購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載就能得到。。。【注】:dwg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢QQ:1304139763
x x 學(xué) 院 本科畢業(yè)設(shè)計(jì) 論文 開題報(bào)告 2008 屆 系 部 機(jī)電工程系 專 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 學(xué) 生 姓 名 班 級(jí) 學(xué)號(hào) 指導(dǎo)教師姓名 職稱 講師 2008 年 1 月 28 日 題目 接線端子板沖壓模具的設(shè)計(jì)與制造 1 結(jié)合課題任務(wù)情況 查閱文獻(xiàn)資料 撰寫 1000 字以上的文獻(xiàn)綜述 一 沖壓模具市場(chǎng)情況 我國(guó)沖壓模具無論在數(shù)量上 還是在質(zhì)量 技術(shù)和能力等方面都已有了很 大發(fā)展 但與國(guó)民經(jīng)濟(jì)需求和世界先進(jìn)水平相比 差距仍很大 一些大型 精 密 復(fù)雜 長(zhǎng)壽命的高檔模具每年仍大量進(jìn)口 特別是中高檔轎車的覆蓋件模 具 目前仍主要依靠進(jìn)口 一些低檔次的簡(jiǎn)單沖模 已趨供過于求 市場(chǎng)競(jìng)爭(zhēng) 激烈 現(xiàn)將 2004 年我國(guó)沖壓模具市場(chǎng)情況簡(jiǎn)介如下 據(jù)中國(guó)模具工業(yè)協(xié)會(huì)發(fā)布的統(tǒng)計(jì)材料 2004 年我國(guó)沖壓模具總產(chǎn)出約為 220 億元 其中出口 0 75 億美元 約合 6 2 億元 根據(jù)我國(guó)海關(guān)統(tǒng)計(jì)資料 2004 年我國(guó)共進(jìn)口沖壓模具 5 61 億美元 約合 46 6 億元 從上述數(shù)字可以得出 2004 年我國(guó)沖壓模具市場(chǎng)總規(guī)模約為 266 6 億元 其中國(guó)內(nèi)市場(chǎng)總需求為 260 4 億元 總供應(yīng)約為 213 8 億元 市場(chǎng)滿足 率為 82 在上述供求總體情況中 有幾個(gè)具體情況必須說明 一是進(jìn)口模具 大部分是技術(shù)含量高的大型精密模具 而出口模具大部分是技術(shù)含量較低的中 低檔模具 因此技術(shù)含量高的中高檔模具市場(chǎng)滿足率低于沖壓模具總體滿足率 這些模具的發(fā)展已滯后于沖壓件生產(chǎn) 而技術(shù)含量低的中低檔模具市場(chǎng)滿足率 要高于沖壓模具市場(chǎng)總體滿足率 二是由于我國(guó)的模具價(jià)格要比國(guó)際市場(chǎng)低格 低許多 具有一定的競(jìng)爭(zhēng)力 因此其在國(guó)際市場(chǎng)的前景看好 2005 年沖壓模具 出口達(dá)到 1 46 億美元 比 2004 年增長(zhǎng) 94 7 就可說明這一點(diǎn) 三是近年來港 資 臺(tái)資 外資企業(yè)在我國(guó)發(fā)展迅速 這些企業(yè)中大量的自產(chǎn)自用的沖壓模具 無確切的統(tǒng)計(jì)資料 因此未能計(jì)入上述數(shù)字之中 二 沖壓模具水平狀況 近年來 我國(guó)沖壓模具水平已有很大提高 大型沖壓模具已能生產(chǎn)單套重 量達(dá) 50 多噸的模具 為中檔轎車配套的覆蓋件模具國(guó)內(nèi)也能生產(chǎn)了 精度達(dá)到 1 2 m 壽命 2 億次左右的多工位級(jí)進(jìn)模國(guó)內(nèi)已有多家企業(yè)能夠生產(chǎn) 表面粗 糙度達(dá)到 Ra 1 5 m 的精沖模 大尺寸 300mm 精沖模及中厚板精沖模 國(guó)內(nèi)也已達(dá)到相當(dāng)高的水平 隨著與國(guó)際接軌的腳步不斷加快 市場(chǎng)競(jìng)爭(zhēng)的日益加劇 人們已經(jīng)越來越 認(rèn)識(shí)到產(chǎn)品質(zhì)量 成本和新產(chǎn)品的開發(fā)能力的重要性 而模具制造是整個(gè)鏈條 中最基礎(chǔ)的要素之一 模具制造技術(shù)現(xiàn)已成為衡量一個(gè)國(guó)家科技實(shí)力的重要依 據(jù) 近年許多模具企業(yè)加大了用于技術(shù)進(jìn)步的投資力度 將技術(shù)進(jìn)步視為企業(yè) 發(fā)展的重要?jiǎng)恿?一些國(guó)內(nèi)模具企業(yè)已普及了二維 CAD 并陸續(xù)開始使用 UG Pro Engineer I DEAS Euclid IS 等國(guó)際通用軟件 個(gè)別廠家還引進(jìn)了 Moldflow C Flow DYNAFORM Optris 和 MAGMASOFT 等 CAE 軟件 并成功應(yīng)用 于沖壓模的設(shè)計(jì)中 以汽車覆蓋件模具為代表的大型沖壓模具的制造技術(shù)已取得很大進(jìn)步 東 風(fēng)汽車公司模具廠 一汽模具中心等模具廠家已能生產(chǎn)部分轎車覆蓋件模具 此外 許多研究機(jī)構(gòu)和大專院校開展模具技術(shù)的研究和開發(fā) 經(jīng)過多年的努力 在模具 CAD CAE CAM 技術(shù)方面取得了顯著進(jìn)步 在提高模具質(zhì)量和縮短模具 設(shè)計(jì)制造周期等方面做出了貢獻(xiàn) 例如 吉林大學(xué)汽車覆蓋件成型技術(shù)所獨(dú)立研制的汽車覆蓋件沖壓成型分 析 KMAS 軟件 華中理工大學(xué)模具技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開發(fā)的注塑模 汽車覆蓋 件模具和級(jí)進(jìn)模 CAD CAE CAM 軟件 上海交通大學(xué)模具 CAD 國(guó)家工程研究中心 開發(fā)的冷沖模和精沖研究中心開發(fā)的冷沖模和精沖模 CAD 軟件等在國(guó)內(nèi)模具行 業(yè)擁有不少的用戶 雖然中國(guó)模具工業(yè)在過去十多年中取得了令人矚目的發(fā)展 但許多方面與 工業(yè)發(fā)達(dá)國(guó)家相比仍有較大的差距 例如 精密加工設(shè)備在模具加工設(shè)備中的 比重比較低 CAD CAE CAM 技術(shù)的普及率不高 許多先進(jìn)的模具技術(shù)應(yīng)用不夠廣 泛等等 致使相當(dāng)一部分大型 精密 復(fù)雜和長(zhǎng)壽命模具依賴進(jìn)口 在信息化 帶動(dòng)工業(yè)化發(fā)展的今天 在經(jīng)濟(jì)全球化趨向日漸加速的情況下 我國(guó)沖壓模具 必須盡快提高水平 通過改革與發(fā)展 采取各種有效措施 在沖壓模具行業(yè)全 體職工的共同努力奮斗之下 我國(guó)沖壓模具也一定會(huì)不斷提高水平 逐漸縮小 與世界先進(jìn)水平的差距 十一五 期間 在科學(xué)發(fā)展觀指導(dǎo)下 不斷提高自主 開發(fā)能力 重視創(chuàng)新 堅(jiān)持改革開放 走新型工業(yè)化道路 將速度效益型的增 長(zhǎng)模式逐步轉(zhuǎn)變到質(zhì)量和水平效益型軌道上來 我國(guó)的沖壓模具的水平也必然 會(huì)更上一層樓 三 未來沖壓模具制造技術(shù)發(fā)展趨勢(shì) 模具技術(shù)的發(fā)展應(yīng)該為適應(yīng)模具產(chǎn)品 交貨期短 精度高 質(zhì)量好 價(jià)格低 的要求服務(wù) 達(dá)到這一要求急需發(fā)展如下幾項(xiàng) 1 全面推廣 CAD CAM CAE 技術(shù) 模具 CAD CAM CAE 技術(shù)是模具設(shè)計(jì)制造的發(fā)展方向 隨著微機(jī)軟件的發(fā)展 和進(jìn)步 普及 CAD CAM CAE 技術(shù)的條件已基本成熟 各企業(yè)將加大 CAD CAM 技 術(shù)培訓(xùn)和技術(shù)服務(wù)的力度 進(jìn)一步擴(kuò)大 CAE 技術(shù)的應(yīng)用范圍 計(jì)算機(jī)和網(wǎng)絡(luò)的發(fā) 展正使 CAD CAM CAE 技術(shù)跨地區(qū) 跨企業(yè) 跨院所地在整個(gè)行業(yè)中推廣成為可 能 實(shí)現(xiàn)技術(shù)資源的重新整合 使虛擬制造成為可能 2 高速銑削加工 國(guó)外近年來發(fā)展的高速銑削加工 大幅度提高了加工效率 并可獲得極高 的表面光潔度 另外 還可加工高硬度模塊 還具有溫升低 熱變形小等優(yōu)點(diǎn) 高速銑削加工技術(shù)的發(fā)展 對(duì)汽車 家電行業(yè)中大型型腔模具制造注入了新的 活力 3 模具掃描及數(shù)字化系統(tǒng) 高速掃描機(jī)和模具掃描系統(tǒng)提供了從模型或?qū)嵨飹呙璧郊庸こ銎谕哪P?所需的諸多功能 大大縮短了模具的在研制制造周期 有些快速掃描系統(tǒng) 可 快速安裝在已有的數(shù)控銑床及加工中心上 實(shí)現(xiàn)快速數(shù)據(jù)采集 自動(dòng)生成各種 不同數(shù)控系統(tǒng)的加工程序 不同格式的 CAD 數(shù)據(jù) 用于模具制造業(yè)的 逆向工 程 模具掃描系統(tǒng)已在汽車 摩托車 家電等行業(yè)得到成功應(yīng)用 相信在 十五 期間將發(fā)揮更大的作用 4 電火花銑削加工 電火花銑削加工技術(shù)也稱為電火花創(chuàng)成加工技術(shù) 這是一種替代傳統(tǒng)的用 成型電極加工型腔的新技術(shù) 它是有高速旋轉(zhuǎn)的簡(jiǎn)單的管狀電極作三維或二維 輪廓加工 像數(shù)控銑一樣 因此不再需要制造復(fù)雜的成型電極 這顯然是電火 花成形加工領(lǐng)域的重大發(fā)展 國(guó)外已有使用這種技術(shù)的機(jī)床在模具加工中應(yīng)用 預(yù)計(jì)這一技術(shù)將得到發(fā)展 5 提高模具標(biāo)準(zhǔn)化程度 我國(guó)模具標(biāo)準(zhǔn)化程度正在不斷提高 估計(jì)目前我國(guó)模具標(biāo)準(zhǔn)件使用覆蓋率 已達(dá)到 30 左右 國(guó)外發(fā)達(dá)國(guó)家一般為 80 左右 6 優(yōu)質(zhì)材料及先進(jìn)表面處理技術(shù) 選用優(yōu)質(zhì)鋼材和應(yīng)用相應(yīng)的表面處理技術(shù)來提高模具的壽命就顯得十分必 要 模具熱處理和表面處理是否能充分發(fā)揮模具鋼材料性能的關(guān)鍵環(huán)節(jié) 模具 熱處理的發(fā)展方向是采用真空熱處理 模具表面處理除完善應(yīng)發(fā)展工藝先進(jìn)的 氣相沉積 TiN TiC 等 等離子噴涂等技術(shù) 7 模具研磨拋光將自動(dòng)化 智能化 模具表面的質(zhì)量對(duì)模具使用壽命 制件外觀質(zhì)量等方面均有較大的影響 研究自動(dòng)化 智能化的研磨與拋光方法替代現(xiàn)有手工操作 以提高模具表面質(zhì) 量是重要的發(fā)展趨勢(shì) 8 模具自動(dòng)加工系統(tǒng)的發(fā)展 這是我國(guó)長(zhǎng)遠(yuǎn)發(fā)展的目標(biāo) 模具自動(dòng)加工系統(tǒng)應(yīng)有多臺(tái)機(jī)床合理組合 配 有隨行定位夾具或定位盤 有完整的機(jī)具 刀具數(shù)控庫 有完整的數(shù)控柔性同 步系統(tǒng) 有質(zhì)量監(jiān)測(cè)控制系統(tǒng) 四 接線端子板沖壓模具的設(shè)計(jì)與制造說明 1 這次畢業(yè)設(shè)計(jì)的題目是接線端子板復(fù)合模設(shè)計(jì) 接線端子板 是汽車發(fā) 動(dòng)機(jī)上的一個(gè)聯(lián)結(jié)元件 通過設(shè)計(jì)出的模具 要求制造出的接線端子能良好穩(wěn) 定的工作 該零件加工工序有沖孔 落料 彎曲三個(gè)工步 采用復(fù)合模進(jìn)行大 批量生產(chǎn) 通過沖裁力 頂件力 卸料力等計(jì)算 確定模具類型 該模具采用 后側(cè)導(dǎo)柱模架結(jié)構(gòu)形式 廢料從凸凹模和下底座中所開的槽中排出 本模具性 能可靠 運(yùn)行平穩(wěn) 能夠適應(yīng)大批量生產(chǎn)要求 提高了產(chǎn)品質(zhì)量和生產(chǎn)效率 降低勞動(dòng)強(qiáng)度和生產(chǎn)成本 2 選題依據(jù) 主要設(shè)計(jì)內(nèi)容 研究思路及方案 隨著現(xiàn)代工業(yè)的高速發(fā)展 模具設(shè)計(jì)在工業(yè)中的作用越來越重要 模具的 結(jié)構(gòu)也越來越復(fù)雜 制造精度也越來越高 沖壓模在模具設(shè)計(jì)中的應(yīng)用最為廣 泛 所以我在本次設(shè)計(jì)中選擇了此題目 這次的設(shè)計(jì)的內(nèi)容包括 1 確定零件的基本沖壓工序 2 分析工件工藝性 擬定沖壓工藝方案 3 各工藝力的計(jì)算 4 總體結(jié)構(gòu)設(shè)計(jì) 5 模具結(jié)構(gòu)設(shè)計(jì) 繪制總裝配圖 6 繪制典型零件圖 并編寫零件的制造工藝 7 編寫模具的裝配工藝 8 撰寫設(shè)計(jì)說明書 3 工作進(jìn)度及具體安排 第 1 周 第 5 周 熟悉畢業(yè)設(shè)計(jì)課題 完成開題報(bào)告 第 6 周 第 7 周 制件的沖壓工藝性分析 計(jì)算相關(guān)數(shù)據(jù) 第 8 周 第 10 周 繪制模具總裝配圖 第 11 周 第 12 周 繪制模具的典型零件圖 并編寫工藝 第 13 周 編寫模具的裝配工藝 第 14 周 英文翻譯 第 15 周 查缺補(bǔ)漏 準(zhǔn)備答辯 第 16 周 答辯 4 指導(dǎo)教師意見 指導(dǎo)教師 年 月 日 教研室意見 教研室主任 年 月 日 說明 開題報(bào)告作為畢業(yè)設(shè)計(jì) 論文 答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一 此報(bào)告應(yīng)在指導(dǎo)師指導(dǎo)下 由學(xué)生填寫 將作為畢業(yè)設(shè)計(jì) 論文 成績(jī)考查的重要依據(jù) 經(jīng)指導(dǎo)師審查后簽署意見生效 I 摘 要 摘 要 闡述了沖孔 落料 壓彎復(fù)合模的結(jié)構(gòu)設(shè)計(jì)及工作原理 通過工藝分析 在沖 壓材料厚度較薄的小型彎曲件時(shí) 采用沖孔 落料 彎曲復(fù)合模比采用連續(xù)或級(jí)進(jìn)模 簡(jiǎn)單 通過沖裁力 頂件力 卸料力等計(jì)算 確定模具類型 該模具采用后側(cè)導(dǎo)柱模 架結(jié)構(gòu)形式 廢料從凸凹模和下底座中所開的槽中排出 本模具性能可靠 運(yùn)行平穩(wěn) 能夠適應(yīng)大批量生產(chǎn)要求 提高了產(chǎn)品質(zhì)量和生產(chǎn)效率 降低勞動(dòng)強(qiáng)度和生產(chǎn)成本 關(guān)鍵字 沖壓 沖孔 落料 彎曲 復(fù)合模 II Abstrac Abstract Expounded punching blanking bending modulus of the composite structure design and principle Process analysis by the stamping of thinner material thickness small curved pieces will use the punching blanking flexural modulus composites than continuous or Progressive Die simple Punching through the top pieces such as the discharge of calculation to determine the type mold The posterior mold using derivative scale structures form Waste from the punch and die and the base under which opened the tank discharges The mold reliable stable operation to adapt to the requirements of large scale production improve product quality and production efficiency reduce labor intensity and the cost of production Keywords Ramming The punch holes Fall the material curving Superposable die III 前 言 科學(xué)技術(shù)發(fā)展的進(jìn)程表明 機(jī)械工業(yè)是科學(xué)技術(shù)物化為生產(chǎn)力的重要載體 而模 具設(shè)計(jì)與制造在機(jī)械行業(yè)占有舉足輕重的地位 目前 電子 汽車 電機(jī) 電器 儀 器 儀表 家電 通訊和軍工等產(chǎn)品中 60 80 的零部件 都要依靠模具成型 用模具成型的制件所表現(xiàn)出來的高精度 高復(fù)雜性 高一致性 高生產(chǎn)率和低消耗 是其他加工制造方法所無法比擬 模具在很大程度上決定著產(chǎn)品的質(zhì)量 效益和開發(fā) 能力 總體來說中國(guó)的模具行業(yè)現(xiàn)只達(dá)到世界 20 世紀(jì) 80 年代中期的先進(jìn)水平 也就是 說差距還很大 所以很有發(fā)展前途 且模具是很基礎(chǔ)的行業(yè) 用途非常廣 專家認(rèn)為 我國(guó)模具行業(yè)日趨大型化 而且精度將越來越高 10 年前 精密模具的精度一般為 5 現(xiàn)在已達(dá) 2 3 不久 精度的模具將上市 隨著零件微型化及精度 要求的提高 有些模具的加工精度公差就要求在 以下 這就要求發(fā)展超精加工 這次畢業(yè)設(shè)計(jì)的題目是接線端子板復(fù)合模設(shè)計(jì) 接線端子板 是汽車發(fā)動(dòng)機(jī)上的 一個(gè)聯(lián)結(jié)元件 通過設(shè)計(jì)出的模具 要求制造出的接線端子能良好穩(wěn)定的工作 該零 件加工工序有沖孔 落料 彎曲三個(gè)工步 采用復(fù)合模進(jìn)行大批量生產(chǎn) 通過沖裁力 頂件力 卸料力等計(jì)算 確定模具類型 該模具采用后側(cè)導(dǎo)柱模架結(jié)構(gòu)形式 廢料從 凸凹模和下底座中所開的槽中排出 模具的總壓力為 12 50KN 選用 J23 3 14 開式雙柱可傾壓力機(jī)配套使用 本模具性能可靠 運(yùn)行平穩(wěn) 能夠適應(yīng)大批量生產(chǎn)要求 提高了產(chǎn)品質(zhì)量和生產(chǎn) 效率 降低勞動(dòng)強(qiáng)度和生產(chǎn)成本 本次設(shè)計(jì)得到了系上領(lǐng)導(dǎo)的關(guān)懷和老師的幫助 尤其是簡(jiǎn)德老師 更是不遺余力 的給予我?guī)椭?在此 真誠(chéng)的感謝 另外 和我同組的趙波 鄭立佳 代容等同學(xué)也 給了我很大幫助 在此一并為謝 由于對(duì)專業(yè)知識(shí)的不甚熟悉 加上時(shí)間比較緊迫 在設(shè)計(jì)中難免會(huì)有錯(cuò)誤 敬請(qǐng) 老師們斧正并加以指點(diǎn) IV 5 目 錄 中文摘要 英文摘要 前言 第 1 章 緒論 1 1 1 冷沖壓與模具設(shè)計(jì)簡(jiǎn)介 1 1 2 我國(guó)沖壓模具水平狀況 1 1 3 沖壓模具的發(fā)展重點(diǎn)與展望 4 1 4 本次設(shè)計(jì)的意義 7 第 2 章 沖壓件工藝性分析及沖裁方案的確定 8 2 1 沖裁件結(jié)構(gòu)工藝性分析 8 2 2 沖裁件尺寸精度和表面粗糙度要求 9 2 3 沖裁件的尺寸基準(zhǔn) 10 2 4 沖裁件經(jīng)濟(jì)性分析 10 2 5 沖裁方案的確定 10 第 3 章 排樣圖設(shè)計(jì)及材料利用率的計(jì)算 11 3 1 排樣的設(shè)計(jì) 12 3 2 搭邊的選取 12 3 3 材料利用率的計(jì)算 14 第 4 章 沖壓工藝力的計(jì)算 15 4 1 沖裁力的計(jì)算 17 4 1 1 沖壓力的行程曲線 17 4 1 2 沖裁力的計(jì)算公式 17 4 1 3 降低沖裁力的方法 18 4 2 卸料力 推件力 和頂件力的計(jì)算 18 4 3 沖壓壓力中心的計(jì)算 21 第 5 章 沖壓設(shè)備的選擇 23 5 1 沖壓設(shè)備類型的選擇 23 5 2 確定設(shè)備的規(guī)格 23 第 6 章 沖裁模具工作部分設(shè)計(jì)計(jì)算 26 6 1 沖裁間隙 26 6 1 1 沖裁間隙對(duì)沖裁件質(zhì)量的影響 26 6 1 2 沖裁間隙對(duì)模具壽命的影響 26 6 6 1 3 沖裁間隙對(duì)沖裁力 卸料力的影響 27 6 2 合理間隙的選用 28 6 3 模具刃口尺寸的計(jì)算 30 第 7 章 模具總體設(shè)計(jì) 37 7 1 模具類型的選擇 37 7 2 確定送料方式 37 7 4 卸料 出件方式的選擇 37 7 3 定位方式的選擇 37 7 5 導(dǎo)向方式的選擇 37 第 8 章 主要零部件設(shè)計(jì) 38 8 1 模具材料的選擇 38 8 1 1 模具材料與熱處理 38 8 1 2 H62 軟黃銅的化學(xué)成分和機(jī)械性能 38 8 2 落料凹模設(shè)計(jì) 39 8 2 1 落料凹模刃口形式 39 8 2 2 落料凹模外形和尺寸的確定 39 8 3 凸 凹模設(shè)計(jì) 39 8 3 1 模具的結(jié)構(gòu)形式和固定方法 39 8 3 2 凸凹模長(zhǎng)度的確定 40 8 3 3 凸凹模結(jié)構(gòu)設(shè)計(jì) 41 8 4 沖孔凸模 41 8 4 1 沖孔凸模的固定形式 41 8 4 2 沖孔凸模長(zhǎng)度的確定 41 8 4 3 凸模強(qiáng)度校核 42 8 4 4 沖孔凸模的結(jié)構(gòu) 43 8 5 卸料彈簧的選擇 44 8 6 打桿的選擇 41 8 7 活動(dòng)彎曲凹模的設(shè)計(jì) 41 第 9 章 標(biāo)準(zhǔn)件的選擇 45 9 1 模架及模柄的選擇 45 9 2 凸模固定板及墊板的選擇 45 9 3 導(dǎo)尺的選擇 46 9 4 模具閉合高度的校核 46 9 5 卸料螺釘 46 7 9 6 推桿的選擇 47 9 7 螺釘及銷釘?shù)倪x擇 47 第 10 章 總圖及零件圖的繪制 48 結(jié)論 49 參考文獻(xiàn) 50 致謝 51 附錄 52 第 0 頁 共 27 頁 Process simulation in stamping recent applications for product and process design Abstract Process simulation for product and process design is currently being practiced in industry However a number of input variables have a significant effect on the accuracy and reliability of computer predictions A study was conducted to evaluate the capability of FE simulations for predicting part characteristics and process conditions in forming complex shaped industrial parts In industrial applications there are two objectives for conducting FE simulations of the stamping process 1 to optimize the product design by analyzing formability at the product design stage and 2 to reduce the tryout time and cost in process design by predicting the deformation process in advance during the die design stage For each of these objectives two kinds of FE simulations are applied Pam Stamp an incremental dynamic explicit FEM code released by Engineering Systems Int l matches the second objective well because it can deal with most of the practical stamping parameters FAST FORM3D a one step FEM code released by Forming Technologies matches the first objective because it only requires the part geometry and not the complex process information In a previous study these two FE codes were applied to complex shaped parts used in manufacturing automobiles and construction machinery Their capabilities in predicting formability issues in stamping were evaluated This paper reviews the results of this study and summarizes the recommended procedures for obtaining accurate and reliable results from FE simulations In another study the effect of controlling the blank holder force BHF during the deep drawing of hemispherical dome bottomed cups was investigated The standard automotive aluminum killed drawing quality AKDQ steel was used as well as high performance materials such as high strength steel bake hard steel and aluminum 6111 It was determined that varying the BHF as a function of stroke improved the strain distributions in the domed cups Keywords Stamping Process stimulation Process design 第 1 頁 共 27 頁 1 Introduction The design process of complex shaped sheet metal stampings such as automotive panels consists of many stages of decision making and is a very expensive and time consuming process Currently in industry many engineering decisions are made based on the knowledge of experienced personnel and these decisions are typically validated during the soft tooling and prototyping stage and during hard die tryouts Very often the soft and hard tools must be reworked or even redesigned and remanufactured to provide parts with acceptable levels of quality The best case scenario would consist of the process outlined in Fig 1 In this design process the experienced product designer would have immediate feedback using a specially design software called one step FEM to estimate the formability of their design This would allow the product designer to make necessary changes up front as opposed to down the line after expensive tooling has been manufactured One step FEM is particularly suited for product analysis since it does not require binder addendum or even most process conditions Typically this information is not available during the product design phase One step FEM is also easy to use and computationally fast which allows the designer to play what if without much time investment Fig 1 Proposed design process for sheet metal stampings Once the product has been designed and validated the development project would enter the time zero phase and be passed onto the die designer The die designer would validate his her design with an incremental FEM code and make necessary design changes and perhaps even optimize the process parameters to ensure not just minimum acceptability of part quality but maximum achievable quality This increases product quality but also increase process robustness Incremental FEM is particularly suited for die design analysis since it does require binder addendum and process conditions which are either known during die design or desired to be known The validated die design would then be manufactured directly into the hard production tooling and be validated with physical tryouts during which the prototype parts would be made Tryout time should be decreased due to the earlier numerical validations Redesign and remanufacturing of the tooling due to unforeseen forming problems should be a thing of the past The decrease in tryout time and elimination of redesign remanufacturing should more than make up for the time used to numerically validate the part die and process 第 2 頁 共 27 頁 Optimization of the stamping process is also of great importance to producers of sheet stampings By modestly increasing one s investment in presses equipment and tooling used in sheet forming one may increase one s control over the stamping process tremendously It has been well documented that blank holder force is one of the most sensitive process parameters in sheet forming and therefore can be used to precisely control the deformation process By controlling the blank holder force as a function of press stroke AND position around the binder periphery one can improve the strain distribution of the panel providing increased panel strength and stiffness reduced springback and residual stresses increased product quality and process robustness An inexpensive but industrial quality system is currently being developed at the ERC NSM using a combination of hydraulics and nitrogen and is shown in Fig 2 Using BHF control can also allow engineers to design more aggressive panels to take advantage the increased formability window provided by BHF control Fig 2 Blank holder force control system and tooling being developed at the ERC NSM labs Three separate studies were undertaken to study the various stages of the design process The next section describes a study of the product design phase in which the one step FEM code FAST FORM3D Forming Technologies was validated with a laboratory and industrial part and used to predict optimal blank shapes Section 4 summarizes a study of the die design stage in which an actual industrial panel was used to validate the incremental FEM code Pam Stamp Engineering Systems Int l Section 5 covers a laboratory study of the effect of blank holder force control on the strain distributions in deep drawn hemispherical dome bottomed cups 2 Product simulation applications The objective of this investigation was to validate FAST FORM3D to determine FAST FORM3D s blank shape prediction capability and to determine how one step FEM can be implemented into the product design process Forming Technologies has provided their one step FEM code FAST FORM3D and training to the ERC NSM for the purpose of benchmarking and research FAST FORM3D does not simulate the deformation history Instead it projects the final part geometry onto a flat plane or developable surface and repositions the nodes and elements until a minimum energy state is reached This process is computationally faster than incremental simulations like Pam Stamp but also makes more assumptions FAST FORM3D can evaluate formability and estimate optimal blank geometries and is a strong tool for product designers due to its speed and ease of use particularly during the stage when the die geometry is not available 第 3 頁 共 27 頁 In order to validate FAST FORM3D we compared its blank shape prediction with analytical blank shape prediction methods The part geometry used was a 5 in deep 12 in by 15 in rectangular pan with a 1 in flange as shown in Fig 3 Table 1 lists the process conditions used Romanovski s empirical blank shape method and the slip line field method was used to predict blank shapes for this part which are shown in Fig 4 Fig 3 Rectangular pan geometry used for FAST FORM3D validation Table 1 Process parameters used for FAST FORM3D rectangular pan validation Fig 4 Blank shape design for rectangular pans using hand calculations a Romanovski s empirical method b slip line field analytical method Fig 5 a shows the predicted blank geometries from the Romanovski method slip line field method and FAST FORM3D The blank shapes agree in the corner area but differ greatly in the side regions Fig 5 b c show the draw in pattern after the drawing process of the rectangular pan as simulated by Pam Stamp for each of the predicted blank shapes The draw in patterns for all three rectangular pans matched in the corners regions quite well The slip line field method though did not achieve the objective 1 in flange in the side region while the Romanovski and FAST FORM3D 第 4 頁 共 27 頁 methods achieved the 1 in flange in the side regions relatively well Further only the FAST FORM3D blank agrees in the corner side transition regions Moreover the FAST FORM3D blank has a better strain distribution and lower peak strain than Romanovski as can be seen in Fig 6 Fig 5 Various blank shape predictions and Pam Stamp simulation results for the rectangular pan a Three predicted blank shapes b deformed slip line field blank c deformed Romanovski blank d deformed FAST FORM3D blank Fig 6 Comparison of strain distribution of various blank shapes using Pam Stamp for the rectangular pan a Deformed Romanovski blank b deformed FAST FORM3D blank To continue this validation study an industrial part from the Komatsu Ltd was chosen and is shown in Fig 7 a We predicted an optimal blank geometry with FAST FORM3D and compared it with the experimentally developed blank shape as shown in Fig 7 b As seen the blanks are similar but have some differences Fig 7 FAST FORM3D simulation results for instrument cover validation a FAST FORM3D s formability evaluation b comparison of predicted and experimental blank geometries Next we simulated the stamping of the FAST FORM3D blank and the experimental blank using Pam Stamp We compared both predicted geometries to the nominal CAD geometry Fig 8 and found that the FAST FORM3D geometry was much 第 5 頁 共 27 頁 more accurate A nice feature of FAST FORM3D is that it can show a failure contour plot of the part with respect to a failure limit curve which is shown in Fig 7 a In conclusion FAST FORM3D was successful at predicting optimal blank shapes for a laboratory and industrial parts This indicates that FAST FORM3D can be successfully used to assess formability issues of product designs In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Fig 8 Comparison of FAST FORM3D and experimental blank shapes for the instrument cover a Experimentally developed blank shape and the nominal CAD geometry b FAST FORM3D optimal blank shape and the nominal CAD geometry 3 Die and process simulation applications In order to study the die design process closely a cooperative study was conducted by Komatsu Ltd of Japan and the ERC NSM A production panel with forming problems was chosen by Komatsu This panel was the excavator s cabin left hand inner panel shown in Fig 9 The geometry was simplified into an experimental laboratory die while maintaining the main features of the panel Experiments were conducted at Komatsu using the process conditions shown in Table 2 A forming limit diagram FLD was developed for the drawing quality steel using dome tests and a vision strain measurement system and is shown in Fig 10 Three blank holder forces 10 30 and 50 ton were used in the experiments to determine its effect Incremental simulations of each experimental condition was conducted at the ERC NSM using Pam Stamp Fig 9 Actual product cabin inner panel Table 2 Process conditions for the cabin inner investigation 第 6 頁 共 27 頁 Fig 10 Forming limit diagram for the drawing quality steel used in the cabin inner investigation At 10 ton wrinkling occurred in the experimental parts as shown in Fig 11 At 30 ton the wrinkling was eliminated as shown in Fig 12 These experimental observations were predicted with Pam stamp simulations as shown in Fig 13 The 30 ton panel was measured to determine the material draw in pattern These measurements are compared with the predicted material draw in in Fig 14 Agreement was very good with a maximum error of only 10 mm A slight neck was observed in the 30 ton panel as shown in Fig 13 At 50 ton an obvious fracture occurred in the panel Fig 11 Wrinkling in laboratory cabin inner panel BHF 10 ton Fig 12 Deformation stages of the laboratory cabin inner and necking BHF 30 ton a Experimental blank b experimental panel 60 formed c experimental panel fully formed 第 7 頁 共 27 頁 d experimental panel necking detail Fig 13 Predication and elimination of wrinkling in the laboratory cabin inner a Predicted geometry BHF 10 ton b predicted geometry BHF 30 ton Fig 14 Comparison of predicted and measured material draw in for lab cabin inner BHF 30 ton Strains were measured with the vision strain measurement system for each panel and the results are shown in Fig 15 The predicted strains from FEM simulations for each panel are shown in Fig 16 The predictions and measurements agree well regarding the strain distributions but differ slightly on the effect of BHF Although the trends are represented the BHF tends to effect the strains in a more localized manner in the simulations when compared to the measurements Nevertheless these strain prediction show that Pam Stamp correctly predicted the necking and fracture which occurs at 30 and 50 ton The effect of friction on strain distribution was also 第 8 頁 共 27 頁 investigated with simulations and is shown in Fig 17 Fig 15 Experimental strain measurements for the laboratory cabin inner a measured strain BHF 10 ton panel wrinkled b measured strain BHF 30 ton panel necked c measured strain BHF 50 ton panel fractured Fig 16 FEM strain predictions for the laboratory cabin inner a Predicted strain BHF 10 ton b predicted strain BHF 30 ton c predicted strain BHF 50 ton Fig 17 Predicted effect of friction for the laboratory cabin inner BHF 30 ton a Predicted strain 0 06 b predicted strain 0 10 A summary of the results of the comparisons is included in Table 3 This table shows that the simulations predicted the experimental observations at least as well as the strain measurement system at each of the experimental conditions This indicates that Pam Stamp can be used to assess formability issues associated with the die design Table 3 Summary results of cabin inner study 4 Blank holder force control applications 第 9 頁 共 27 頁 The objective of this investigation was to determine the drawability of various high performance materials using a hemispherical dome bottomed deep drawn cup see Fig 18 and to investigate various time variable blank holder force profiles The materials that were investigated included AKDQ steel high strength steel bake hard steel and aluminum 6111 see Table 4 Tensile tests were performed on these materials to determine flow stress and anisotropy characteristics for analysis and for input into the simulations see Fig 19 and Table 5 Fig 18 Dome cup tooling geometry Table 4 Material used for the dome cup study Fig 19 Results of tensile tests of aluminum 6111 AKDQ high strength and bake hard steels a Fractured tensile specimens b Stress strain curves Table 5 Tensile test data for aluminum 6111 AKDQ high strength and bake hard steels 第 10 頁 共 27 頁 It is interesting to note that the flow stress curves for bake hard steel and AKDQ steel were very similar except for a 5 reduction in elongation for bake hard Although the elongations for high strength steel and aluminum 6111 were similar the n value for aluminum 6111 was twice as large Also the r value for AKDQ was much bigger than 1 while bake hard was nearly 1 and aluminum 6111 was much less than 1 The time variable BHF profiles used in this investigation included constant linearly decreasing and pulsating see Fig 20 The experimental conditions for AKDQ steel were simulated using the incremental code Pam Stamp Examples of wrinkled fractured and good laboratory cups are shown in Fig 21 as well as an image of a simulated wrinkled cup 第 11 頁 共 27 頁 Fig 20 BHF time profiles used for the dome cup study a Constant BHF b ramp BHF c pulsating BHF Fig 21 Experimental and simulated dome cups a Experimental good cup b experimental fractured cup c experimental wrinkled cup d simulated wrinkled cup Limits of drawability were experimentally investigated using constant BHF The results of this study are shown in Table 6 This table indicates that AKDQ had the largest drawability window while aluminum had the smallest and bake hard and high strength steels were in the middle The strain distributions for constant ramp and pulsating BHF are compared experimentally in Fig 22 and are compared with simulations in Fig 23 for AKDQ In both simulations and experiments it was found that the ramp BHF trajectory improved the strain distribution the best Not only were peak strains reduced by up to 5 thereby reducing the possibility of fracture but low strain regions were increased This improvement in strain distribution can increase product stiffness and strength decrease springback and residual stresses increase product quality and process robustness Table 6 Limits of drawability for dome cup with constant BHF Fig 22 Experimental effect of time variable BHF on engineering strain in an AKDQ steel dome cup 第 12 頁 共 27 頁 Fig 23 Simulated effect of time variable BHF on true strain in an AKDQ steel dome cup Pulsating BHF at the frequency range investigated was not found to have an effect on strain distribution This was likely due to the fact the frequency of pulsation that was tested was only 1 Hz It is known from previous experiments of other researchers that proper frequencies range from 5 to 25 Hz 3 A comparison of load stroke curves from simulation and experiments are shown in Fig 24 for AKDQ Good agreement was found for the case where 0 08 This indicates that FEM simulations can be used to assess the formability improvements that can be obtained by using BHF control techniques Fig 24 Comparison of experimental and simulated load stroke curves for an AKDQ steel dome cup 5 Conclusions and future work In this paper we evaluated an improved design process for complex stampings which involved eliminating the soft tooling phase and incorporated the validation of product and process using one step and incremental FEM simulations Also process improvements were proposed consisting of the implementation of blank holder force control to increase product quality and process robustness Three separate investigations were summarized which analyzed various stages in the design process First the product design phase was investigated with a laboratory and industrial validation of the one step FEM code FAST FORM3D and its ability to assess formability issues involved in product design FAST FORM3D was successful at predicting optimal blank shapes for a rectangular pan and an industrial instrument cover In the case of the instrument cover many hours of trial and error experimentation could have been eliminated by using FAST FORM3D and a better blank shape could have been developed Second the die design phase was investigated with a laboratory and industrial validation of the incremental code Pam Stamp and its ability to assess forming issues associated with die design This investigation suggested that Pam Stamp could predict strain distribution wrinkling necking and fracture at least as well as a vision strain 第 13 頁 共 27 頁 measurement system at a variety of experimental conditions Lastly the process design stage was investigated with a laboratory study of the quality improvements that can be realized with the implementation of blank holder force control techniques In this investigation peak strains in hemispherical dome bottomed deep drawn cups were reduced by up to 5 thereby reducing the possibility of fracture and low strain regions were increased This improvem