zhuǎn)向器及轉(zhuǎn)向梯形的結(jié)構(gòu)設(shè)計,轉(zhuǎn)向器的結(jié)構(gòu)強度校核,及相應(yīng)的轉(zhuǎn)向傳動機構(gòu)、轉(zhuǎn)向操縱機構(gòu)的布置。
第2章 轉(zhuǎn)向系的方案設(shè)計
2.1 汽車轉(zhuǎn)向系的功用和設(shè)計要求
汽車在行駛過程中,為了適應(yīng)各種道路情況和行駛條件,經(jīng)常需要經(jīng)常改變行駛方向。改變行駛方向的方法是通過轉(zhuǎn)向輪(一般是前輪)相對于汽車縱軸線偏轉(zhuǎn)一定角度實現(xiàn)的[5]。汽車在直線行駛時,轉(zhuǎn)向輪也往往受到路面?zhèn)认蚋蓴_力的作用自動偏轉(zhuǎn)而改變行駛方向。因此,駕駛員需要通過一套機構(gòu)隨時改變或恢復(fù)汽車行駛方向。該套專設(shè)機構(gòu)既為汽車的轉(zhuǎn)向系統(tǒng)。
汽車轉(zhuǎn)向系的作用是保持或者改變汽車行駛方向的機構(gòu),在汽車轉(zhuǎn)向行駛中,保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。保證汽車在行駛中能按駕駛員的操縱要求,適時地改變行駛方向,并能在受到路面干擾偏離行駛方向時,與行駛系配合,共同保持汽車穩(wěn)定地直線行駛。轉(zhuǎn)向系對汽車行駛的適應(yīng)性、安全性都具有重要的意義。
對轉(zhuǎn)向系提出的要求有:
(1)汽車轉(zhuǎn)彎行駛時,全部車輪應(yīng)繞瞬時轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。不滿組這項要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
(2)汽車轉(zhuǎn)向行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動返回到直線行駛的位置,并穩(wěn)定行駛。
(3)汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生自振,轉(zhuǎn)向盤沒有擺動。
(4)轉(zhuǎn)向傳動機構(gòu)和懸架導(dǎo)向裝置共同作用時,由于運動不協(xié)調(diào)使車輪產(chǎn)生的擺動應(yīng)最小。
(5)保證汽車有較高的機動性,具有迅速和小轉(zhuǎn)彎行駛能力。
(6)操縱輕便。
(7)轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。
(8)轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機構(gòu)。
(9)在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時,轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置。
(10)進行運動校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動方向一致。
(11)方向盤左置。
(12)不得裝用全動力轉(zhuǎn)向機構(gòu)。
(13)當(dāng)汽車前行向左或向右轉(zhuǎn)彎時,轉(zhuǎn)向盤向左向右的回轉(zhuǎn)角和轉(zhuǎn)向力不能有顯著的差別。
(14)轉(zhuǎn)向器應(yīng)有合適的角傳動比,既能使轉(zhuǎn)向省力,減輕駕駛員的勞動強度,又能使駕駛員轉(zhuǎn)動轉(zhuǎn)向盤時,轉(zhuǎn)向輪應(yīng)立即獲得相應(yīng)的偏轉(zhuǎn)角,且轉(zhuǎn)向盤轉(zhuǎn)動的總?cè)?shù)不能太多。
2.2 主要參數(shù)的確定
根據(jù)指導(dǎo)教師給出的題目及設(shè)計要求,將選用吉利熊貓2010款1.3L型的數(shù)據(jù)作為本次設(shè)計的基礎(chǔ)數(shù)據(jù),主要參數(shù)為:
整車質(zhì)量:985kg
最小轉(zhuǎn)彎直徑:9.5m 最小轉(zhuǎn)彎半徑:4.75m
車長:3598mm 車寬:1630mm
車高:1465mm 軸距:2340mm
最小離地間隙:121mm
最大功率:63/6000 kw/rpm 最大扭矩:110/5200 N·m/rpm
前輪胎規(guī)格:165/60R14 后輪胎規(guī)格:165/60R14
前/后輪距:1420/1410mm 最高車速:145km/h
2.3 轉(zhuǎn)向器形式的選擇
汽車行駛過程中,經(jīng)常需要改變行駛方向,即所謂的轉(zhuǎn)向,這就需要有一套能夠按照司機意志使汽車轉(zhuǎn)向的機構(gòu),它將司機轉(zhuǎn)動方向盤的動作轉(zhuǎn)變?yōu)檐囕喌钠D(zhuǎn)動作。
汽車的轉(zhuǎn)向系根據(jù)其轉(zhuǎn)向能源的不同,可分為機械式轉(zhuǎn)向系和動力式轉(zhuǎn)向系。
2.3.1機械轉(zhuǎn)向系組成及其功用
機械式轉(zhuǎn)向系是依靠駕駛員的手力轉(zhuǎn)動轉(zhuǎn)向盤,經(jīng)轉(zhuǎn)向器和一系列的桿件傳遞到轉(zhuǎn)向輪使其偏轉(zhuǎn)的,其中所有傳力件都是機械的。汽車轉(zhuǎn)向時,駕駛員作用于轉(zhuǎn)向盤上的力經(jīng)轉(zhuǎn)向柱傳至轉(zhuǎn)向器,將轉(zhuǎn)向力放大后,再通過轉(zhuǎn)向傳動機構(gòu)的傳遞,推動轉(zhuǎn)向輪偏轉(zhuǎn),使汽車改變行駛方向。
普通的轉(zhuǎn)向系統(tǒng)建立在機械轉(zhuǎn)向的基礎(chǔ)上,機械轉(zhuǎn)向系由轉(zhuǎn)向操縱機構(gòu)、轉(zhuǎn)向器、轉(zhuǎn)向傳動機構(gòu)三大部分組成[6]。其中轉(zhuǎn)向器是將操縱機構(gòu)的旋轉(zhuǎn)運動轉(zhuǎn)變?yōu)閭鲃訖C構(gòu)的直線運動(嚴(yán)格講是近似直線運動)的機構(gòu),是轉(zhuǎn)向系的核心部件。機械式轉(zhuǎn)向系根據(jù)機械式轉(zhuǎn)向器分為齒輪齒條式轉(zhuǎn)向器、循環(huán)球式轉(zhuǎn)向器、蝸桿滾輪式轉(zhuǎn)向器、蝸桿指銷式轉(zhuǎn)向器等。轉(zhuǎn)向傳動機構(gòu)的功用是將轉(zhuǎn)向器輸出的力傳給轉(zhuǎn)向輪,且使二轉(zhuǎn)向輪偏轉(zhuǎn)角按一定的關(guān)系變化,以實現(xiàn)汽車順利轉(zhuǎn)向。轉(zhuǎn)向傳動機構(gòu)的功用是將轉(zhuǎn)向器輸出的力和運動傳到轉(zhuǎn)向橋兩側(cè)的轉(zhuǎn)向節(jié),使兩側(cè)轉(zhuǎn)向輪偏轉(zhuǎn),并使兩輪向輪偏轉(zhuǎn)角按一定關(guān)系變化,以保證汽車轉(zhuǎn)向時車輪與地面的相對滑動盡可能小。轉(zhuǎn)向傳動機構(gòu)根據(jù)懸架的分類可分為與非獨立懸架配用的轉(zhuǎn)向傳動機構(gòu)和與獨立懸架配用的轉(zhuǎn)向傳動機構(gòu)兩大類,轉(zhuǎn)向傳動機構(gòu)的桿系根據(jù)布置可分為前置式和后置式。有些汽車在轉(zhuǎn)向傳動機構(gòu)中裝有轉(zhuǎn)向減振器,用來衰減轉(zhuǎn)向輪的擺振和緩和來自路面的沖擊載荷。從轉(zhuǎn)向盤到轉(zhuǎn)向傳動軸這一系列零部件屬于轉(zhuǎn)向操縱機構(gòu)。包括:轉(zhuǎn)向盤、轉(zhuǎn)向管柱、轉(zhuǎn)向軸、上萬向節(jié)、下萬向節(jié)和傳動軸。
2.3.2動力轉(zhuǎn)向系組成及其功用
動力轉(zhuǎn)向系統(tǒng)是兼用駕駛員體力和發(fā)動機動力為轉(zhuǎn)向能源的轉(zhuǎn)向系。重型汽車或裝有超低壓胎的轎車轉(zhuǎn)向時阻力較大,為了減輕駕駛員的疲勞強度,改善轉(zhuǎn)向系統(tǒng)的技術(shù)性能,采用動力轉(zhuǎn)向裝置。動力轉(zhuǎn)向裝置按動力能源分為液壓式和氣壓式,按動力缸、控制閥及轉(zhuǎn)向器的相對位置分為整體式、半整體式、轉(zhuǎn)向加力器,轉(zhuǎn)向加力裝置主要包括轉(zhuǎn)向油泵、轉(zhuǎn)向油罐、轉(zhuǎn)向控制閥和轉(zhuǎn)向動力缸[7]。采用動力轉(zhuǎn)向的汽車轉(zhuǎn)向時,所需的能量在正常情況下,只有小部分是駕駛員提供的體能,而大部分是發(fā)動機驅(qū)動轉(zhuǎn)向油泵旋轉(zhuǎn),將發(fā)動機輸出的部分機械能轉(zhuǎn)化為壓力能,并在駕駛員控制下,對轉(zhuǎn)向傳動裝置或轉(zhuǎn)向器中某一傳動件施加不同方向的隨動漸進壓力,從而實現(xiàn)轉(zhuǎn)向。但是在轉(zhuǎn)向加力裝置失效時,一般還應(yīng)當(dāng)能由駕駛員獨立承擔(dān)汽車轉(zhuǎn)向任務(wù)。因此,動力轉(zhuǎn)向系是早機械轉(zhuǎn)向系的基礎(chǔ)上加設(shè)一套轉(zhuǎn)向加力裝置而形成的。采用動力轉(zhuǎn)向裝置的汽車,不僅使汽車入庫等復(fù)雜情況下的操作容易,而且在高速行駛狀態(tài)下,能對動力加以限制,使轉(zhuǎn)向不會過輕,增加了安全性。
2.3.3轉(zhuǎn)向系統(tǒng)選擇
對于中高級以下的轎車和前軸負(fù)荷不超過3t的載貨汽車,則多數(shù)僅采用機械轉(zhuǎn)向系而無動力轉(zhuǎn)向裝置。汽車轉(zhuǎn)向時,駕駛員作用于轉(zhuǎn)向盤的力經(jīng)轉(zhuǎn)向拄傳至轉(zhuǎn)向器,將轉(zhuǎn)向力放大后,再通過轉(zhuǎn)向傳動機構(gòu)的傳遞,推動轉(zhuǎn)向輪偏轉(zhuǎn),使汽車改變行駛方向。機械式轉(zhuǎn)向系完全由駕駛員的力量實現(xiàn)轉(zhuǎn)向,結(jié)構(gòu)簡單、工作可靠、路感好。
高級轎車和重型載貨汽車為了使轉(zhuǎn)向輕便,多采用這種動力轉(zhuǎn)向系統(tǒng)。動力轉(zhuǎn)向系不僅使汽車入庫等復(fù)雜情況下的操作容易,而且在高速行駛狀態(tài)下,能對動力加以限制,使轉(zhuǎn)向不會過輕,增加了安全性。動力轉(zhuǎn)向機是利用外部動力協(xié)助司機輕便操作轉(zhuǎn)向盤的裝置。隨著最近汽車發(fā)動機馬力的增大和扁平輪胎的普遍使用,使車重和轉(zhuǎn)向阻力都加大了,因此動力轉(zhuǎn)向機構(gòu)越來越普及。值得注意的是,轉(zhuǎn)向助力不應(yīng)是不變的,因為在高速行駛時,輪胎的橫向阻力小,轉(zhuǎn)向盤變得輕飄,很難捕捉路面的感覺,也容易造成轉(zhuǎn)向過于靈敏而使汽車不易控制。
本次設(shè)計為微型汽車,采用機械式轉(zhuǎn)向器。
2.4 機械式轉(zhuǎn)向器類型的選擇
根據(jù)所采用的轉(zhuǎn)向傳動副的不同,轉(zhuǎn)向器的結(jié)構(gòu)型式有多種。常見的有齒輪齒條式、循環(huán)球式、球面蝸桿滾輪式、蝸桿指銷式等[8]。
對轉(zhuǎn)向器結(jié)構(gòu)型式的選擇,主要是根據(jù)汽車的類型、前軸負(fù)荷、使用條件等來決定,并要考慮其效率特性、角傳動比變化特性等對使用條件的適應(yīng)性以及轉(zhuǎn)向器的其他性能、壽命、制造工藝等。中、小型轎車以及前軸軸荷小于1.2t的客車、貨車,多采用齒輪齒條式轉(zhuǎn)向器。球面蝸桿滾輪式轉(zhuǎn)向器曾廣泛用于輕型和中型汽車上,循環(huán)球式轉(zhuǎn)向器則是當(dāng)前廣泛使用的一種結(jié)構(gòu),高級轎車和輕型及以上的客車、貨車均多采用。據(jù)了解,在世界范圍內(nèi),汽車循環(huán)球式轉(zhuǎn)向器占45%左右,齒輪齒條式轉(zhuǎn)向器占40%左右,蝸桿滾輪式轉(zhuǎn)向器占10%左右,其它型式的轉(zhuǎn)向器占5%。
2.4.1 齒輪齒條式轉(zhuǎn)向器
齒輪齒條轉(zhuǎn)向器由于轉(zhuǎn)向軸做成一體的轉(zhuǎn)向齒輪和常與轉(zhuǎn)向橫拉桿做成一體的齒條組成。與其他形式的轉(zhuǎn)向器比較,齒輪齒條轉(zhuǎn)向器最主要的優(yōu)點是:結(jié)構(gòu)簡單、緊湊;殼體采用鋁合金或鎂合金壓鑄而成,轉(zhuǎn)向器的質(zhì)量比較??;轉(zhuǎn)向器占用的體積??;沒有轉(zhuǎn)向搖臂和直拉桿,所以轉(zhuǎn)向輪轉(zhuǎn)角可以增大,制造成本低。其結(jié)構(gòu)如圖2.1。
1-調(diào)整螺塞 2-罩蓋 3-壓簧 4-壓簧墊塊 5-轉(zhuǎn)向齒條 6-齒輪軸 7-球軸承
8-轉(zhuǎn)向器殼體 9-轉(zhuǎn)向齒輪 10-滾柱軸承 11-轉(zhuǎn)向橫拉桿 12-拉桿支架 13-轉(zhuǎn)向節(jié)
圖2.1 齒輪齒條式轉(zhuǎn)向器
齒輪齒條轉(zhuǎn)向器的主要缺點是:因逆效率高60%-70%面上行駛時,發(fā)生在轉(zhuǎn)向輪與路面之間沖擊力的大部分能傳至轉(zhuǎn)向盤產(chǎn)生反沖,反沖現(xiàn)象會使駕駛員精神緊張,并難以準(zhǔn)確控制汽車行駛方向,轉(zhuǎn)向盤突然轉(zhuǎn)動又會造成打手,同時對駕駛員造成傷害。
2.4.2 循環(huán)球式轉(zhuǎn)向器
循環(huán)球式轉(zhuǎn)向器由齒輪機構(gòu)將來自轉(zhuǎn)向盤的旋轉(zhuǎn)力進行減速,使轉(zhuǎn)向盤的旋轉(zhuǎn)運動變?yōu)闇u輪蝸桿的旋轉(zhuǎn)運動,滾珠螺桿和螺母夾著鋼球嚙合,因而滾珠螺桿的旋轉(zhuǎn)運動變?yōu)橹本€運動,螺母再與扇形齒輪嚙合,直線運動再次變?yōu)樾D(zhuǎn)運動,使連桿臂搖動,連桿臂再使連動拉桿和橫拉桿做直線運動,改變車輪的方向。其結(jié)構(gòu)如圖2.2。
1-螺母 2-彈簧墊圈 3-轉(zhuǎn)向螺母 4-轉(zhuǎn)向器殼體密封墊圈 5-轉(zhuǎn)向器殼體底蓋
6-轉(zhuǎn)向器殼體 7-導(dǎo)管夾 8-加油(通氣)螺塞 9-鋼球?qū)Ч? 10-球軸承
11、23-油封 12-轉(zhuǎn)向螺桿 13-鋼球 14-調(diào)整墊片 15-螺栓 16-調(diào)整墊圈
17-側(cè)蓋 18-調(diào)整螺釘 19-鎖緊螺母 20、22-滾針軸承 21-齒扇軸(搖臂軸)
圖2.2 循環(huán)球式轉(zhuǎn)向器
循環(huán)球式轉(zhuǎn)向器的主要優(yōu)點:在螺桿和螺母之間因為有可以循環(huán)流動的鋼球,將滑動摩擦轉(zhuǎn)變?yōu)闈L動摩擦,因而傳動效率可達到75%—80%;在結(jié)構(gòu)和工藝上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度和螺桿、螺母上的螺旋槽經(jīng)淬火和磨削加工,使之有足夠的硬度和耐磨損性能,可保證有足夠的使用壽命;轉(zhuǎn)向器的傳動比可以變化;工作平穩(wěn)可靠;齒條與齒扇之間的間隙調(diào)整工作容易進行;適合用來做整體式動力轉(zhuǎn)向器。循環(huán)球式轉(zhuǎn)向器的主要缺點:逆效率高,結(jié)構(gòu)復(fù)雜,制造困難,制造精度要求高。
2.4.3 蝸桿滾輪式轉(zhuǎn)向器
蝸桿滾輪式轉(zhuǎn)向器由蝸桿和滾輪嚙合而構(gòu)成。蝸桿滾輪式轉(zhuǎn)向器的主要優(yōu)點是:結(jié)構(gòu)簡單;制造容易;因為滾輪的齒面和蝸桿上的螺紋呈面接觸,所以有比較高的強度,工作可靠,磨損小,壽命長;逆效率低。蝸桿滾輪式轉(zhuǎn)向器的主要缺點是:正效率低;工作齒面磨損后,調(diào)整嚙合間隙比較困難;轉(zhuǎn)向器的傳動比不能變化。
蝸桿指銷式轉(zhuǎn)向器根據(jù)其銷子能否自轉(zhuǎn)分為固定銷式蝸桿指銷式轉(zhuǎn)向器和旋轉(zhuǎn)銷式轉(zhuǎn)向器。根據(jù)銷子數(shù)量不同,又分為單銷和雙銷之分。蝸桿指銷式轉(zhuǎn)向器的優(yōu)點是:轉(zhuǎn)向器的傳動比可以做成不變的或者變化的;指銷和蝸桿之間的工作面磨損后,調(diào)整間隙工作容易進行。固定銷蝸桿指銷式轉(zhuǎn)向器的結(jié)構(gòu)簡單、制造容易;但是因銷子不能自轉(zhuǎn),銷子的工作部位基本保持不變,所以磨損快、工作效率低。旋轉(zhuǎn)銷式轉(zhuǎn)向器的效率高、磨損慢,但結(jié)構(gòu)復(fù)雜。
轉(zhuǎn)向器是轉(zhuǎn)向系中的減速增扭轉(zhuǎn)動裝置[9],其功用是增大轉(zhuǎn)向盤傳動轉(zhuǎn)向節(jié)的力并改變力的傳遞方向。曾經(jīng)出現(xiàn)過的轉(zhuǎn)向器結(jié)構(gòu)型式很多,但有些已趨于淘汰?,F(xiàn)代汽車的轉(zhuǎn)向器已演變定型,中型和重型汽車多采用循環(huán)球式轉(zhuǎn)向器,小型車多采用齒輪齒條式轉(zhuǎn)向器。在循環(huán)球式轉(zhuǎn)向器中,輸入轉(zhuǎn)向圈與輸出的轉(zhuǎn)向搖臂擺角是成正比的;在齒輪齒條式轉(zhuǎn)向器中,輸入轉(zhuǎn)向圈數(shù)與輸出的齒條位移是成正比的。目前大部分低端轎車采用的就是齒輪齒條式機械轉(zhuǎn)向系統(tǒng),本次為微型車轉(zhuǎn)向器設(shè)計,故采用齒輪齒條式轉(zhuǎn)向器。
2.5 本章小結(jié)
本章主要講述轉(zhuǎn)向系統(tǒng)的各種形式,根據(jù)選用的參數(shù)采用機械式轉(zhuǎn)向系統(tǒng)。并在機械式轉(zhuǎn)向系統(tǒng)中進行轉(zhuǎn)向器的選擇,對比分析各種轉(zhuǎn)向器的優(yōu)缺點,最終選擇齒輪齒條轉(zhuǎn)向器。
第3章 機械式轉(zhuǎn)向系總體設(shè)計
3.1 轉(zhuǎn)向系的主要性能參數(shù)
轉(zhuǎn)向系的主要性能參數(shù)有轉(zhuǎn)向系的效率、傳動比的變化特性、轉(zhuǎn)向器傳動副的傳動間隙特性、轉(zhuǎn)向盤的總轉(zhuǎn)動圈數(shù)以及轉(zhuǎn)向盤的自由行程。
3.1.1 轉(zhuǎn)向系的效率
功率p從轉(zhuǎn)向軸輸入,經(jīng)轉(zhuǎn)向搖臂軸輸出所求得的效率為正效率,用符號η+表示,反之稱為逆效率,用符號η-表示,為了保證轉(zhuǎn)向時駕駛員轉(zhuǎn)動轉(zhuǎn)向盤輕便,要求正效率高[10];為了保證汽車轉(zhuǎn)向后轉(zhuǎn)向輪和轉(zhuǎn)向盤能自動返回直線行駛位置,又需要有一定的逆效率。
轉(zhuǎn)向器的正效率與轉(zhuǎn)向器的類型、結(jié)構(gòu)特點、結(jié)構(gòu)參數(shù)和制造質(zhì)量等有關(guān)。在前述四種轉(zhuǎn)向器中,齒輪齒條式、循環(huán)球式轉(zhuǎn)向器的正效率比較高,而蝸桿指銷式特別是鼓動銷和蝸桿滾輪式轉(zhuǎn)向器的正效率要明顯低一些。齒輪齒條式轉(zhuǎn)向器的正效率可達90%,循環(huán)球式轉(zhuǎn)向器的傳動副為滾動摩擦,摩擦損失小,其正效率可達85%,球面蝸桿滾輪式轉(zhuǎn)向器正效率可達77%-82%,蝸桿指銷式轉(zhuǎn)向器和蝸桿滾輪式轉(zhuǎn)向器的傳動副存在較大滑動摩擦,正效率68%-75%比較低。同一類型轉(zhuǎn)向器,因結(jié)構(gòu)不同效率也不一樣。
逆效率表示轉(zhuǎn)向器的可逆性。根據(jù)逆效率值的大小,轉(zhuǎn)向器又可分為可逆式、極限可逆式與不可逆試三種。
可逆式轉(zhuǎn)向器的逆效率較高,這種轉(zhuǎn)向器可將路面作用在車輪上的大部分力傳遞到轉(zhuǎn)向盤上,使司機的路感好。在汽車轉(zhuǎn)向后也能保證轉(zhuǎn)向輪與轉(zhuǎn)向盤的自動回正,使轉(zhuǎn)向輪行駛穩(wěn)定。但在壞路面上,當(dāng)轉(zhuǎn)向輪上作用有側(cè)向力時,轉(zhuǎn)向輪受到的沖擊大部分會傳給轉(zhuǎn)向盤,為了減輕在不平路面上行駛時駕駛員的疲勞,車輪與路面之間的作用力傳至轉(zhuǎn)向盤上要盡可能小,防止打手,這又要求此逆效率盡可能低。因此,可逆式轉(zhuǎn)向器宜用于在良好路面上行駛的車輛。循環(huán)球式和齒輪齒條式轉(zhuǎn)向器均屬于這一類。本文設(shè)計齒輪齒條轉(zhuǎn)向器逆效率為60%-70%。
不可逆式轉(zhuǎn)向器不會將轉(zhuǎn)向輪受到的沖擊力傳到轉(zhuǎn)向盤上。由于它既使司機沒有路感,又不能保證轉(zhuǎn)向輪的自動回正,現(xiàn)代汽車已不采用。
極限可逆式轉(zhuǎn)向器介于上述兩者之間。其逆效率較低,適用于在壞路面上行駛的汽車。當(dāng)轉(zhuǎn)向輪受到?jīng)_擊力時,其中只有較小的一部分傳給轉(zhuǎn)向盤。
通常,由轉(zhuǎn)向盤至轉(zhuǎn)向輪的效率即轉(zhuǎn)向系的正效率的平均值為67%-82%;當(dāng)向上述相反方向傳遞力時逆效率的平均值為58%-63%。
3.1.2 轉(zhuǎn)向系傳動比
轉(zhuǎn)向系的傳動比包括轉(zhuǎn)向系的角傳動比和轉(zhuǎn)向系的力傳動比。
從輪胎接地面中心作用在兩個轉(zhuǎn)向輪上的合力2 與作用在轉(zhuǎn)向盤上的手力之比,稱為力傳動比。轉(zhuǎn)向盤角速度與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度之比,稱為轉(zhuǎn)向系角傳動比。
轉(zhuǎn)向盤角速度與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度之比,稱為轉(zhuǎn)向系角傳動比,即
(3.1)
式中:—轉(zhuǎn)向盤轉(zhuǎn)角增量;
—轉(zhuǎn)向節(jié)轉(zhuǎn)角增量;
—時間增量。
又由轉(zhuǎn)向器角傳動比和轉(zhuǎn)向傳動機構(gòu)角傳動比所組成,即
(3.2)
式中:—轉(zhuǎn)向器的角傳動比;
—轉(zhuǎn)向傳動機構(gòu)的角傳動比。
現(xiàn)代汽車轉(zhuǎn)向傳動機構(gòu)的角傳動比多在0.85-1.1之間,即近似于1?,F(xiàn)代汽車轉(zhuǎn)向器的角傳動比也常采用不變的數(shù)值:轎車取=14-22;貨車取=20-25。本次設(shè)計取15。
=115=15
轉(zhuǎn)向傳動機構(gòu)的力傳動比與轉(zhuǎn)向傳動機構(gòu)的結(jié)構(gòu)布置型式及其桿件所處的轉(zhuǎn)向位置有關(guān)。
=75 (3.3)
式(3.3)中:—主銷偏移距,取值在40-60mm,取40mm;
—轉(zhuǎn)向盤直徑,取400mm。
3.1.3 轉(zhuǎn)向器的傳動副的間隙特性
轉(zhuǎn)向器的傳動間隙是指轉(zhuǎn)向器傳動副之間的間隙[11]。該間隙隨轉(zhuǎn)向盤轉(zhuǎn)角的改變而改變。通常將這種變化關(guān)系稱為轉(zhuǎn)向器的傳動間隙特性。研究該傳動間隙特性的意義在于它對汽車直線行駛時的穩(wěn)定性和轉(zhuǎn)向器的壽命都有直接影響。
當(dāng)轉(zhuǎn)向盤處于中間位置即汽車作直線行駛時,如果轉(zhuǎn)向器有傳動間隙則將使轉(zhuǎn)向輪在該間隙范圍內(nèi)偏離直線行駛位置而失去穩(wěn)定性。為防止這種情況發(fā)生,要求當(dāng)轉(zhuǎn)向盤處于中間位置時轉(zhuǎn)向器的傳動副為無隙嚙合。這一要求應(yīng)在汽車使用的全部時間內(nèi)得到保證。汽車多直行行駛,因此轉(zhuǎn)向器傳動副在中間部位的磨損量大于其兩端。為了保證轉(zhuǎn)向器傳動副磨損最大的中間部位能通過調(diào)整來消除因磨損而形成的間隙,調(diào)整后當(dāng)轉(zhuǎn)動轉(zhuǎn)向盤時又不致于使轉(zhuǎn)向器傳動副在其他嚙合部位卡住。為此應(yīng)使傳動間隙從中間部位到兩端逐漸增大,并在端部達到其最大值,如圖3.1,利于間隙的調(diào)整及提高轉(zhuǎn)向器的使用壽命。不同結(jié)構(gòu)的轉(zhuǎn)向器其傳動間隙特性亦不同。
圖3.1 轉(zhuǎn)向器傳動副傳動間隙特性
循環(huán)球式轉(zhuǎn)向器的齒條齒扇傳動副的傳動間隙特性,可通過將齒扇齒做成不同厚度來獲取必要的傳動間隙,既將中間齒設(shè)計成正常齒厚,從靠近中間齒的兩側(cè)齒到離開中間齒最遠(yuǎn)的齒,其厚度依次遞減。齒輪齒條式轉(zhuǎn)向器轉(zhuǎn)向傳動副的主動件是一斜齒圓柱小齒輪,它和裝在外殼中的從動件——齒條相嚙合,齒輪齒條式轉(zhuǎn)向器是依靠齒條背部靠近主動小齒輪處裝置的可調(diào)節(jié)壓力的彈簧來消除齒輪齒條傳動副的齒間間隙的。球面蝸桿滾輪式轉(zhuǎn)向器的傳動副是球面蝸桿及滾輪,球面蝸桿滾輪式轉(zhuǎn)向器利用軸向移動搖臂以改變滾輪與蝸桿中心距的方法來調(diào)整傳動間隙。蝸桿指銷式轉(zhuǎn)向器的傳動副為圓柱蝸桿及指銷,雙銷型由于其結(jié)構(gòu)復(fù)雜,尺寸及質(zhì)量也較大,且對兩指銷間的位置精度、蝸桿上螺紋槽的形狀及尺寸精度要求較高,角傳動比的變化特性及傳動間隙特性的變化也受到限制,因此應(yīng)用上多為齒輪齒條和循環(huán)球式轉(zhuǎn)向器所取代。本次設(shè)計中為使汽車保持一定的穩(wěn)定性,要求傳動副的傳動間隙在轉(zhuǎn)向盤處于及其附近位置時要極小,一般在10°~15°。
3.1.4轉(zhuǎn)向盤的總轉(zhuǎn)動圈數(shù)
轉(zhuǎn)向盤從一個極端位置轉(zhuǎn)到另一個極端位置時所轉(zhuǎn)過的圈數(shù)稱為轉(zhuǎn)向盤的總轉(zhuǎn)動圈數(shù)。它與轉(zhuǎn)向輪的最大轉(zhuǎn)角及轉(zhuǎn)向系的角傳動比有關(guān),并影響轉(zhuǎn)向的操縱輕便性和靈敏性。轎車轉(zhuǎn)向盤的總轉(zhuǎn)動圈數(shù)較少,一般約在3.6圈以內(nèi);貨車一般不宜超過6圈。
單從轉(zhuǎn)向操縱的靈敏性而言,最好是轉(zhuǎn)向盤和轉(zhuǎn)向節(jié)的運動能同步開始并同步終止。然而,這在實際上是不可能實現(xiàn)的。因為在整個轉(zhuǎn)向系統(tǒng)中,各傳動件之間都必然存在著裝配間隙,而且這些間隙將隨著零件的磨損而增大。在轉(zhuǎn)向盤轉(zhuǎn)動過程的開始階段,駕駛員對轉(zhuǎn)向盤所施加的力矩很小,因為只是用來克服轉(zhuǎn)向系統(tǒng)內(nèi)部的摩擦的,使各傳動件運動到其間的間隙完全消失,故可以認(rèn)為這個階段是轉(zhuǎn)向盤空轉(zhuǎn)階段。此后,才需要對轉(zhuǎn)向盤施加更大的轉(zhuǎn)向力矩,以克服經(jīng)車輪傳到轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩,從而實現(xiàn)使各轉(zhuǎn)向輪的偏轉(zhuǎn)。轉(zhuǎn)向盤在空轉(zhuǎn)階段中的角行程稱為轉(zhuǎn)向盤自由行程。轉(zhuǎn)向盤自由行程對于緩沖路面沖擊及避免使駕駛員過度緊張是有利的,但不宜過大,以免影響靈敏性。一般來說,轉(zhuǎn)向盤從相應(yīng)于汽車直線行駛的中間位置向任一方向的自由行程最好不超過10°~15°。當(dāng)零件磨損嚴(yán)重到使轉(zhuǎn)向盤自由行程超過25°~30°時,必須進行調(diào)整。
3.1.5 轉(zhuǎn)向盤的選擇
轉(zhuǎn)向盤即通常所說的方向盤。轉(zhuǎn)向盤由輪緣、輪輻和輪轂組成。輪輻一般為三根輻條或四根輻條,也有用兩根輻條的。轉(zhuǎn)向盤輪轂孔具有細(xì)牙內(nèi)花鍵,借此與轉(zhuǎn)向軸連接。轉(zhuǎn)向盤內(nèi)部有金屬制成的骨架,是用鋼、鋁合金或鎂合金等材料制成,采用焊接或鑄造等工藝制造。骨架的外側(cè)一般包有柔軟的合成橡膠或樹脂,也有采用皮革包裹以及硬木制作的轉(zhuǎn)向盤。轉(zhuǎn)向盤外皮要求有某種程度的柔軟度,這樣可有良好的手感,而且能防止手心出汗時握轉(zhuǎn)向盤打滑,還需要有耐熱性,如圖3.2。
1-輪緣 2-喇叭按紐 3-輪轂 4-輪輻
圖3.2 轉(zhuǎn)向盤
轉(zhuǎn)向盤的功能:轉(zhuǎn)向盤位于司機的正前方,是碰撞時最可能傷害到司機的部件,因此需要轉(zhuǎn)向盤具有很高的安全性,在司機撞在轉(zhuǎn)向盤上時,骨架能夠產(chǎn)生變形,吸收沖擊能,減輕對司機的傷害。轉(zhuǎn)向盤的慣性力矩也是很重要的,慣性力矩小,我們就會感到“輪輕”,操做感良好,但同時也容易受到轉(zhuǎn)向盤的反彈(即“打手”)的影響,為了設(shè)定適當(dāng)?shù)膽T性力矩,就要調(diào)整骨架的材料或形狀等。現(xiàn)在的轉(zhuǎn)向盤與以前的看似沒有太大變化,但實際上已經(jīng)有了改進。由于轉(zhuǎn)向助力裝置的普及,轉(zhuǎn)向盤外徑變小了,而手握處卻變粗了,采用柔軟材料,使操作感得到了改善?,F(xiàn)在有越來越多的汽車在轉(zhuǎn)向盤里安裝了安全氣囊,也使汽車的安全性大大提高了。
現(xiàn)在的轉(zhuǎn)向盤與以前的看似沒有太大變化,但實際上已經(jīng)有了改進。由于轉(zhuǎn)向助力裝置的普及,轉(zhuǎn)向盤外徑變小了,而手握處卻變粗了,采用柔軟材料,使操作感得到了改善。
現(xiàn)在有越來越多的汽車在轉(zhuǎn)向盤里安裝了安全氣囊,也使汽車的安全性大大提高了。轉(zhuǎn)向盤的集電環(huán):轉(zhuǎn)向盤上有喇叭開關(guān),必須時刻與車身電器線路相連,而旋轉(zhuǎn)的轉(zhuǎn)向盤與組合開關(guān)之間顯然不能用導(dǎo)線直接相連,因此就必須采用集電環(huán)裝置。集電環(huán)好比環(huán)形的地鐵軌道,喇叭開關(guān)的觸點就象奔跑在軌道上的電車,時刻保持接通的狀態(tài)。由于是機械接觸,長時間使用觸點會因磨損影響導(dǎo)電性,導(dǎo)致緊急時刻喇叭不鳴甚至氣囊不工作。因此,最近裝備氣囊的汽車開始裝用電纜盤,代替集電環(huán)。
轉(zhuǎn)向盤的端子與組合開關(guān)的端子用電纜線連接,電纜盤將電線卷入盤內(nèi),類似于吸塵器的電線卷取機構(gòu),在轉(zhuǎn)向盤旋轉(zhuǎn)范圍內(nèi),電線靠卷筒自由伸縮。這種裝置大大提高了電器裝置的可靠性。
轉(zhuǎn)向盤通過花鍵、螺母固定于轉(zhuǎn)向柱上端,平時有轉(zhuǎn)向盤中央蓋板遮擋,根據(jù)國家交通安全規(guī)定,轉(zhuǎn)向盤布置于駕駛室左側(cè),便于拓寬駕駛員左側(cè)視野,有利安全行車。
方向盤直徑有一系列尺寸。在選用大直徑的方向盤時,會使駕駛員進出駕駛室感到困難,若是選用小直徑方向盤,轉(zhuǎn)向時則要求駕駛員施加較大的力量,從而使汽車難于操縱。選擇方向盤直徑與汽車類型有關(guān),本次設(shè)計為微型車,方向盤直徑選擇為400mm。
3.2 機械式轉(zhuǎn)向器總體布置
根據(jù)輸入齒輪位置和輸出特點不同,齒輪齒條式轉(zhuǎn)向器有四種形式:中間輸入,兩端輸出,如圖3.3(a);側(cè)面輸入,兩端輸出,如圖3.3(b);側(cè)面輸入,中間輸出,如圖3.3(c);側(cè)面輸入,一端輸出如圖3.3(d)。
(a)中間輸入,兩端輸出 (b) 側(cè)面輸入,兩端輸出
(c)側(cè)面輸入,中間輸出 (d)側(cè)面輸入,一端輸出
圖3.3 齒輪齒條轉(zhuǎn)向器的四種形式
轉(zhuǎn)向減振器布置位置:轉(zhuǎn)向減振器常水平的置于轉(zhuǎn)向橫拉桿附近,裝于轉(zhuǎn)向桿與車身或車架之間??捎糜谒p轉(zhuǎn)向車輪的擺振以及緩和來自路面的沖擊載荷。
轉(zhuǎn)向傳動機構(gòu)的桿系可布置在前軸之后,稱為后置式。若發(fā)動機的位置很低,或前橋為驅(qū)動橋時,因桿件的布置有困難,也可布置在前軸之前,稱為前置式。本文設(shè)計的轉(zhuǎn)向傳動機構(gòu)為后置式。轉(zhuǎn)向傳動機構(gòu)根據(jù)懸架的分類可分為與非獨立懸架配用的轉(zhuǎn)向傳動機構(gòu)和與獨立懸架配用的轉(zhuǎn)向傳動機構(gòu)兩大類。本文設(shè)計為與獨立懸架配用的轉(zhuǎn)向傳動機構(gòu)。采用獨立懸架時,與齒輪齒條轉(zhuǎn)向器匹配的轉(zhuǎn)向桿系結(jié)構(gòu)更簡單。如圖3.4
圖3.4 轉(zhuǎn)向系布置形式
3.3本章小結(jié)
本章主要介紹轉(zhuǎn)向系統(tǒng)的性能參數(shù),對機械式轉(zhuǎn)向器的布置方案確定,簡單說明轉(zhuǎn)向器在汽車內(nèi)的布置位置以及布置形式。
第4章 齒輪齒條轉(zhuǎn)向器的結(jié)構(gòu)設(shè)計
4.1 轉(zhuǎn)向器齒輪的設(shè)計
齒輪齒條式轉(zhuǎn)向器由與轉(zhuǎn)向軸做成一體的轉(zhuǎn)向齒輪和常與轉(zhuǎn)向橫拉桿做成一體的齒條組成。主動小齒輪選用40Cr制造,而齒條常采用45鋼制造。為減輕質(zhì)量,殼體用鋁合金壓鑄,通過螺栓固定于車身上,轉(zhuǎn)向齒輪與齒條安裝于殼體內(nèi),當(dāng)轉(zhuǎn)向盤通過轉(zhuǎn)向柱帶動轉(zhuǎn)向齒輪轉(zhuǎn)動時,齒輪即帶動齒條向左或向右移動,實現(xiàn)汽車轉(zhuǎn)向,齒條靠背部的彈簧與齒輪嚙合。其結(jié)構(gòu)簡單、布置方便,制造容易,但轉(zhuǎn)向傳動比較小,且齒條沿其長度方向磨損不均勻,故僅廣泛用于微型汽車和轎車上。為了轉(zhuǎn)向輕便,主動小齒輪的直徑應(yīng)盡量小。通常,這類轉(zhuǎn)向器的齒輪模數(shù)多在2-3mm范圍內(nèi),壓力角為20°,主動小齒輪有5-8個齒,螺旋角為β取9°-15°。
本次設(shè)計中轉(zhuǎn)向傳動副主動件是一斜齒圓柱小齒輪,它和裝在外殼中的從動件齒條相嚙合。模數(shù)取3,齒輪有6個齒,螺旋角β=15°。
端面模數(shù):
=/=3/15°=3.11
端面壓力角:
= /=20.7°
(a取20°)
分度圓直徑:
d=z/=18/15°=18.6mm
齒頂高:
=(+)=3 mm
齒根高:
=(h+-)=1.25=3.75 mm
齒高:
mm
齒頂圓直徑:
mm
齒根圓直徑:
mm
齒距:
mm
齒輪中心到齒條基準(zhǔn)線距離:
mm
基圓直徑:
=17.43 mm
端面重合度:
縱向重合度:
=
齒寬系數(shù)查表取值1.4
齒厚:
/ mm
齒寬:齒條長度根據(jù)齒輪圓周以及轉(zhuǎn)向盤的轉(zhuǎn)動圈數(shù)確定:
3 mm
4.2 轉(zhuǎn)向器齒條的設(shè)計
根據(jù)齒輪齒條的嚙合特點:
(1)齒輪的分度圓永遠(yuǎn)與其節(jié)圓相重合,而齒條的中線只有當(dāng)標(biāo)準(zhǔn)齒輪正確安裝時才與其節(jié)圓相嚙合。
(2)齒輪與齒條的嚙合角永遠(yuǎn)等于壓力角。
因此,齒條模數(shù)取3,壓力角=15°。
齒條斷面形狀選取圓形,選擇齒數(shù)z=20,螺旋角=15°
端面模數(shù):
=/=3/15°=3.11
端面壓力角:
=/=20.7°
(取20°)
齒頂高:
= m=3 mm
齒根高:
=(h+)=1.25=3.75 mm
齒高:
mm
齒距:
mm
4.3 轉(zhuǎn)向器齒輪齒條的強度校核
接觸疲勞強度計算[14]
查表取119.8
在1.2—2之間取值1.2
U=3.625
方向盤能轉(zhuǎn)動3圈
(4.1)
[
=1304.471440
接觸疲勞強度滿足需要。
齒根抗彎疲勞強度[15]
(4.2)
=1/1.5=0.67
1<<2
查表取 取
[MPa
=260.8329MPa
對于轉(zhuǎn)向器的校核,汽車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩,下面由經(jīng)驗公式計算
(4.3)
式中:—輪胎和路面間的滑動摩擦系數(shù),一般取0.7左右
—前軸負(fù)荷;
—輪胎氣壓。
根據(jù)汽車的軸荷分配,前軸滿載時,前軸軸荷的大小為車重的32%-40%,本次設(shè)計取前軸軸荷取車重的55%。輪胎氣壓取0.45,為450000。
N
N·mm
轉(zhuǎn)向系統(tǒng)輸出力矩為:方向盤力矩、方向盤半徑和轉(zhuǎn)向系統(tǒng)傳動比乘積為輸出功率,在機械傳動時會有一定的損失,齒輪齒條的正效率為90%,傳動機構(gòu)傳動效率為90%,計算出轉(zhuǎn)向系輸出力矩:
N·mm
轉(zhuǎn)向系統(tǒng)輸入力矩為:方向盤作用半徑、作用在轉(zhuǎn)向盤上的操縱載荷,對轎車該力不用超過150~200N,對于貨車不應(yīng)超過500N
N·mm
4.4 本章小結(jié)
本章主要講述機械式轉(zhuǎn)向系統(tǒng)的設(shè)計過程及計算步驟和數(shù)據(jù),包括齒輪齒條式轉(zhuǎn)向器的主動小齒輪及嚙合齒條的設(shè)計計算,以及其強度校核。
第5章 轉(zhuǎn)向操縱機構(gòu)的布置形式
5.1轉(zhuǎn)向操縱機構(gòu)的功用和組成
轉(zhuǎn)向操縱機構(gòu)的功用是產(chǎn)生轉(zhuǎn)動轉(zhuǎn)向器所必需的操縱力,并具有一定的調(diào)節(jié)和安全性能。
轉(zhuǎn)向操縱機構(gòu)要將駕駛員操縱轉(zhuǎn)向盤的力傳給轉(zhuǎn)向器,同時為了駕駛員的舒適駕駛,還要求轉(zhuǎn)向操縱機構(gòu)可以進行調(diào)節(jié),以滿足不同駕駛員的需求;為了防止車輛撞擊后對駕駛員的損傷,還要求轉(zhuǎn)向操縱機構(gòu)具有一定的安全保護裝置。
如圖5.1所示,轉(zhuǎn)向操縱機構(gòu)一般由轉(zhuǎn)向盤1、上轉(zhuǎn)向軸總成11、轉(zhuǎn)向管柱9、轉(zhuǎn)向傳動軸27、轉(zhuǎn)向萬向節(jié)叉總成20、滑動叉萬向節(jié)總成28等組成。轉(zhuǎn)向盤1由塑料制成,內(nèi)有鋼制骨架,通過花鍵將轉(zhuǎn)向盤轂與上轉(zhuǎn)向軸11相連,用螺母18固定,上轉(zhuǎn)向軸上端支承在襯套12內(nèi),下端支承在軸承13中,由孔用彈性擋圈14和軸用鋼絲擋圈16進行軸向定位。轉(zhuǎn)向管柱9下端壓配在下固定支架8中,并通過兩個螺栓將下固定支架緊固在駕駛室地板上;上端通過橡膠套3、蓋板2,由兩個螺栓固定在駕駛室儀表板上。彈簧41可消除轉(zhuǎn)向管柱與上轉(zhuǎn)向軸間的軸向間隙。
下端的轉(zhuǎn)向萬向節(jié)叉20通過花鍵與轉(zhuǎn)向器的轉(zhuǎn)向螺桿相連接,滑動叉28通過內(nèi)花鍵與轉(zhuǎn)向傳動軸27的外花鍵相連,轉(zhuǎn)向傳動軸可軸向移動,以適應(yīng)駕駛室與車架的相對位移?;瑒硬嬉欢撕赣腥?,另一端裝油封29和防塵套30防止灰砂和泥水進入,并由滑脂嘴31對滑動叉與轉(zhuǎn)向傳動軸的花鍵進行潤滑。
十字軸19有兩個,上裝滑脂嘴23,潤滑4個滾針軸承21,由彈性擋圈22固定在萬向節(jié)叉上。萬向節(jié)叉的結(jié)構(gòu)與滑動叉基本相同,只是多一鎖緊螺栓與上端的萬向節(jié)叉和上轉(zhuǎn)向軸相連。
1-轉(zhuǎn)向盤總成 2-蓋板 3-橡膠套 4、24-螺栓 5、26、40-彈簧墊圈 6、39-墊圈
7、18、25-螺母 8-下固定支架 9-轉(zhuǎn)向管柱 10-楔形螺母 11-上轉(zhuǎn)向軸 12-襯套
13-球軸承 14、22-孔用彈性擋圈 15-軸承擋圈 16-軸用鋼絲擋圈 17-平墊圈
19-十字軸 20-轉(zhuǎn)向萬向節(jié)叉 21-滾針軸承總成 23、31-滑脂嘴總成 27-轉(zhuǎn)向傳動軸
28-轉(zhuǎn)向萬向節(jié)滑動叉 29-油封 30-防塵套 32-喇叭按鈕蓋 33-搭鐵接觸板總成
34-接觸彈簧 35-接觸罩 36-電刷總成 37-集電環(huán)總成 38-螺釘 41-彈簧
圖5.1 CA1091型汽車轉(zhuǎn)向操縱機構(gòu)
5.2 安全式轉(zhuǎn)向柱
為了保證駕駛員的安全,同時也為