高中數(shù)學(xué) 第三章 不等式 3.3.2 簡(jiǎn)單的線性規(guī)劃問(wèn)題 第1課時(shí) 簡(jiǎn)單的線性規(guī)劃問(wèn)題課件 新人教A版必修5.ppt
《高中數(shù)學(xué) 第三章 不等式 3.3.2 簡(jiǎn)單的線性規(guī)劃問(wèn)題 第1課時(shí) 簡(jiǎn)單的線性規(guī)劃問(wèn)題課件 新人教A版必修5.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 不等式 3.3.2 簡(jiǎn)單的線性規(guī)劃問(wèn)題 第1課時(shí) 簡(jiǎn)單的線性規(guī)劃問(wèn)題課件 新人教A版必修5.ppt(45頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
3 3 2簡(jiǎn)單的線性規(guī)劃問(wèn)題第1課時(shí)簡(jiǎn)單的線性規(guī)劃問(wèn)題 自主學(xué)習(xí)新知突破 1 了解線性規(guī)劃的意義 2 通過(guò)實(shí)例弄清線性規(guī)劃的有關(guān)概念術(shù)語(yǔ) 3 會(huì)用圖解法求一些簡(jiǎn)單的線性規(guī)劃問(wèn)題 醫(yī)院用甲 乙兩種原料為手術(shù)后的病人配營(yíng)養(yǎng)餐 甲種原料每10g含5單位蛋白質(zhì)和10單位鐵質(zhì) 售價(jià)3元 乙種原料每10g含7單位蛋白質(zhì)和4單位鐵質(zhì) 售價(jià)2元 若病人每餐至少需要35單位蛋白質(zhì)和40單位鐵質(zhì) 問(wèn)題1 設(shè)甲 乙兩種原料分別用10 xg和10yg 為了滿足病人的營(yíng)養(yǎng)需要 試列出x y滿足的不等關(guān)系 問(wèn)題2 若甲種原料售價(jià)每10g3元 乙種原料售價(jià)每10g2元 該醫(yī)院所需費(fèi)用如何表示 提示 設(shè)總費(fèi)用為z 則z 3x 2y 線性規(guī)劃的基本概念 不等式 或方程 組 線性約束條件 可行解 最大值或最小值 線性約束 求解線性規(guī)劃問(wèn)題的注意事項(xiàng) 1 線性約束條件是指一組對(duì)變量x y的限制條件 它可以是一組關(guān)于變量x y的一次不等式 也可以是一次方程 2 有時(shí)可將目標(biāo)函數(shù)z ax by改寫(xiě)成y mx nz的形式 將nz看作直線y mx nz在y軸上的截距來(lái)處理 3 目標(biāo)函數(shù)所對(duì)應(yīng)的直線系的斜率 若與約束條件中的某一約束條件所對(duì)應(yīng)的直線斜率相等 則最優(yōu)解可能有無(wú)數(shù)個(gè) 4 解線性規(guī)劃問(wèn)題 正確畫(huà)出可行域并利用數(shù)形結(jié)合求最優(yōu)解是重要一環(huán) 故力求作圖準(zhǔn)確 而在求最優(yōu)解時(shí) 常把視線落在可行域的頂點(diǎn)上 解析 畫(huà)出可行域 由可行域知有4個(gè)整點(diǎn) 分別是 0 0 0 1 1 1 2 2 答案 B 解析 畫(huà)出如圖所示的可行域 易知當(dāng)直線過(guò)點(diǎn) 1 2 時(shí)目標(biāo)函數(shù)取最大值3 答案 A 答案 9 解析 作出可行域如圖陰影部分所示 合作探究課堂互動(dòng) 求線性目標(biāo)函數(shù)的最值 求線性目標(biāo)函數(shù)最值問(wèn)題的一般步驟 解析 利用線性規(guī)劃知識(shí)求解 作出不等式組的可行域 如圖陰影部分所示 答案 3 3 求非線性目標(biāo)函數(shù)的最值 1 對(duì)形如z x a 2 y b 2型的目標(biāo)函數(shù)均可化為求可行域內(nèi)的點(diǎn) x y 與點(diǎn) a b 間的距離平方的最值問(wèn)題 已知目標(biāo)函數(shù)的最值求參數(shù) 規(guī)范解答 在平面直角坐標(biāo)系中畫(huà)出約束條件所表示的可行域如圖 形狀不定 3分其中直線ax y a 0的位置不確定 但它經(jīng)過(guò)定點(diǎn)A 1 0 斜率為a 6分 隨著對(duì)線性規(guī)劃問(wèn)題研究的不斷深入 出現(xiàn)了一些線性規(guī)劃的逆向問(wèn)題 即已知目標(biāo)函數(shù)的最值 求約束條件或目標(biāo)函數(shù)中的參數(shù)的取值及范圍問(wèn)題 解決這類(lèi)問(wèn)題時(shí)仍需要正向考慮 先畫(huà)可行域 搞清目標(biāo)函數(shù)的幾何意義 看最值在什么位置取得 2 由目標(biāo)函數(shù)z y ax 即l y ax z知 求z的最值轉(zhuǎn)化為求y ax z截距的最值 分析知 當(dāng)l過(guò)C點(diǎn)時(shí) y ax z截距最大 又C 3 7 zmax 7 3a 同理當(dāng)l過(guò)A 2 1 時(shí) zmin 1 2a 錯(cuò)因 這位同學(xué)所求平面區(qū)域完全正確 遺憾的是在求目標(biāo)函數(shù)的最小值時(shí)由于分析不徹底導(dǎo)致結(jié)果有誤 這種參數(shù)與斜率有關(guān)的問(wèn)題 求解時(shí)可先作出線性約束條件所表示的平面區(qū)域 充分利用斜率的特征加以轉(zhuǎn)化 一般情況下需分類(lèi)討論 如本題中可將條件a 1分為 12兩種情況分別求目標(biāo)函數(shù)的最小值 經(jīng)討論求解的結(jié)果才是完美的答案 2 f x y 表示直線l y ax k在y軸上的截距 且直線l與 1 中所求區(qū)域有公共點(diǎn) a 1 當(dāng)直線l過(guò)頂點(diǎn)C時(shí) f x y 最大 C點(diǎn)的坐標(biāo)為 3 7 f x y 的最大值為7 3a 如果 12 那么當(dāng)直線l過(guò)頂點(diǎn)B 3 1 時(shí) f x y 最小 最小值為1 3a- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第三章 不等式 3.3.2 簡(jiǎn)單的線性規(guī)劃問(wèn)題 第1課時(shí) 簡(jiǎn)單的線性規(guī)劃問(wèn)題課件 新人教A版必修5 第三 3.3 簡(jiǎn)單 線性規(guī)劃 問(wèn)題 課時(shí) 課件 新人 必修
鏈接地址:http://www.820124.com/p-7583590.html