2018年中考數(shù)學(xué)試題分類匯編 知識點11 一元一次不等式(組)的應(yīng)用
《2018年中考數(shù)學(xué)試題分類匯編 知識點11 一元一次不等式(組)的應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《2018年中考數(shù)學(xué)試題分類匯編 知識點11 一元一次不等式(組)的應(yīng)用(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 知識點11 一元一次不等式(組)的應(yīng)用 1. (2018四川內(nèi)江,21,10) 某商場計劃購進A、B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機的進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元. (1)若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元? (2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍. ①該商場有哪幾種進貨方式? ②該商場選擇哪種進貨方式,獲得的利潤最大? 【思路
2、分析】(1)先找到題中的等量關(guān)系:50000元共購進A型號手機10部,B型號手機20部,以及A、B兩種型號的手機的進價關(guān)系,設(shè)未知數(shù)列方程即可;(2)①由已知提供的信息:用不超過7.5萬元采購A、B兩種型號的手機共40部;且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍,可以列出兩個不等式,解這個不等式組(解為正整數(shù))就可以確定進貨方式.②設(shè)總利潤為W,A種型號的手機m部,由利潤等于售價減去進價再乘以部數(shù),就可以得到一個關(guān)于W和m的一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)可以得出怎樣進貨利潤最大. 【解題過程】解:(1)設(shè)B種型號的手機每部進價為x元,則A種型號的手機每部進價為(x+500)元,根據(jù) 題意
3、可得10(x+500)+20 x=50000,解得:x=1500,x+500=2000. 答:A種型號的手機每部進價為2000元,B種型號的手機每部進價為1500元. (2)①設(shè)商場購進A種型號的手機m部,B種型號的手機為(40-m)部,由題意得: ,解得≤m≤30,∵m為整數(shù),∴m=27,28,29,30,所以共有四種進貨方案, 分別是:A種27部,B種13部;A種28部,B種12部;A種29部,B種11部;A種30部,B種10部. ②設(shè)獲得的利潤為W,則W=(2500-2000)m+(2100-1500)(40-m)=-100m+24000,∵-100<0,∴W隨m的增大而減小,
4、所以當(dāng)m=27時,W最大,即選擇購進A種27部,B種13部獲得的利潤最大. 【知識點】一元一次方程;一元一次不等式組;一次函數(shù)的性質(zhì); 1. (2018四川綿陽,21,11分) 有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸. (1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸: (2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共10輛,全部貨物一次運完.其中每輛大貨車一次運貨花費130元,每輛小貨車一次運貨花費100元,請問貨物公司應(yīng)如何安排車輛最節(jié)省費用? 【思路分析】(1)設(shè)1輛大貨車與1輛小貨車一次分別可以運x噸
5、、y噸.根據(jù)條件建立方程組求出其解即可; (2)首先設(shè)貨物公司安排大貨車m輛,則小貨車需要安排(10-m)輛,根據(jù)(1)的結(jié)論可得出不等式 4m+1.5(10-m)≥33,進而得出所有的情況,然后計算出每種情況的花費,進而得出答案. 【解題過程】解:(1)設(shè)1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸.根據(jù)題意可得: , 解得:. 答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨1.5噸. (2)設(shè)貨物公司安排大貨車m輛,則小貨車需要安排(10-m)輛,根據(jù)題意可得 4m+1.5(10-m)≥33, 解得m≥7.2. ∵m為正整數(shù),
6、∴m可以取8,9,10, 當(dāng)m=8時,該貨物公司需花費130×8+2×100=1240元; 當(dāng)m=9時,該貨物公司需花費130×9+100=1270元; 當(dāng)m=10時,該貨物公司需花費130×10=1300元. 答:當(dāng)該貨物公司安排大貨車8輛,小貨車2輛時花費最少. 【知識點】二元一次方程組的應(yīng)用,一元一次不等式的應(yīng)用 2. (2018四川內(nèi)江,21,10) 某商場計劃購進A、B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機的進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元. (1)若商場用50000元共購進A型號手機10部
7、,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元? (2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍. ①該商場有哪幾種進貨方式? ②該商場選擇哪種進貨方式,獲得的利潤最大? 【思路分析】(1)先找到題中的等量關(guān)系:50000元共購進A型號手機10部,B型號手機20部,以及A、B兩種型號的手機的進價關(guān)系,設(shè)未知數(shù)列方程即可;(2)①由已知提供的信息:用不超過7.5萬元采購A、B兩種型號的手機共40部;且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍,可以列出兩個不等式,解這個不等式組(解為
8、正整數(shù))就可以確定進貨方式.②設(shè)總利潤為W,A種型號的手機m部,由利潤等于售價減去進價再乘以部數(shù),就可以得到一個關(guān)于W和m的一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)可以得出怎樣進貨利潤最大. 【解題過程】解:(1)設(shè)B種型號的手機每部進價為x元,則A種型號的手機每部進價為(x+500)元,根據(jù) 題意可得10(x+500)+20 x=50000,解得:x=1500,x+500=2000. 答:A種型號的手機每部進價為2000元,B種型號的手機每部進價為1500元. (2)①設(shè)商場購進A種型號的手機m部,B種型號的手機為(40-m)部,由題意得: ,解得≤m≤30,∵m為整數(shù),∴m=27,28,29
9、,30,所以共有四種進貨方案, 分別是:A種27部,B種13部;A種28部,B種12部;A種29部,B種11部;A種30部,B種10部. ②設(shè)獲得的利潤為W,則W=(2500-2000)m+(2100-1500)(40-m)=-100m+24000,∵-100<0,∴W隨m的增大而減小,所以當(dāng)m=27時,W最大,即選擇購進A種27部,B種13部獲得的利潤最大. 【知識點】一元一次方程;一元一次不等式組;一次函數(shù)的性質(zhì); 3. (2018甘肅白銀,21,8分) 《九章算術(shù)》是中國古代數(shù)學(xué)專著,在數(shù)學(xué)上其獨到的成就。不僅最早提到了分?jǐn)?shù)問題,也首先記錄了“盈不足”等問題。如有一道闡述“
10、盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六。問人數(shù)、雞價各幾何?譯文為:現(xiàn)有若干人合伙買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢。問買雞的人數(shù)、雞的價格各是多少?請解答上述問題。 【思路分析】這是一道列方程解應(yīng)用題,找出相等關(guān)系是關(guān)鍵。題中“每人出9文錢,就會多11文錢”是一個相等關(guān)系,“每人出6文錢,又會缺16文錢”又是一個相等關(guān)系。因此設(shè)出未知數(shù)將這兩個相等關(guān)系用含未知數(shù)的等式表示出來就是方程組了。 【解題過程】解:設(shè)買雞的人有x個,雞的價格為y文錢,根據(jù)題意,得:,解得: 答:買雞的人有9個,雞的價格為70文錢。 【知
11、識點】列方程解應(yīng)用題,找相等關(guān)系,解方程組或解方程。 4. (2018江蘇連云港,第24題,10分)某村在推進美麗鄉(xiāng)村活動中,決定建設(shè)幸福廣場,計劃鋪設(shè)相同大小規(guī)格的紅色和藍色地磚經(jīng)過調(diào)查,獲取信息如下 如果購買紅色地磚4 000塊,藍色地磚6 000塊,需付款86 000元;如果購買紅色地磚10 000塊,藍色地磚3 500塊,需付款99 000元. (1)紅色地磚與藍色地磚的單價各多少元? (2)經(jīng)過測算,需要購置地磚12 000塊,其中藍色地磚的數(shù)量不少于紅色地磚的一半,并且不超過6 000塊,如何購買付款最少?請說明理由. 【思路分析】(1)根據(jù)購買紅色地磚4 000
12、塊的價格+購買紅色地磚6 000塊的價格=86 000,購買紅色地磚10 000塊的價格+購買紅色地磚3 500塊的價格=99 000,列二元一次方程組,解答即可. (2)根據(jù)藍色地磚的數(shù)量不少于紅色地磚的一半,并且不超過6 000,得出購買藍色地磚的數(shù)量范圍,再分情況討論即可. 【解題過程】(1)設(shè)紅色地磚每塊a元,藍色地磚每塊b元由題意得 解得: 答:紅色地磚每塊8元,藍色地磚每塊10元. 5分 (2)設(shè)購置藍色地磚x塊,則購置紅色地磚(12000-x)塊,所需的總費用為y元. 由題意知x≥ (12000-x),得x≥4000,又x≤6000 所以藍磚塊數(shù)x的取值范圍4000
13、≤x≤6000 當(dāng)4000≤x<5000時,y=10x+8×0.8(12000-x),即y=76800+3.6x. 所以x=4000時,y有最小值91200 當(dāng)5000≤x≤6000時,y=0.9×10x+8×0.8(12000-x)=2.6x+76800. 所以x=5000時,y有最小值89800. ∵89800<91200, 所以購買藍色地磚5000塊,紅色地磚7000塊,費用最少, 最少費用為89800元. 10分 【知識點】二元一次方程組;一元一次不等式組 5. (2018山東聊城,21,8分)建設(shè)中的大外環(huán)路是我市的一項重點民生工程.某工程公司承建的一段路基工程
14、的施工土方量為120萬方,原計劃由公司的甲、乙兩個工程隊從公路的兩端同時相向施工150天完成.由于特殊情況需要,公司抽調(diào)甲隊外援施工,由乙隊先單獨施工40天后甲隊返回,兩隊又共同施工了110天,這時甲乙兩隊共完成土方量103.2萬立方. (1)問甲、乙兩隊原計劃平均每天的施工土方量分別為多少萬立方? (2)在抽調(diào)甲隊外援施工的情況下,完了保證150天完成任務(wù),公司為乙隊新購進了一批機械來提高效率,那么乙隊平均每天的施工土方量至少要比原來提高多少萬立方才能保證按時完成任務(wù)? 【思路分析】(1)設(shè)甲、乙兩隊原計劃平均每天的施工土方量分別為x萬立方,y萬立方,由題意列方程組,解方程組可以得到答
15、案; (2)設(shè)乙隊平均每天的施工土方量至少要比原來提高m萬立方才能保證按時完成任務(wù),由題意列不等式150m≥120-103.2,解不等式可以得到答案. 【解題過程】(1)設(shè)甲、乙兩隊原計劃平均每天的施工土方量分別為x萬立方,y萬立方,由題意得 , 解得. 答:甲、乙兩隊原計劃平均每天的施工土方量分別為0.42萬立方,0.38萬立方. (1) 設(shè)乙隊平均每天的施工土方量至少要比原來提高m萬立方才能保證按時完成任務(wù),由題意得 150m≥120-103.2, 解得m≥0.112. 答:乙隊平均每天的施工土方量至少要比原來提高0.112萬立方才能保證按時完成任務(wù). 【知識點】二元一
16、次方程組的實際應(yīng)用、一元一次不等式的實際應(yīng)用 6.(2018山東省濟寧市,19,7)(7分)“綠水青山就是金山銀山”,為保護生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表: 村莊 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 清理捕魚網(wǎng)箱人數(shù)/人 總支出/元 A 15 9 57000 B 10 16 68000 (1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元; (2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)
17、魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案? 【思路分析】問題(1)中隱含著兩個相等關(guān)系式:村莊A清理養(yǎng)魚網(wǎng)箱的費用+捕魚網(wǎng)箱的費用=57000元、村莊B清理養(yǎng)魚網(wǎng)箱的費用+捕魚網(wǎng)箱的費用=68000元,則可分別以清理養(yǎng)魚網(wǎng)箱、捕魚網(wǎng)箱的人均支出費用為未知數(shù),建立方程組解決問題;問題(2)中隱含著兩個不等關(guān)系式:清理養(yǎng)魚網(wǎng)箱的費用+捕魚網(wǎng)箱的費用≤102000、清理養(yǎng)魚網(wǎng)箱人數(shù)<清理捕魚網(wǎng)箱人數(shù),不妨以清理養(yǎng)魚網(wǎng)箱人數(shù)為未知數(shù),從而建立關(guān)于以清理養(yǎng)魚網(wǎng)箱人數(shù)為未知數(shù)的不等式組解決問題. 【解題過程】(1)設(shè)清理養(yǎng)魚網(wǎng)箱的人均支出費用為x元,清理養(yǎng)魚網(wǎng)箱、捕魚網(wǎng)箱的人均支出費
18、用為y元,根據(jù)題意,列方程組,得: ,解得, 答:清理養(yǎng)魚網(wǎng)箱的人均支出費用為2000元,清理養(yǎng)魚網(wǎng)箱、捕魚網(wǎng)箱的人均支出費用為3000元; (2)設(shè)清理養(yǎng)魚網(wǎng)箱人數(shù)為m,則清理捕魚網(wǎng)箱人數(shù)為(40-m),根據(jù)題意,得: ,解得18≤m<20, ∵ m是整數(shù),∴ m=18或19, ∴ 當(dāng)m=18時,40-m=22,即清理養(yǎng)魚網(wǎng)箱人數(shù)為18,清理捕魚網(wǎng)箱人數(shù)為22; 當(dāng)m=19時,40-m=21,即清理養(yǎng)魚網(wǎng)箱人數(shù)為19,則清理捕魚網(wǎng)箱人數(shù)為21. 因此,有2種分配清理人員方案,分別為清理養(yǎng)魚網(wǎng)箱人數(shù)為18,清理捕魚網(wǎng)箱人數(shù)為22或清理養(yǎng)魚網(wǎng)箱人數(shù)為19,則清理捕魚網(wǎng)箱人數(shù)為21
19、. 【知識點】二元一次方程組的應(yīng)用 一元一次不等式組的應(yīng)用 1. (2018湖南郴州,20,8)郴州市正在創(chuàng)建“全國文明城市”,某校舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以獎勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元. (1)A、B兩種獎品每件各是多少元? (2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件? 【思路分析】(1)設(shè)A、B兩種獎品每件各是、元,根據(jù)“如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元” 列出方程組,解出方程組即可
20、; (2)設(shè)A種獎品最多購買件,根據(jù)“總費用不超過900元”可列出不等式,解出不等式即可. 【解析】(1)設(shè)A、B兩種獎品每件各是、元,依題意,得: ,解得:. 答:A、B兩種獎品每件各是16、4元. (2)設(shè)A種獎品最多購買件,B種獎品購買件,依題意,得: ,解得:. 答:A種獎品最多購買41件. 【知識點】二元一次方程組的實際應(yīng)用,一元一次不等式的應(yīng)用 2. (2018湖南郴州,20,8)郴州市正在創(chuàng)建“全國文明城市”,某校舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以獎勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280
21、元. (1)A、B兩種獎品每件各是多少元? (2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件? 【思路分析】(1)設(shè)A、B兩種獎品每件各是、元,根據(jù)“如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元” 列出方程組,解出方程組即可; (2)設(shè)A種獎品最多購買件,根據(jù)“總費用不超過900元”可列出不等式,解出不等式即可. 【解析】(1)設(shè)A、B兩種獎品每件各是、元,依題意,得: ,解得:. 答:A、B兩種獎品每件各是16、4元. (2)設(shè)A種獎品最多購買件,B種獎品購買件,依題意,得: ,解得:.
22、 答:A種獎品最多購買41件. 【知識點】二元一次方程組的實際應(yīng)用,一元一次不等式的應(yīng)用 3. (2018湖南省湘潭市,23,8分) 湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市,某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍. (1)求溫馨提示牌和垃圾箱的單價各是多少元? (2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元? 【思路分析】(1)設(shè)
23、溫馨提示牌的單價為x元,則垃圾箱的單價為3x元,根據(jù)2個溫馨提示牌+3個垃圾箱=550元列出方程求解;(2)設(shè)購買溫馨提示牌為m個,則購買垃圾箱為(100-m)個,根據(jù)總費用不超過10000元列出不等式求解. 【解析】解:(1)設(shè)溫馨提示牌的單價為x元,則垃圾箱的單價為3x元,列方程得:2x+3×3x=550,解得x=50,所以溫馨提示牌的單價為50元,垃圾箱的單價為150元; (2)設(shè)購買溫馨提示牌為m個,則購買垃圾箱為(100-m)個,列不等式得:50m+150(100-m)≤10000,解得m≥50,又∵100-m≥48,∴m≤52,∵m的值整數(shù),∴m的取值為50,51,52, 當(dāng)m=50時,100-m=50,即購買50個和溫馨提示牌和50個垃圾桶,其費用為:50×50+50×150=10000元; 當(dāng)m=51時,100-m=49,即購買51個和溫馨提示牌和49個垃圾桶,其費用為:51×50+49×150=9900元; 當(dāng)m=52時,100-m=48,即購買52個和溫馨提示牌和48個垃圾桶,其費用為:52×50+48×150=9800元, 所以最小費用為9800元. 【知識點】列一元一次方程解決實際問題;列一元一次不等式解決實際問題 9
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。