《精修版高中數(shù)學(xué) 第2章 第11課時 直線與平面平行的性質(zhì)、平面與平面平行的性質(zhì)課時作業(yè) 人教A版必修2》由會員分享,可在線閱讀,更多相關(guān)《精修版高中數(shù)學(xué) 第2章 第11課時 直線與平面平行的性質(zhì)、平面與平面平行的性質(zhì)課時作業(yè) 人教A版必修2(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
課時作業(yè)(十一) 直線與平面平行的性質(zhì)、
平面與平面平行的性質(zhì)
A組 基礎(chǔ)鞏固
1.滿足下列哪個條件,可以判定直線a∥平面α( )
A.a(chǎn)與α內(nèi)的一條直線不相交
B.a(chǎn)與α內(nèi)的兩條相交直線不相交
C.a(chǎn)與α內(nèi)的無數(shù)條直線不相交
D.a(chǎn)與α內(nèi)的任意一條直線不相交
解析:本題考查線面平行的判定.對于C,要注意“無數(shù)”并不代表所有.線面平行,則線面無公共點,故選D.
答案:D
2.設(shè)m,n是平面α外的兩條直線,給出下列三個論斷:①m∥n;②m∥α;③n∥α.以其中兩個為條件,余下的一個為結(jié)論
2、,可構(gòu)成三個命題:①②?③,②③?①,①③?②,其中正確命題的個數(shù)為( )
A.0 B.1
C.2 D.3
解析:本題考查線線平行與線面平行的判定和相互轉(zhuǎn)化.m?α,n?α,m∥n,m∥α?n∥α,即①②?③;同理可得①③?②;由m∥α且n∥α,顯然推不出m∥n,所以②③A?/①.所以正確命題的個數(shù)為2,故選C.
答案:C
3.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列說法正確的是( )
A.若m∥α,n∥α,則m∥n
B.若m∥α,m∥β,則α∥β
C.若m∥n,m∥α,n?α,則n∥α
D.若m∥α,α∥β,則m∥β
解析:本題考查
3、線線、線面、面面平行的判定定理和性質(zhì)定理.A中的m,n可以相交,也可以異面;B中的α與β可以相交;D中的m可以在平面β內(nèi),所以A,B,D均錯誤.根據(jù)線面平行的判定定理知C正確,故選C.
答案:C
4.如圖,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱AA1和BB1的中點,過EF的平面EFGH分別交BC和AD于G,H,則GH與AB的位置關(guān)系是( )
A.平行 B.相交
C.異面 D.平行或異面
解析:由長方體性質(zhì)知:EF∥平面ABCD,
∵EF?平面EFGH,平面EFGH∩平面ABCD=GH,
∴EF∥GH,又∵EF∥AB,∴GH∥AB,∴選A.
答案:A
5
4、.給出下列三種說法,其中正確的是( )
①若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的一條平行線,那么這兩個平面不一定平行;③平行于同一個平面的兩條直線相互平行.
A.①② B.②③
C.③ D.②
解析:本題考查線面平行與面面平行.①中沒有強(qiáng)調(diào)兩條直線相交,所以不正確;平行于同一個平面的兩條直線的位置關(guān)系不確定,所以③不正確;②顯然正確.故選D.
答案:D
6.如圖,P是△ABC所在平面外一點,平面α∥平面ABC,α分別交線段PA,PB,PC于點A′,B′,C′,若=,則=( )
A. B.
C. D.
5、解析:本題考查面面平行的性質(zhì)定理.由平面α∥平面ABC,得AB∥A′B′,BC∥B′C′,AC∥A′C′,由等角定理得∠ABC=∠A′B′C′,∠BCA=∠B′C′A′,∠CAB=∠C′A′B′,從而△ABC∽△A′B′C′,△PAB∽△PA′B′,=2=2=,所以=,故選D.
答案:D
7.已知平面α∥β∥γ,兩條直線l,m分別與平面α,β,γ相交于點A,B,C和D,E,F(xiàn),已知AB=6,=,則AC=________.
解析:∵α∥β∥γ,∴=.
由=,得=,
∴=.
∴而AB=6,∴BC=9,∴AC=AB+BC=15.
答案:15
8.過正方體ABCD-A1B1C1D1的三
6、個頂點A1,C1,B的平面與底面ABCD所在平面的交線為l,則l與A1C1的位置關(guān)系是________.
解析:因為過A1,C1,B三點的平面與底面A1B1C1D1的交線為A1C1,與底面ABCD的交線為l,由于正方體的兩底面互相平行,則由面面平行的性質(zhì)定理知l∥A1C1.
答案:l∥A1C1
9.如圖①,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP,D為AP的中點,E,F(xiàn),G分別為PC,PD,CB的中點,將△PCD沿CD折起,得到四棱錐P-ABCD,如圖②.
① ②
則在四棱錐P-ABCD中,AP與平面EFG的位置關(guān)系為________.
解析:本題
7、考查線面平行與面面平行的綜合應(yīng)用.在四棱錐P-ABCD中,∵E,F(xiàn)分別為PC,PD的中點,∴EF∥CD.∵AB∥CD,∴EF∥AB.∵EF?平面PAB,AB?平面PAB,∴EF∥平面PAB.同理EG∥平面PAB.又EF∩EG=E,∴平面EFG∥平面PAB.∵AP?平面PAB,AP?平面EFG,∴AP∥平面EFG.
答案:平行
10.如圖所示,兩個全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求證:MN∥平面BCE.
證明:過點M作MG∥BC交AB于點G,連接GN.
則=,
∵AM=FN,AC=BF,∴MC=NB.
∴=.
∴GN∥AF
8、,又AF∥BE.
∴GN∥BE.
∵GN?面BCE,BE?面BCE,
∴GN∥面BCE.
∵M(jìn)G∥BC,MG?面BCE,BC?面BCE.
∴MG∥面BCE.
∵M(jìn)G∩GN=G,
∴面MNG∥面BCE.
∵M(jìn)N?面MNG,
∴MN∥平面BCE.
B組 能力提升
11.如圖所示,已知P是?ABCD所在平面外一點,M、N分別是AB、PC的中點,平面PAD∩平面PBC=l.
(1)求證:l∥BC;
(2)MN與平面PAD是否平行?試證明你的結(jié)論.
解析:方法一 (1)證明:因為BC∥AD,BC?平面PAD,AD?平面PAD,所以BC∥平面PAD.
又因為平面PBC
9、∩平面PAD=l,所以BC∥l.
(2)平行.取PD的中點E,連接AE,NE,可以證得NE∥AM且NE=AM.
可知四邊形AMNE為平行四邊形.
所以MN∥AE,又因為MN?平面APD,AE?平面APD,
所以MN∥平面APD.
方法二 (1)證明:由AD∥BC,AD?平面PBC,BC?平面PBC,所以AD∥平面PBC.
又因為平面PBC∩平面PAD=l,所以l∥AD∥BC.
(2)設(shè)Q是CD的中點,連接NQ,MQ,
則MQ∥AD,NQ∥PD,而MQ∩NQ=Q,
所以平面MNQ∥平面PAD.
MN?平面MNQ,所以MN∥平面PAD.
12.(2015·廣東模擬)在四棱錐P
10、-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E為PC的中點,AD=CD=1,DB=2,PD=3,
(1)證明PA∥平面BDE
(2)證明AC⊥平面PBD
(3)求四棱錐P-ABCD的體積.
解析:(1)證明:設(shè)AC∩BD=H,連接EH,在△ADC中,因為AD=CD,且DB平分∠ADC,所以H為AC的中點,又由題設(shè)知E為PC的中點,故EH是三角形PAC的中位線,故EH∥PA,又HE?平面BDE,PA?平面BDE,所以,PA∥平面BDE.
(2)證明:因為PD⊥平面ABCD,AC?平面ABCD,所以,PD⊥AC.
由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD.
(3)四棱錐P-ABCD的體積為··PD=···2·3=2.
最新精品資料