輸送機(jī)帶輪沖壓成形工藝與模具設(shè)計(jì)(落料拉深復(fù)合模+反拉深模具)
輸送機(jī)帶輪沖壓成形工藝與模具設(shè)計(jì)(落料拉深復(fù)合模+反拉深模具),輸送,機(jī)帶輪,沖壓,成形,工藝,模具設(shè)計(jì),落料拉深,復(fù)合,反拉深,模具
畢業(yè)設(shè)計(jì)(論文)答辯考核記錄表
機(jī)電工程學(xué)院 專業(yè) :機(jī)械工程 班級(jí):機(jī)械工程144 姓名:朱同
題 目: 輸送機(jī)帶輪沖壓成形工藝設(shè)計(jì)及模具設(shè)計(jì)
考 核 項(xiàng) 目
滿分值
得分
設(shè)計(jì)過(guò)程中的態(tài)度和能力表現(xiàn)(指導(dǎo)教師在答辯前填好)
1.學(xué)習(xí)態(tài)度
5
2.基本理論與專業(yè)知識(shí)掌握情況及獨(dú)立分析和解決問(wèn)題的能力
15
評(píng)閱人評(píng)定
3.畢業(yè)設(shè)計(jì)(論文)、譯文
5
設(shè)計(jì)(論文)的質(zhì)量
(評(píng)委當(dāng)場(chǎng)評(píng)定)
4.畢業(yè)設(shè)計(jì)(論文)質(zhì)量(設(shè)計(jì)結(jié)構(gòu)方案、圖紙、計(jì)算、外文)
30
5.設(shè)計(jì)(論文)的新見(jiàn)解及成果
5
答 辯 情 況
(評(píng)委當(dāng)場(chǎng)評(píng)定)
6.自述情況
10
7.回答問(wèn)題
30
評(píng)委簽字:
合計(jì)
幾 點(diǎn) 說(shuō) 明:
A、1.2由指導(dǎo)教師填寫(xiě)3.由評(píng)閱人答辯前填好,否則該生不得進(jìn)行答辯。
B、4.5.6.7由評(píng)委獨(dú)立評(píng)定。設(shè)計(jì)(論文)質(zhì)量的外文部分為5分,中文部分為20分。每個(gè)學(xué)生的外文翻譯不得少于3000漢字,另外必須用中、外文書(shū)寫(xiě)畢業(yè)設(shè)計(jì)(論文)摘要。譯文需指導(dǎo)教師審改簽字,確認(rèn)非抄襲,并附上原文,系、學(xué)院、教務(wù)處有權(quán)抽查考核。發(fā)現(xiàn)抄襲取消答辯資格,并追究指導(dǎo)教師責(zé)任。沒(méi)有外文翻譯不得參加答辯。
C、每一答辯小組答辯委員會(huì)不得少于5人。核分時(shí)將各評(píng)委所給分?jǐn)?shù)去掉一個(gè)最高分和一個(gè)最低分后,再算其平均分?jǐn)?shù),并依此由各學(xué)院答辯委員會(huì)根據(jù)“優(yōu)秀”者嚴(yán)控(15%—20%)、“良”者適控(30%-40%)、“不及格”者慎重的原則加以平衡,按優(yōu)、良、中、及格、不及格五級(jí)記載。
2018年 06月 15日
Maciej SZAFARCZYK Jarosaw CHRZANOWSKI Radosaw GOCINIAK Warsaw University of Technology, Warsaw, Poland STRAIN GAUGE TOOL PROBE FOR NC LATHES Keywords: tool probe, strain gauge sensor, tool wear measurement, direct tool wear measurement. ABSTRACT The main role of tool probes in NC machine tools. The probes used now in industry and their drawbacks. The original concept of a tool probe using full strain gauge bridges for orientation of tool edges in four directions: +X, -X, +Z, -Z and for direct tool wear measurement. 1. INTRODUCTION The rapid development of all areas of manufacturing technology and the aim to reduce costs, increase precision and to shorten production time are enforcing the use of modern production technology. Dimensional parameters are the most commonly encountered quality characteristics of workpieces. Conventional machine tools are gradually being replaced in production plants by modern manufacturing systems, components of which, in the case of machining, are CNC machines. Main new CNC machines operate several different tools. To increase dimensions accuracy of components manufactured in CNC lathes we must use tool setting systems to know how the tools are located on the machine. Using traditional techniques, tool setting is time consuming and can be prone to human error. A touch probe system is an inspection equipment that allows a machine tool to perform geometrical measurements inside its working area, but besides tool tip coordinate identification, we must have information about tool wear. * The project has been financed from Multi-Year Programme PW-004, Institute for Sustainable Technologies - National Research Institute (ITeE - PIB) From all elements of manufacturing systems cutting edges wear is the fastest. In case of total wear we must replace a worn out tool with a sharp one. Cutting edge wear starts from first moment when touching the working material. Tool wear may be gradually, in case mechanical, chemical or temperature activity in turning process and we call them natural wear. In some cases tool wear is sudden when we have forces above the yield point and we call them catastrophic tool breakage (KSO). 2. INDUSTRIAL TOOL SETTING SYSTEMS When clamping a new tool on the machine or after the replacement of a worn out tool with a sharp one we must have information about orientation of tool edge. During writing the part program, the path of the tool tip is described by an assumed system co-ordinates, without knowing how the tools will be located in the machine. The corrective coordinates are defined during the orientation of the tool tip by the tool probe, and are then entered for every tool in the tool table stored in the machine control unit. While interpreting, the machine controller adjusts the points of the edge path by the values read from tool table. Figure 1 presents use of a standard touch trigger probe system for determination of X co-ordinate of the tool edge. Fig. 1. The use of a standard touch trigger probe system for determination of X co-ordinate of the tool edge 1. When tool tip touches probe stylus, the contact sensors in its result are opened, the value of the coordinate of the location of the saddle, which is read from the machine measuring system, is automatically entered into the register of the control unit reflecting the number of the measured tool and then the saddle motion is switched off. These probes only need to signalize that contact between tool tip and probe stylus was occurred. Standard tool setting system used touch-trigger probes. The most known is RP3 probing system (Figure 2) designed by Renishaw 2, 3. Fig. 2. Renishaw RP3 probe 3. The sensing of contact between workpiece and the probe is done by electric switches, witch strongly determine the repeatability and accuracy of probing. The original touch-trigger probe also called kinematic resistive Probe” (Figure 3), works with a set of three cylindrical pegs attached to the stylus. Each of them rests on two separated electric contacts that gives altogether six points of constraint for the six degrees of freedom of the stylus. An electric circuit is built out of these contacts, which is closed, when the stylus is in its neutral position. When the stylus touches the tool tip a further constraint point is added and so the pressure on one of the original constraint points is reduced, which changes the resistance of the electric circuit. The contact between stylus and tool tip is signaled when a certain threshold value of resistance is exceeded. Fig. 3. Touch-trigger probe 4. 3. INDUSTRIAL TOOL MONITORING SYSTEMS KSO must be detected very fast and after that we must provide necessary changes in turning process. That means that automation of turning process needs automatic detect and properly react in case of KSO. Method and range of this monitoring depend on process type. We have many industrial systems which can detect KSO. Natural wear is difficult to measure, but we dont need fast reaction from monitoring systems the reason are continuous changes of tool wear value. We have many industrial types of tool monitoring systems (Figure 4.), we measure: - cutting forces - effective power - torque - acoustic emission - differential pressure - distance measuring with cooling lubricant - jet barrier using laser, air or cooling lubricant Fig. 4. Tool monitoring systems (Nordmann). 5 We can mark out two types of monitoring in-process: monitoring and post-process tool monitoring. POST-PROCESS TOOL MONITORING Post-process tool monitoring is tantamount to geometry control of the tool cutting edge before or after the chip producing process with feelers, light barriers, or similar devices. Pro: - Sometimes high certainty of detection of breakage - Typically easier usage Contra: - Measurement can lengthen the production time - Machine is only stopped after tool breakage, i.e. possible damage to the work piece or the machine or the tool holder as a result of the forces incurred - Not all testing methods are free of wear IN-PROCESS TOOL MONITORING Indirect control during the metal cutting process of effective power, cutting force, or acoustic emission. Pro: - The measurement does not extend the production time - Machine is stopped at the moment of tool breakage - No additional installations (e.g. control switch) are necessary near the tool - Loss-free sensors. Contra: - Does not offer 100% guarantee of detection for all tool breakage - Sometimes the breakage is only detected when the next work piece is cut, e.g. in the case of thread cutting control with effective power and breakage at the moment of reversal of spin direction. All above industrial systems are not provide direct natural tool wear measurement. These methods mainly detect moment of the tool breakage or measure physical process parameters and based on these data, calculate natural tool wear. Mathematical description must include many process variables (e.g. heat expansion), consequently method based on mathematical models may have many errors even in self mathematical model which is only approximation of real process. 4. ORIGINAL PROBES FOR DIRECT TOOL WEAR MEASUREMENT AND FOR TOOL SETTING DESIGNED IN WARSAW UNIVERSITY OF TECHNOLOGY - STRAIN GAUGE PROBE A. PROBE FOR TOOL SETTING This is a new probe for identification of a tool tip co-ordinates on an NC lathes and for tool setting 6. The main part of this probe is a round bar. Stylus with crash protection device is connected with bar. The bar has two parallel flat surfaces on a part of its length. They are oriented under angle 45 in respect to X and Z axes of NC lathe (Figure 5). Fig. 5. Original measurement conception 7. Four strain gauges are glued on those flat surfaces (two of them are placed on the one side and the two other on the opposite side), the strain gauges are connected in a full bridge with all active gauges. This original design allows the possibility of tool tip co-ordinate identification in four directions of tool movement (-X, +X, -Z, +Z NC lathe axes) using only one full bridge sensor. When tool tip touches the probe stylus and moves forward, it deforms the flat and flexible part of bar. The maximum value of deformation must be kept below yield point defined by material properties. An actual value of analog electrical signal from strain gauges is compared continuously with a defined level of signal. When compared signals are equal, the comparator sends a signal to a NC machine controller to read value of the co-ordinate of location of the saddle from linear scale. The probe accuracy is placed in repeatability of generating this signal by comparator. Acceptable repeatability must be near 1m. B. PROBE FOR MEASURING TOOL WEAR Next probe is designed for both tool co-ordinate identification and tool wear evaluation in turning (Figure 7). The newest conception gives a possibility measuring the natural wear at the tool tip in the same time as identification of the tool co-ordinates. It is significant that both measuring components of the probe meet directly on the cutting plate. This allowed for elimination of errors e.g. unequal heat expansion of the seat and this plate. Strain gauges are mounted on the flexible sleeve and on the flat part of the bar (Figure 8). Worn part of the tool tip touches the first plate mounted on the bar, in next step base part of the tip (not worn) touches the second plate mounted on the sleeve. We have signals from both full strain bridges. Fig. 7. Tool probe for measuring tool wear. Fig. 8. Probe construction. Measurement of the new insert is used as a reference. During measurements after machining the obtained value is subtracted from the reference one and calculates current wear of the cutting edge (KE) (Figure 9). Fig. 9. KE calculation. When tool moves and touches plate mounted on the bar and flexing the bar. Reaching defined level of signal from strain gauges mounted on the bar is signaled by sending digital signal to machine control unit to identify tool tip coordinate. We also have continuous analog signal from gauges and we can calculate this signal to the value of plate dislocation. When tool moves forward not worn part of the tool tip touches second plate mounted on the sleeve and flexing the sleeve. Reaching defined level of signal is signaled by sending digital signal to control unit to remember actual analog value from gauges mounted on the bar. This value (subtracted to the reference one) is the current tool wear value (KE). We will try to use Siemens Siwarex U (Figure 10)- weighing module as a transducer. We can connect to them 2 full strain bridges and sending signals to machine control unit. We also consider building own control unit with cooperation with polish company ZEPWN 8. Fig. 10. Siemens Siwarex U weighing module 9. 5. CONCLUSION This probe will be an alternate solution in comparison with a standard tool probe. The strain gauges were never being used as a main part of a tool probe. The results of first tests demonstrate, that a probe with a strain gauge sensor based on presented original measurement conception, is suitable for both orientating the tool tip in the NC lathe co-ordinates and for tool wear measurement. After all tests we will try to adjust the probe for industrial application. REFERENCES 1. Coleman D., Waters F.: Fundamentals of touch trigger probing. 1997, Touch Trigger Press 2. Renishaw.: RP1 & RP2 Tool Setting Probe data sheet 3. RP3 Tool Setting Probe data sheet 4. A. Weckenmann, T. Estler, G. Peggs, D. McMurtry.: Probing Systems in Dimensional Metrology CIRP Annals STC P, 53/2/2004, p. 657 5. www.nordmann.de 6. Szafarczyk M., Winiarski A.: Tool probe. Patent application P.378785 Warszawa, 02.2006 r. 7. Gociniak R.: Strain gauge tool probe for NC lathes. 2006 IV International Conference on Machining and Measurement of Sculptured Surfaces 8. Zakad Elektroniki Pomiarowej Wielkoci Nieelektrycznych .pl 9. Siemens Siemens Siwarex U (One and Two-Channel Model) Equipment Manual. Relase 06/2005 應(yīng)變計(jì)刀具測(cè)量頭的數(shù)控車(chē)床
應(yīng)變計(jì)刀具測(cè)量頭的數(shù)控車(chē)床
關(guān)鍵詞:刀具探針、應(yīng)變式傳感器、刀具磨損的測(cè)量、直接測(cè)量刀具磨損
摘要:
在數(shù)控機(jī)床中刀具探測(cè)器是非常重要的。在現(xiàn)代工業(yè)中探測(cè)器的應(yīng)用及缺 點(diǎn)。按照常規(guī)的想法,刀具探測(cè)器充滿張力,測(cè)量?jī)x橋梁刀具邊緣接受簡(jiǎn)單指示,在切削刃的四個(gè)方向: + X,一X, + Z和- Z定向刀具磨損的直接測(cè)量中全部使用應(yīng)變橋。
1.導(dǎo)言
各領(lǐng)域制造技術(shù)的快速發(fā)展,以降低成本,提高精度和縮短生產(chǎn)時(shí)間的目標(biāo)促進(jìn)了現(xiàn)代生產(chǎn)技術(shù)的應(yīng)用。量綱參數(shù)是最常遇到的工件質(zhì)量特性 。常規(guī)機(jī)床正在逐步被生產(chǎn)廠中的現(xiàn)代化生產(chǎn)系統(tǒng),機(jī)械加工的組成部分,數(shù)控機(jī)床所取代。主要的新的數(shù)控機(jī)床能操作幾種不同的刀具。
為了增加數(shù)控車(chē)床加工部件的尺寸精度,我們必須使用刀具設(shè)置系統(tǒng)來(lái)知道刀具是如何定位刀具機(jī)床上的。使用傳統(tǒng)的技術(shù),刀具設(shè)置既耗費(fèi)時(shí)間,又容易發(fā)生人為錯(cuò)誤。觸摸探測(cè)系統(tǒng)是一種檢測(cè)設(shè)備,它允許機(jī)床在其工作區(qū)進(jìn)行幾何測(cè)量,但除了刀尖坐標(biāo)識(shí)別,我們還必須得到關(guān)于刀具磨損的信息。
該技術(shù)已被國(guó)家可持續(xù)技術(shù)研究所(IteE-PIB)資助研究多年。在制造系統(tǒng)所有組成部分中,切削刃磨損是最快的。如果達(dá)到磨損量,我們必須更換磨損刀具具急劇的那一個(gè)。切削刃磨損從第一次接觸的時(shí)候工作材料。我們必須將已磨損的刀具用一把鋒銳的刀具更換。切削刃磨損從第一次接觸的工作材料開(kāi)始的時(shí)候。刀具的磨損可能是逐步的情況下,如果發(fā)生在機(jī)械,化學(xué)或溫度活動(dòng)過(guò)程中,我們把他們稱作自然磨損。在某些情況下,刀具的磨損是突然的——當(dāng)我們施加屈服點(diǎn)以上的壓力時(shí),我們稱這種情況為災(zāi)難性的刀具破損(KSO)。
2.工業(yè)刀具設(shè)置系統(tǒng)
當(dāng)把一把新刀具夾緊在機(jī)床上或更換完舊的刀具后,我們必須得到有關(guān)切削刃方向的信息。在編寫(xiě)這部分程序時(shí),刀尖路徑被一個(gè)假想的坐標(biāo)系統(tǒng)描述出來(lái),而不知道如何把這些刀具定位到機(jī)床中。糾正坐標(biāo)是指通過(guò)刀具探針得到的刀尖位置,然后進(jìn)入存儲(chǔ)在機(jī)器控制單元的所有刀具的工具表中。機(jī)床控制器就可以通過(guò)讀取工具表中的數(shù)據(jù)來(lái)調(diào)節(jié)刀具邊緣點(diǎn)路徑。
圖1 使用標(biāo)準(zhǔn)觸摸觸發(fā)探針系統(tǒng)系統(tǒng)確定刀具X坐標(biāo)[ 1 ]
當(dāng)?shù)都庥|及探針筆會(huì)使接觸傳感器打開(kāi),讀自機(jī)床測(cè)量系統(tǒng)的鞍架定位坐標(biāo)值,會(huì)自動(dòng)進(jìn)入反映測(cè)量刀具數(shù)目的控制單元登記,然后鞍架運(yùn)動(dòng)停止。這些探針只需要表明刀尖和探針筆之間的聯(lián)系。
標(biāo)準(zhǔn)的工具設(shè)置系統(tǒng)使用觸摸式觸發(fā)探頭,最知名是由Renishaw設(shè)計(jì)的RP3探測(cè)系統(tǒng)(圖2)設(shè)計(jì)的雷尼紹[2,3] 。
圖2 雷尼紹RP3探針[ 3 ]
工件和探針之間的接觸是由電氣開(kāi)關(guān)控制的,它強(qiáng)烈確定了探測(cè)的重要性和準(zhǔn)確性。
原來(lái)的觸摸式觸發(fā)探頭也被稱為“運(yùn)動(dòng)電阻探針”(圖3),工作時(shí)有一套共三個(gè)圓柱形套筒相連在探針上。每個(gè)擁有兩個(gè)分開(kāi)的電動(dòng)聯(lián)系,使有六個(gè)自由度的筆共有六個(gè)方向的約束。一個(gè)封閉的電圈把他們聯(lián)系起來(lái),這時(shí)探針位于他們的中間位置。當(dāng)探針接觸到刀尖就會(huì)增加一點(diǎn)遠(yuǎn)處的約束,而原來(lái)的約束受到的壓力會(huì)降低,這樣就改變了電圈的電阻。當(dāng)超出一定的電阻值,探針與刀尖之間的聯(lián)系會(huì)以信號(hào)的形式傳出。
圖3 觸摸觸發(fā)探測(cè)器[ 4 ]
3.工業(yè)刀具監(jiān)控系統(tǒng)
KSO檢測(cè)必須非??欤缓笪覀儽仨氃谶^(guò)程變化中提供必要的調(diào)整,這意味著調(diào)整過(guò)程的自動(dòng)化需要自動(dòng)檢測(cè)和適當(dāng)?shù)姆磻?yīng)以免發(fā)生KSO。這種檢測(cè)的方法和范圍依靠過(guò)程的類型。
自然磨損是難以測(cè)量的,但我們并不需要監(jiān)測(cè)系統(tǒng)的快速反應(yīng),原因是刀具磨損量的不斷變化。
我們有許多工業(yè)類型的刀具監(jiān)測(cè)系統(tǒng)(圖4) ,我們可以測(cè)量:
1、切削力
2.有效的功率
3、扭矩
4、聲發(fā)射
5、差壓
-冷卻潤(rùn)滑劑遠(yuǎn)程測(cè)量
-利用激光,空氣或冷卻潤(rùn)滑劑噴射界限
圖4 刀具監(jiān)測(cè)系統(tǒng)(三代)[ 5 ]
我們來(lái)看生產(chǎn)過(guò)程刀具檢測(cè)和后處理刀具監(jiān)測(cè)兩種類型。
后處理刀具監(jiān)測(cè)
后處理工具監(jiān)測(cè)等于使用測(cè)隙規(guī),遮光板或類似設(shè)備進(jìn)行切削生產(chǎn)過(guò)程前或后的切削刃幾何測(cè)量。
優(yōu)點(diǎn):
(1) 有時(shí)高精度破損檢測(cè)
(2) 通常情況下更容易使用
缺點(diǎn):
(1) 測(cè)量會(huì)延長(zhǎng)生產(chǎn)時(shí)間
(2) 機(jī)床只有刀具破損后才停止,否則可能會(huì)對(duì)工件,機(jī)床或刀柄產(chǎn)生損壞
(3) 并非所有的測(cè)試方法都不產(chǎn)生磨損
生產(chǎn)過(guò)程刀具檢測(cè)
在整個(gè)金屬切削過(guò)程中,有效功率,切削力或聲波的間接控制。
優(yōu)點(diǎn):
(1) 測(cè)量不延長(zhǎng)生產(chǎn)時(shí)間
(2) 在刀具破損時(shí)機(jī)器立即停止
(3) 在靠近刀具時(shí)不需要額外的必須裝置(如控制開(kāi)關(guān))
(4) 不需要傳感器。
缺點(diǎn):
(1) 不能提供100 %的保證檢測(cè)所有的刀具破損
(2) 有時(shí)只有當(dāng)下一個(gè)工件被切削時(shí)才能檢測(cè)到破損,例如在控制有效功率切削螺紋時(shí),破損發(fā)生在旋轉(zhuǎn)方向逆轉(zhuǎn)時(shí)。
所有以上工業(yè)系統(tǒng)都不能提供直接的自然刀具磨損測(cè)量。這些方法主要是時(shí)刻檢測(cè)刀具的破損或測(cè)量物理過(guò)程參數(shù),并根據(jù)這些數(shù)據(jù)來(lái)計(jì)算自然刀具磨損。 數(shù)學(xué)描述必須包括許多過(guò)程變量(如熱膨脹),因此基于數(shù)學(xué)模型的方法可能有許多錯(cuò)誤,甚至在自我數(shù)學(xué)模型中也是只是逼近真實(shí)過(guò)程。
4.波蘭華沙大學(xué)設(shè)計(jì)的用于直接刀具測(cè)量和刀具設(shè)置的新型探針——應(yīng)變儀探針
A:刀具設(shè)置的探針
這是一個(gè)數(shù)控車(chē)床刀尖坐標(biāo)確定和刀具設(shè)置的新型探針。它的主要部分是有一個(gè)圓桿,有著碰撞保護(hù)裝置的尖筆和圓桿連在一起。在圓桿的長(zhǎng)度方向的一部分上有兩個(gè)平行的平面,它們相對(duì)于數(shù)控車(chē)床的X軸和Z軸面向下45度 (圖5) 。
圖5 原件測(cè)量的概念[ 7 ]
把四個(gè)應(yīng)變片貼在這些平面(其中兩個(gè)安置在一個(gè)面,而其它的兩個(gè)在相反的面上),應(yīng)變片連接在一個(gè)有全部壓力表的全橋上。這種新型設(shè)計(jì)使刀尖坐標(biāo)確定在刀具的四個(gè)運(yùn)動(dòng)方向(數(shù)控車(chē)床主軸的-X,+X,-Z,+Z方向),并只使用一個(gè)全橋傳感器成為可能。
但刀尖觸碰到探針筆并向前移動(dòng)時(shí),這會(huì)使圓桿的水平易彎曲部分變形。變形的最大值必須保持在材料性能的屈服點(diǎn)以下。
將從應(yīng)變片的模擬電信號(hào)獲得的實(shí)際值不斷地與已定義的信號(hào)水平相比較。當(dāng)信號(hào)相同時(shí),就發(fā)送一個(gè)信號(hào)給數(shù)控機(jī)床控制器來(lái)從直尺上讀取鞍架的定位坐標(biāo)。比較產(chǎn)生這一信號(hào)的重復(fù)性決定了探針的精度??山邮艿闹貜?fù)性接近1微米。
B:用于測(cè)量刀具磨損的探針
下面探針設(shè)計(jì)的目的是為了校準(zhǔn)時(shí)刀具坐標(biāo)的識(shí)別和刀具磨損的評(píng)價(jià)(圖7)。最新的概念提供了一種在同一時(shí)間測(cè)量刀尖自然磨損的可能來(lái)作為刀具坐標(biāo)的識(shí)別。重要的是探針的所有測(cè)量部分直接相會(huì)在扦插板上。這樣利于消除錯(cuò)誤,如作為和板材的不均勻熱膨脹。應(yīng)變儀安裝在柔軟的套筒的圓桿的平面部分(圖8)。當(dāng)?shù)都獾钠茡p部分接觸到安裝在圓桿的第一塊板,然后刀尖的基礎(chǔ)部分(沒(méi)有破損的)接觸到安裝在套筒上的第二塊板,我們就能從全橋應(yīng)變儀上得到信號(hào)。
圖7 刀具探針測(cè)量刀具的磨損
圖8 探索建設(shè)
新鑲嵌件的測(cè)量是用來(lái)作為一個(gè)參考。再加工后測(cè)量所獲得值是參考值與目前切削刃磨損計(jì)算量(柯)的差值(圖9)。
圖9 柯計(jì)算
當(dāng)?shù)毒咭苿?dòng)并接觸到安裝在圓桿上的板并使桿彎曲,從安裝到圓桿上的應(yīng)變儀得到的信號(hào)達(dá)到規(guī)定水平時(shí),就會(huì)給機(jī)床控制單元傳送一個(gè)數(shù)字信號(hào)來(lái)確定刀尖坐標(biāo)。我們連續(xù)不斷地從應(yīng)變儀獲得模擬信號(hào)并計(jì)算它們來(lái)得到板的偏差值。當(dāng)?shù)毒呦蚯耙苿?dòng)刀刀尖的非破損部分,接觸到安裝在套筒上的第二塊板并使其變形并達(dá)到規(guī)定水平信號(hào)時(shí),就會(huì)給控制單元發(fā)送一個(gè)數(shù)字信號(hào)來(lái)記憶從安裝在圓桿上的應(yīng)變儀上獲取的實(shí)際模擬值。這個(gè)值(減去參考數(shù)1)就是當(dāng)前的刀具磨損量(柯)。
我們將嘗試使用西門(mén)子Siwarex u (圖10) -稱重模塊作為一個(gè)傳感器。 我們可以用兩個(gè)全橋應(yīng)變儀連接他們并向機(jī)床控制單元發(fā)送信號(hào)。我們也相同波蘭公司ZEPWN [ 8 ] 合作建立我們自己的控制單元。
圖10 西門(mén)子Siwarex U -稱重模塊[ 9 ]
5 結(jié)論
這個(gè)探測(cè)器與一個(gè)標(biāo)準(zhǔn)的刀具探針相比,將是一個(gè)替代的解決方案。應(yīng)變儀從來(lái)沒(méi)有被用來(lái)作為一個(gè)刀具探針的主要部分。第一次測(cè)試結(jié)果表明,該探針與應(yīng)變傳感器在原來(lái)測(cè)量概念的基礎(chǔ)上,適合于所有的數(shù)控車(chē)床刀尖坐標(biāo)定位和刀具磨損測(cè)量。我們將努力調(diào)整以滿足工業(yè)需求。
參考資料
1 .Coleman D., Waters F.:接觸觸發(fā)探測(cè)基礎(chǔ)。 1997年
2 .Renishaw. : RP1和RP2工具設(shè)置探討-數(shù)據(jù)表
3 . RP3工具設(shè)置探針-數(shù)據(jù)表
4 .A. Weckenmann, T. Estler, G. Peggs, D. McMurtry. :探測(cè)系統(tǒng)
5 . www.nordmann.de
6 .Szafarczyk M., Winiarski A. :工具探針。 專利申請(qǐng)P.378785
華沙, 02.2006
7 .Go?ciniak R.:應(yīng)變工具探針的數(shù)控車(chē)床。
8 .Zak?ad Elektroniki Pomiarowej Wielkosci Nieelektrycznych www.zepwn.com.pl
9 .西門(mén)子Siwarex u(一,雙通道模式)設(shè)備手冊(cè)。Relase 06/2005
10
收藏