影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2018年秋九年級數(shù)學上冊 第28章 圓 專題訓練(六)圓中作輔助線的四種技巧練習 (新版)冀教版

上傳人:Sc****h 文檔編號:80745971 上傳時間:2022-04-26 格式:DOC 頁數(shù):7 大小:318.50KB
收藏 版權申訴 舉報 下載
2018年秋九年級數(shù)學上冊 第28章 圓 專題訓練(六)圓中作輔助線的四種技巧練習 (新版)冀教版_第1頁
第1頁 / 共7頁
2018年秋九年級數(shù)學上冊 第28章 圓 專題訓練(六)圓中作輔助線的四種技巧練習 (新版)冀教版_第2頁
第2頁 / 共7頁
2018年秋九年級數(shù)學上冊 第28章 圓 專題訓練(六)圓中作輔助線的四種技巧練習 (新版)冀教版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018年秋九年級數(shù)學上冊 第28章 圓 專題訓練(六)圓中作輔助線的四種技巧練習 (新版)冀教版》由會員分享,可在線閱讀,更多相關《2018年秋九年級數(shù)學上冊 第28章 圓 專題訓練(六)圓中作輔助線的四種技巧練習 (新版)冀教版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題訓練(六) 圓中作輔助線的四種技巧 技巧一 利用直徑構造直角三角形 1. 如圖6-ZT-1,AB是⊙O的直徑,弦CD與AB相交于點E,∠ACD=60°, ∠ADC=50°,求∠CEB的度數(shù). 圖6-ZT-1 2.如圖6-ZT-2,已知AB是⊙O的直徑,C是圓周上的動點,P是優(yōu)弧的中點. (1)求證:OP∥BC. (2)連接PC交直徑AB于點D,當OC=DC時,求∠PAO的度數(shù). 圖6-ZT-2 技巧二 利用圓周角與圓心角的關系構造直角三角形 2. 如圖6-ZT-3,A,B

2、,C是半徑為6的⊙O上的三個點.若∠BAC=45°,則弦 BC=________. 圖6-ZT-3 圖6-ZT-4 技巧三 綜合利用圓的性質構造直角三角形 4.如圖6-ZT-4,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于(  ) A. B. C.4 D.3 5.如圖6-ZT-5,MN是半徑為1的⊙O的直徑,點A在⊙O上,∠AMN=30°,B為的中點,P是直徑MN上一動點,求PA+PB的最小值. 圖6

3、-ZT-5 技巧四 利用性質巧作圓 6. 如圖6-ZT-6,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,則∠CAD的度數(shù)為(  ) A.68° B.88°C.90° D.112° 圖6-ZT-6 教師詳解詳析 1.解:連接BC,則∠ABC=∠ADC=50°. ∵AB是⊙O的直徑, ∴∠ACB=90°,∴∠BAC=40°. ∵∠CEB=∠ACD+∠BAC,∠ACD=60°, ∴∠CEB=60°+40°=100°. 2.解:(1)證明:連接AC,延長PO交AC于點H,如圖. ∵P是優(yōu)弧的中點, ∴PH⊥

4、AC. ∵AB是⊙O的直徑, ∴∠ACB=90°, ∴BC⊥AC, ∴OP∥BC. (2)如圖,∵P是優(yōu)弧的中點, ∴PA=PC, ∴∠PAC=∠PCA. ∵OA=OC, ∴∠OAC=∠OCA, ∴∠PAO=∠PCO. 當CO=CD時,設∠DCO=x, 則∠OPC=x,∠PAO=x. ∵OA=OP,∴∠PAO=∠APO, ∴∠POD=2x, ∴∠ODC=∠POD+∠OPC=3x. ∵CD=CO, ∴∠DOC=∠ODC=3x. 在△POC中,x+x+2x+3x=180°, 解得x=, 即∠PAO的度數(shù)為. 3.6  [解析] 連接OB,OC. ∵∠BA

5、C=45°,∴∠BOC=2∠BAC=90°. ∵OB=OC=6,∴BC==6 . 故答案為6 . 4.D [解析] 過點A作AH⊥BC于點H,作直徑CF,連接BF. ∵∠BAC+∠EAD=180°, 而∠BAC+∠FAB=180°, ∴∠EAD=∠FAB. 在△ADE和△ABF中,∵ ∴△ADE≌△ABF, ∴DE=BF=6. ∵AH⊥BC,∴CH=BH, 而CA=AF,∴AH為△CBF的中位線, ∴AH=BF=3.故選D. 5.解:作點B關于MN的對稱點B′,連接OA,OB,OB′,AB′, 則AB′與MN的交點即為PA+PB值最小時的點P,PA+PB的最小值為AB′. ∵∠AMN=30°, ∴∠AON=2∠AMN=2×30°=60°. ∵B為的中點, ∴∠BON=∠AON=×60°=30°, 由對稱性,知∠B′ON=∠BON=30°, ∴∠AOB′=∠AON+∠B′ON=60°+30°=90°, ∴AB′=OA=×1=, 即PA+PB的最小值為 . 6.B [解析] 如圖,∵AB=AC=AD, ∴點B,C,D在以點A為圓心,以AB的長為半徑的圓上. ∵∠CBD=2∠BDC, ∠CAD=2∠CBD,∠BAC=2∠BDC, ∴∠CAD=2∠BAC.∵∠BAC=44°, ∴∠CAD=88°. 故選B. 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!