《高考數(shù)學(xué)第一輪總復(fù)習(xí) 第57講 雙曲線課件 文 (湖南專版)》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)第一輪總復(fù)習(xí) 第57講 雙曲線課件 文 (湖南專版)(71頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、了解雙曲線的定義、掌握雙曲線的幾何圖形和標(biāo)準(zhǔn)方程,理解它的簡單幾何性質(zhì)12122 (_)| 2 ._1FFaMMFMFa平面內(nèi)到兩定點 、 的距離之差的絕對值為常數(shù)且的點的軌跡叫雙曲線,對該曲線上任一點,有在定義中,當(dāng)雙曲線時表示兩條射線,當(dāng)時,不表示任的定義何圖形 12222222221231 (1_,0,02_(0)(0)1_2000,00)0 xFcFcycaxyababFcFcybxyR焦點在 軸上的雙曲線:,其中,焦點坐標(biāo)為,;焦點在 軸上的雙曲線:,其中,焦點坐標(biāo)為, 范圍:,;對稱性:對稱雙曲線的標(biāo)準(zhǔn)方程雙曲線 , 的幾何性質(zhì)軸,對稱中心; 123,0,0_4(1)AaAacea
2、一般規(guī)律:雙曲線有兩條對稱軸,它們分別是兩焦點連線及兩焦點連線段的中垂線頂點:,;實軸長,虛軸長;一般規(guī)律:雙曲線都有兩個頂點,頂點是曲線與它本身的對稱軸的交點離心率,雙曲線的離心率在 ,內(nèi),離心率確定了雙曲線的形狀 2222222251_1_.10 xyabxyabbabc漸近線:雙曲線的兩條漸近線方程為;雙曲線的兩條漸近線方程為雙曲線有兩條漸近線,它們的交點就是雙曲線的中心;焦點到漸近線的距離等于虛半軸長 ;有公共漸近線的兩條雙曲線可能是: 共軛雙曲線; 放大的雙曲線;共軛放大或放大后共軛的雙曲線已知雙曲線的標(biāo)準(zhǔn)方程求雙曲線的漸近線方程時,只要令雙曲線的標(biāo)準(zhǔn)方程中的“”為“ ”就得到兩條漸
3、2222222201xyxyabab近線方程,即方程就是雙曲線的兩條漸近線方程12122212222222222121202221(00)1(00)22 aFFaFFxyaFFababyxcabababxaA AaB Bbbayxyxab ; , ; , ;【要點指南】; 一一 雙曲線定義的應(yīng)用雙曲線定義的應(yīng)用素材素材1 二求雙曲線的標(biāo)準(zhǔn)方程二求雙曲線的標(biāo)準(zhǔn)方程素材素材2 三三 雙曲線的幾何性質(zhì)雙曲線的幾何性質(zhì)素材素材3四雙曲線的綜合應(yīng)用四雙曲線的綜合應(yīng)用素材素材4備選例題備選例題2221000.2()()()3abccababcabababab雙曲線中的參變量 , , 有關(guān)系式成立,且,其中
4、 與 的大小關(guān)系,可以為,雙曲線的幾何性質(zhì)的實質(zhì)是圍繞雙曲線中的“六點”兩個焦點、兩個頂點、兩個虛軸的端點 ,“四線”兩條對稱軸、兩條漸近線 ,“兩形”中心、焦點以及虛軸端點構(gòu)成的三角形,雙曲線上一點和兩焦點構(gòu)成的三角形 研究它們之間的相互聯(lián)系橢圓是封閉性曲線,而雙曲線是開放性的又雙曲線有兩支,故在應(yīng)用時要注意在哪一支上2222222222451061(0)AxByABxyabxyab 根據(jù)方程判定焦點的位置時,注意與橢圓的差異性求雙曲線的標(biāo)準(zhǔn)方程時應(yīng)首先考慮焦點的位置,若不確定焦點的位置時,需進(jìn)行討論,或可直接設(shè)雙曲線的方程為與雙曲線共漸近線的雙曲線方程為22222711ebcackeaaae 雙曲線的形狀與 有關(guān)系:,越大,即漸近線的斜率的絕對值就越大,這時雙曲線的形狀就從扁狹逐漸變得開闊由此可知,雙曲線的離心率越大,它的開口就越開闊