購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,【有不明白之處,可咨詢QQ:1304139763】
畢業(yè)設計 論文 中期報告 題目 洗衣機排水管道某零件的注射模具 設計 系 別 機電信息系 專 業(yè) 機械設計制造及其自動化 班 級 姓 名 學 號 導 師 2013 年 3 月 19 日 1 設計 論文 進展狀況 在本階段 主要完成的是畢業(yè)設計中的外文翻譯 模具裝配草圖 完善了塑件 的二維零件圖以及對該塑件更深層次的分析和理解 1 1 二維零件圖 通過對零件的更深入的理解 在初期的零件二維圖的基礎上更加完善了零件的 二維圖 使零件圖完整同時可以表達清楚零件的結構 1 2 模具裝配草圖 初步完成了模具的裝配草圖 對裝配圖有了一個基本的認識和理解 1 3 外文文獻翻譯 通過工具翻譯了一篇與模具相關的外文文獻 使自己對國外的模具研究有了一 個認識 1 4 設計方案 經(jīng)過研究和討論 對設計方案有了更加完善的結果 模具采用上下開模的方式 采用一模兩腔的結構 對稱放置 一次成型 澆注采用側澆口 同時澆注 由于該 塑件上具有與開模方向不一致的孔 所以要設計側向抽芯機構 在開模的同時進行 側向抽芯 同時也需要脫模機構 在開模后將塑件頂出 在定模和動模之間要有導 桿 保證動模定模能夠正確的開合 2 存在問題及解決措施 2 1 沒有很好的掌握和理解模具裝配的知識 模具裝配圖存在一些問題 具體的計 算沒有完成 2 2 對注射機的了解還不夠 沒有完成相應的計算及校核 同時對塑件和模具的理 解還不到位等 2 3 對模具的側向抽芯的設計存在不合理的地方 對側抽芯機構認識和理解不夠深 刻 2 4 模具的流道和澆注設計做的不夠 缺乏這方面知識的學習 接下來的時間里 需要對自己掌握不好的地方重點研究和理解 參考資料對自 己較少涉及的方面重點學習 同時要與同學和老師多溝通交流 進一步加深對模具 設計的理解以及把所學的理論知識運用到實際設計中去 3 后期工作安排 11 12 周 完成注射機的選擇及校核 通過計算逐步完善模具裝配圖 13 15 周 完成模具裝配中所有的零件設計同時畫出所有零件圖 同時對模具進行 三維剖析 做出模具的開合結構圖 16 17 周 撰寫畢業(yè)論文 18 周 整理資料 準備答辯 指導教師簽字 年 月 日 A technical note on the characterization of electroformed nickel shells for their application to injection molds Universidad de Las Palmas de Gran Canaria Departamento de Ingenieria Mecanica Spain Abstract The techniques of rapid prototyping and rapid tooling have been widely developed during the last years In this article electroforming as a procedure to make cores for plastics injection molds is analysed Shells are obtained from models manufactured through rapid prototyping using the FDM system The main objective is to analyze the mechanical features of electroformed nickel shells studying different aspects related to their metallographic structure hardness internal stresses and possible failures by relating these features to the parameters of production of the shells with an electroforming equipment Finally a core was tested in an injection mold Keywords Electroplating Electroforming Microstructure Nickel 1 Introduction One of the most important challenges with which modern industry comes across is to offer the consumer better products with outstanding variety and time variability new designs For this reason modern industry must be more and more competitive and it has to produce with acceptable costs There is no doubt that combining the time variable and the quality variable is not easy because they frequently condition one another the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that for example if it is observed the evolution of the systems and techniques of plastics injection we arrive at the conclusion that in fact it takes less and less time to put a new product on the market and with higher levels of quality The manufacturing technology of rapid tooling is in this field one of those technological advances that makes possible the improvements in the processes of designing and manufacturing injected parts Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts in small or medium series in a short period of time and with acceptable accuracy levels Their application is not only included in the field of making plastic injected pieces 1 2 and 3 however it is true that it is where they have developed more and where they find the highest output This paper is included within a wider research line where it attempts to study define analyze test and propose at an industrial level the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells taking as an initial model a prototype made in a FDM rapid prototyping equipment It also would have to say beforehand that the electroforming technique is not something new because its applications in the industry are countless 3 but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible All made in an accurate and systematized way of use and proposing a working method 2 Manufacturing process of an injection mold The core is formed by a thin nickel shell that is obtained through the electroforming process and that is filled with an epoxic resin with metallic charge during the integration in the core plate 4 This mold Fig 1 permits the direct manufacturing by injection of a type a multiple use specimen as they are defined by the UNE EN ISO 3167 standard The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry injected in these tools and its coMParison with the properties obtained by conventional tools Fig 1 Manufactured injection mold with electroformed core The stages to obtain a core 4 according to the methodology researched in this work are the following a Design in CAD system of the desired object b Model manufacturing in a rapid prototyping equipment FDM system The material used will be an ABS plastic c Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand it must have electrical conductivity d Removal of the shell from the model e Production of the core by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper tubes The injection mold had two cavities one of them was the electroformed core and the other was directly machined in the moving platen Thus it was obtained with the same tool and in the same process conditions to inject simultaneously two specimens in cavities manufactured with different technologies 3 Obtaining an electroformed shell the equipment Electrodeposition 5 and 6 is an electrochemical process in which a chemical change has its origin within an electrolyte when passing an electric current through it The electrolytic bath is formed by metal salts with two submerged electrodes an anode nickel and a cathode model through which it is made to pass an intensity coming from a DC current When the current flows through the circuit the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit layer The plating bath used in this work is formed by nickel sulfamate 7 and 8 at a concentration of 400 ml l nickel chloride 10 g l boric acid 50 g l Allbrite SLA 30 cc l and Allbrite 703 2 cc l The selection of this composition is mainly due to the type of application we intend that is to say injection molds even when the injection is made with fibreglass Nickel sulfamate allows us to obtain an acceptable level of internal stresses in the shell the tests gave results for different process conditions not superior to 50 MPa and for optimum conditions around 2 MPa Nevertheless such level of internal pressure is also a consequence of using as an additive Allbrite SLA which is a stress reducer constituted by derivatives of toluenesulfonamide and by formaldehyde in aqueous solution Such additive also favours the increase of the resistance of the shell when permitting a smaller grain Allbrite 703 is an aqueous solution of biodegradable surface acting agents that has been utilized to reduce the risk of pitting Nickel chloride in spite of being harmful for the internal stresses is added to enhance the conductivity of the solution and to favour the uniformity in the metallic distribution in the cathode The boric acid acts as a pH buffer The equipment used to manufacture the nickel shells tested has been as follows Polypropylene tank 600 mm 400 mm 500 mm in size Three teflon resistors each one with 800 W Mechanical stirring system of the cathode System for recirculation and filtration of the bath formed by a pump and a polypropylene filter Charging rectifier Maximum intensity in continuous 50 A and continuous current voltage between 0 and 16 V Titanium basket with nickel anodes Inco S Rounds Electrolytic Nickel with a purity of 99 Gases aspiration system Once the bath has been defined the operative parameters that have been altered for testing different conditions of the process have been the current density between 1 and 22 A dm2 the temperature between 35 and 55 C and the pH partially modifying the bath composition 4 Obtained hardness One of the most interesting conclusions obtained during the tests has been that the level of hardness of the different electroformed shells has remained at rather high and stable values In Fig 2 it can be observed the way in which for current density values between 2 5 and 22 A dm2 the hardness values range from 540 and 580 HV at pH 4 0 2 and with a temperature of 45 C If the pH of the bath is reduced at 3 5 and the temperature is 55 C those values are above 520 HV and below 560 HV This feature makes the tested bath different from other conventional ones composed by nickel sulfamate allowing to operate with a wider range of values nevertheless such operativity will be limited depending on other factors such as internal stress because its variability may condition the work at certain values of pH current density or temperature On the other hand the hardness of a conventional sulfamate bath is between 200 250 HV much lower than the one obtained in the tests It is necessary to take into account that for an injection mold the hardness is acceptable starting from 300 HV Among the most usual materials for injection molds it is possible to find steel for improvement 290 HV steel for integral hardening 520 595 HV casehardened steel 760 800 HV etc in such a way that it can be observed that the hardness levels of the nickel shells would be within the medium high range of the materials for injection molds The objection to the low ductility of the shell is compensated in such a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the pressure charges of the processes of plastics injection this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible above a minimum value and with absence of important failures such as pitting Fig 2 Hardness variation with current density pH 4 0 2 T 45 C 5 Metallographic structure In order to analyze the metallographic structure the values of current density and temperature were mainly modified The samples were analyzed in frontal section and in transversal section perpendicular to the deposition For achieving a convenient preparation they were conveniently encapsulated in resin polished and etched in different stages with a mixture of acetic acid and nitric acid The etches are carried out at intervals of 15 25 40 and 50 s after being polished again in order to be observed afterwards in a metallographic microscope Olympus PME3 ADL 3 3 10 Before going on to comment the photographs shown in this article it is necessary to say that the models used to manufacture the shells were made in a FDM rapid prototyping machine where the molten plastic material ABS that later solidifies is settled layer by layer In each layer the extruder die leaves a thread approximately 0 15 mm in diameter which is compacted horizontal and vertically with the thread settled inmediately after Thus in the surface it can be observed thin lines that indicate the roads followed by the head of the machine These lines are going to act as a reference to indicate the reproducibility level of the nickel settled The reproducibility of the model is going to be a fundamental element to evaluate a basic aspect of injection molds the surface texture The tested series are indicated in Table 1 Table 1 Tested series Series pH Temperature C Current density A dm2 1 4 2 0 2 55 2 22 2 3 9 0 2 45 5 56 3 4 0 0 2 45 10 00 4 4 0 0 2 45 22 22 Fig 3 illustrates the surface of a sample of the series after the first etch It shows the roads originated by the FDM machine that is to say that there is a good reproducibility It cannot be still noticed the rounded grain structure In Fig 4 series 2 after a second etch it can be observed a line of the road in a way less clear than in the previous case In Fig 5 series 3 and 2 etch it begins to appear the rounded grain structure although it is very difficult to check the roads at this time Besides the most darkened areas indicate the presence of pitting by inadequate conditions of process and bath composition Fig 3 Series 1 150 etch 1 Fig 4 Series 2 300 etch 2 Fig 5 Series 3 300 etch 2 This behavior indicates that working at a low current density and a high temperature shells with a good reproducibility of the model and with a small grain size are obtained that is adequate for the required application If the analysis is carried out in a plane transversal to the deposition it can be tested in all the samples and for all the conditions that the growth structure of the deposit is laminar Fig 6 what is very satisfactory to obtain a high mechanical resistance although at the expense of a low ductibility This quality is due above all to the presence of the additives used because a nickel sulfamate bath without additives normally creates a fibrous and non laminar structure 9 The modification until a nearly null value of the wetting agent gave as a result that the laminar structure was maintained in any case that matter demonstrated that the determinant for such structure was the stress reducer Allbrite SLA On the other hand it was also tested that the laminar structure varies according to the thickness of the layer in terms of the current density Fig 6 Plane transversal of series 2 600 etch 2 6 Internal stresses One of the main characteristic that a shell should have for its application like an insert is to have a low level of internal stresses Different tests at different bath temperatures and current densities were done and a measure system rested on cathode flexural tensiometer method was used A steel testing control was used with a side fixed and the other free 160 mm length 12 7 mm width and thickness 0 3 mm Because the metallic deposition is only in one side the testing control has a mechanical strain tensile or compressive stress that allows to calculate the internal stresses Stoney model 10 was applied and was supposed that nickel substratum thickness is enough small 3 m to influence in an elastic point of view to the strained steel part In all the tested cases the most value of internal stress was under 50 MPa for extreme conditions and 2 MPa for optimal conditions an acceptable value for the required application The conclusion is that the electrolitic bath allows to work at different conditions and parameters without a significant variation of internal stresses 7 Test of the injection mold Tests have been carried out with various representative thermoplastic materials such as PP PA HDPE and PC and it has been analysed the properties of the injected parts such as dimensions weight resistance rigidity and ductility Mechanical properties were tested by tensile destructive tests and analysis by photoelasticity About 500 injections were carried out on this core remaining under conditions of withstanding many more In general terms important differences were not noticed between the behavior of the specimens obtained in the core and the ones from the machined cavity for the set of the analysed materials However in the analysis by photoelasticiy Fig 7 it was noticed a different tensional state between both types of specimens basically due to differences in the heat transference and rigidity of the respective mold cavities This difference explains the ductility variations more outstanding in the partially crystalline materials such as HDPE and PA 6 Fig 7 Analysis by photoelasticity of injected specimens For the case of HDPE in all the analysed tested tubes it was noticed a lower ductility in the specimens obtained in the nickel core quantified about 30 In the case of PA 6 this value was around 50 8 Conclusions After consecutive tests and in different conditions it has been checked that the nickel sulfamate bath with the utilized additives has allowed to obtain nickel shells with some mechanical properties acceptable for the required application injection molds that is to say good reproducibility high level of hardness and good mechanical resistance in terms of the resultant laminar structure The mechanical deficiencies of the nickel shell will be partially replaced by the epoxy resin that finishes shaping the core for the injection mold allowing to inject medium series of plastic parts with acceptable quality levels