《高三數(shù)學一輪復(fù)習 第十三篇 坐標系與參數(shù)方程 第1節(jié) 坐標系課件 理》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學一輪復(fù)習 第十三篇 坐標系與參數(shù)方程 第1節(jié) 坐標系課件 理(32頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第十三篇坐標系與參數(shù)方程第十三篇坐標系與參數(shù)方程( (選修選修4 44)4)第第1 1節(jié)坐標系節(jié)坐標系知識鏈條完善知識鏈條完善考點專項突破考點專項突破經(jīng)典考題研析經(jīng)典考題研析知識鏈條完善知識鏈條完善 把散落的知識連起來把散落的知識連起來知識梳理知識梳理 2.2.極坐標系極坐標系(1)(1)設(shè)設(shè)M M是平面內(nèi)一點是平面內(nèi)一點, ,極點極點O O與點與點M M的距離的距離|OM|OM|叫做點叫做點M M的的 , ,記為記為.以極軸以極軸OxOx為始邊為始邊, ,射線射線OMOM為終邊的角為終邊的角xOMxOM叫做點叫做點M M的的 , ,記為記為.有序數(shù)對有序數(shù)對(,(,) )叫叫做點做點M M的
2、極坐標的極坐標, ,記為記為M(,M(,).).極角極角極徑極徑coscos sinsin x x2 2+y+y2 2 夯基自測夯基自測答案答案: :x-y+1=0 x-y+1=0答案答案: :1 1答案答案: :6 64.(20144.(2014高考廣東卷高考廣東卷) )在極坐標系中在極坐標系中, ,曲線曲線C C1 1和和C C2 2的方程分別為的方程分別為sinsin2 2=cos=cos 和和sinsin =1, =1,以極點為平面直角坐標系的原點以極點為平面直角坐標系的原點, ,極軸為極軸為x x軸的正半軸軸的正半軸, ,建立平面直建立平面直角坐標系角坐標系, ,則曲線則曲線C C1
3、 1和和C C2 2交點的直角坐標為交點的直角坐標為. .答案答案: :(1,1)(1,1)答案答案: :考點專項突破考點專項突破 在講練中理解知識在講練中理解知識考點一考點一 平面直角坐標系中的伸縮變換平面直角坐標系中的伸縮變換考點二考點二極坐標與直角坐標的互化極坐標與直角坐標的互化【例【例2 2】 (2015(2015高考新課標全國卷高考新課標全國卷)在直角坐標系在直角坐標系xOyxOy中中, ,直線直線C C1 1:x=-2,:x=-2,圓圓C C2 2:(x-1):(x-1)2 2+(y-2)+(y-2)2 2=1,=1,以坐標原點為極點以坐標原點為極點,x,x軸的正半軸為極軸建立極坐
4、標系軸的正半軸為極軸建立極坐標系. .(1)(1)求求C C1 1,C,C2 2的極坐標方程的極坐標方程; ;解解: :(1)(1)因為因為x=cos ,y=sinx=cos ,y=sin , ,所以所以C C1 1的極坐標方程為的極坐標方程為coscos =-2, =-2,C C2 2的極坐標方程為的極坐標方程為2 2-2cos -4sin +4=0.-2cos -4sin +4=0.反思歸納反思歸納 (1) (1)直角坐標方程化為極坐標方程直角坐標方程化為極坐標方程, ,只要運用公式只要運用公式x=cosx=cos 及及y=siny=sin 直接代入并化簡即可直接代入并化簡即可;(2);(
5、2)極坐標方程化為極坐標方程化為直角坐標方程時常通過變形直角坐標方程時常通過變形, ,構(gòu)造形如構(gòu)造形如cos ,sincos ,sin ,2 ,2的形的形式式, ,進行整體代換進行整體代換. .其中方程的兩邊同乘以其中方程的兩邊同乘以( (或同除以或同除以)及方程兩邊及方程兩邊平方是常用的變形方法平方是常用的變形方法. .但對方程進行變形時但對方程進行變形時, ,方程必須同解方程必須同解, ,因此應(yīng)因此應(yīng)注意對變形過程的檢驗注意對變形過程的檢驗. .(2)(2)設(shè)設(shè)MNMN的中點為的中點為P,P,求直線求直線OPOP的極坐標方程的極坐標方程. .簡單曲線的極坐標方程及應(yīng)用簡單曲線的極坐標方程及
6、應(yīng)用考點三考點三 【例【例3 3】 在極坐標系中在極坐標系中, ,已知曲線已知曲線C C1 1與與C C2 2的極坐標方程分別為的極坐標方程分別為=2sin =2sin 與與coscos =-1(02), =-1(02),求求: :(1)(1)兩曲線兩曲線( (含直線含直線) )的公共點的公共點P P的極坐標的極坐標; ;反思歸納反思歸納 (1)(1)求曲線的極坐標方程求曲線的極坐標方程, ,就是找出動點就是找出動點M M的坐標的坐標與與之間的關(guān)系之間的關(guān)系, ,然后列出方程然后列出方程f(,f(,)=0,)=0,再化簡并檢驗特殊點再化簡并檢驗特殊點. .(2)(2)極坐標方程涉及的是長度與角
7、度極坐標方程涉及的是長度與角度, ,因此列方程的實質(zhì)是解三角形因此列方程的實質(zhì)是解三角形. .(3)(3)極坐標方程應(yīng)用時多化為直角坐標方程求解極坐標方程應(yīng)用時多化為直角坐標方程求解, ,然后再轉(zhuǎn)化為極坐然后再轉(zhuǎn)化為極坐標方程標方程, ,注意方程的等價性注意方程的等價性. .解解: :(1)(1)由由=2cos =2cos 得得2 2=2cos .=2cos .所以所以O(shè) O1 1的直角坐標方程為的直角坐標方程為x x2 2+y+y2 2=2x,=2x,即即(x-1)(x-1)2 2+y+y2 2=1.=1.由由=2asin =2asin 得得2 2=2asin .=2asin .所以所以O(shè)
8、O2 2的直角坐標方程為的直角坐標方程為x x2 2+y+y2 2=2ay,=2ay,即即x x2 2+(y-a)+(y-a)2 2=a=a2 2. .備選例題備選例題 (2)(2)試判定軌跡試判定軌跡C C1 1和和C C的位置關(guān)系的位置關(guān)系, ,并說明理由并說明理由. .經(jīng)典考題研析經(jīng)典考題研析 在經(jīng)典中學習方法在經(jīng)典中學習方法極坐標方程的應(yīng)用極坐標方程的應(yīng)用命題意圖命題意圖: :通過極坐標方程與直角坐標方程之間互化考查了極坐標與直角通過極坐標方程與直角坐標方程之間互化考查了極坐標與直角坐標以及極坐標系中的距離公式坐標以及極坐標系中的距離公式, ,體現(xiàn)了化歸與轉(zhuǎn)化的數(shù)學思想、屬中下體現(xiàn)了化歸與轉(zhuǎn)化的數(shù)學思想、屬中下等題等題. .