大板錠抓具設計【含12張CAD圖紙】
大板錠抓具設計【含12張CAD圖紙】,含12張CAD圖紙,大板錠抓具,設計,12,CAD,圖紙
畢業(yè)設計(論文)
英語翻譯
題目名稱: 大板錠抓具
院系名稱:
班 級:
學 號:
學生姓名:
指導教師:
年 3月
機械加工介紹
摘要:
車床主要是為了車外圓、車端面和鏜孔等項工作而設計的機床。車床的多功能性可以使工件在一次安裝中完成幾種加工。因此,在生產中使用的各種車床比任何其他種類的機床都多。本文主要介紹的用途和種類,及數字技術在機床上的發(fā)展
關鍵字:車床 切削 零件 數字控制 機床發(fā)展
1.車床
車床主要是為了進行車外圓、車端面和鏜孔等項工作而設計的機床。車削很少在其他種類的機床上進行,而且任何一種其他機床都不能像車床那樣方便地進行車削加工。由于車床還可以用來鉆孔和鉸孔,車床的多功能性可以使工件在一次安裝中完成幾種加工。因此,在生產中使用的各種車床比任何其他種類的機床都多。
車床的基本部件有:床身、主軸箱組件、尾座組件、溜板組件、絲杠和光杠。
床身是車床的基礎件。它能常是由經過充分正火或時效處理的灰鑄鐵或者球墨鐵制成。它是一個堅固的剛性框架,所有其他基本部件都安裝在床身上。通常在床身上有內外兩組平行的導軌。有些制造廠對全部四條導軌都采用導軌尖朝上的三角形導軌(即山形導軌),而有的制造廠則在一組中或者兩組中都采用一個三角形導軌和一個矩形導軌。導軌要經過精密加工以保證其直線度精度。為了抵抗磨損和擦傷,大多數現代機床的導軌是經過表面淬硬的,但是在操作時還應該小心,以避免損傷導軌。導軌上的任何誤差,常常意味著整個機床的精度遭到破壞。
主軸箱安裝在內側導軌的固定位置上,一般在床身的左端。它提供動力,并可使工件在各種速度下回轉。它基本上由一個安裝在精密軸承中的空心主軸和一系列變速齒輪(類似于卡車變速箱)所組成。通過變速齒輪,主軸可以在許多種轉速下旋轉。大多數車床有8~12種轉速,一般按等比級數排列。而且在現代機床上只需扳動2~4個手柄,就能得到全部轉速。一種正在不斷增長的趨勢是通過電氣的或者機械的裝置進行無級變速。
由于機床的精度在很大程度上取決于主軸,因此,主軸的結構尺寸較大,通常安裝在預緊后的重型圓錐滾子軸承或球軸承中。主軸中有一個貫穿全長的通孔,長棒料可以通過該孔送料。主軸孔的大小是車床的一個重要尺寸,因此當工件必須通過主軸孔供料時,它確定了能夠加工的棒料毛坯的最大尺寸。
尾座組件主要由三部分組成。底板與床身的內側導軌配合,并可以在導軌上作縱向移動。底板上有一個可以使整個尾座組件夾緊在任意位置上的裝置。尾座體安裝在底板上,可以沿某種類型的鍵槽在底板上橫向移動,使尾座能與主軸箱中的主軸對正。尾座的第三個組成部分是尾座套筒。它是一個直徑通常大約在51~76mm(2~3英寸)之間的鋼制空心圓柱體。通過手輪和螺桿,尾座套筒可以在尾座體中縱向移入和移出幾個英寸。
車床的規(guī)格用兩個尺寸表示。第一個稱為車床的床面上最大加工直徑。這是在車床上能夠旋轉的工件的最大直徑。它大約是兩頂尖連線與導軌上最近點之間距離的兩倍。第二個規(guī)格尺寸是兩頂尖之間的最大距離。車床床面上最大加工直徑表示在車床上能夠車削的最大工件直徑,而兩頂尖之間的最大距離則表示在兩個頂尖之間能夠安裝的工件的最大長度。
普通車床是生產中最經常使用的車床種類。它們是具有前面所敘的所有那些部件的重載機床,并且除了小刀架之外,全部刀具的運動都有機動進給。它們的規(guī)格通常是:車床床面上最大加工直徑為305~610mm(12~24英寸);但是,床面上最大加工直徑達到1270mm(50英寸)和兩頂尖之間距離達到3658mm的車床也并不少見。這些車床大部分都有切屑盤和一個安裝在內部的冷卻液循環(huán)系統。小型的普通車床—車床床面最大加工直徑一般不超過330mm(13英寸)--被設計成臺式車床,其床身安裝在工作臺或柜子上。
雖然普通車床有很多用途,是很有用的機床,但是更換和調整刀具以及測量工件花費很多時間,所以它們不適合在大量生產中應用。通常,它們的實際加工時間少于其總加工時間的30%。此外,需要技術熟練的工人來操作普通車床,這種工人的工資高而且很難雇到。然而,操作工人的大部分時間卻花費在簡單的重復調整和觀察切屑過程上。因此,為了減少或者完全不雇用這類熟練工人,六角車床、螺紋加工車床和其他類型的半自動和自動車床已經很好地研制出來,并已經在生產中得到廣泛應用。
2.數字控制
先進制造技術中的一個基本的概念是數字控制(NC)。在數控技術出現之前,所有的機床都是由人工操縱和控制的。在與人工控制的機床有關的很多局限性中,操作者的技能大概是最突出的問題。采用人工控制是,產品的質量直接與操作者的技能有關。數字控制代表了從人工控制機床走出來的第一步。
數字控制意味著采用預先錄制的、存儲的符號指令來控制機床和其他制造系統。一個數控技師的工作不是去操縱機床,而是編寫能夠發(fā)出機床操縱指令的程序。對于一臺數控機床,其上必須安有一個被稱為閱讀機的界面裝置,用來接受和解譯出編程指令。
發(fā)展數控技術是為了克服人類操作者的局限性,而且它確實完成了這項工作。數字控制的機器比人工操縱的機器精度更高、生產出零件的一致性更好、生產速度更快、而且長期的工藝裝備成本更低。數控技術的發(fā)展導致了制造工藝中其他幾項新發(fā)明的產生:
? 電火花加工技術、激光切割、電子束焊接
數字控制還使得機床比它們采用有人工操的前輩們的用途更為廣泛。
一臺數控機床可以自動生產很多類的零件,每一個零件都可以有不同的和復雜的加工過程。數控可以使生產廠家承擔那些對于采用人工控制的機床和工藝來說,在經濟上是不劃算的產品生產任務。
同許多先進技術一樣,數控誕生于麻省理工學院的實驗室中。數控這個概念是50年代初在美國空軍的資助下提出來的。在其最初的價段,數控機床可以經濟和有效地進行直線切割。
然而,曲線軌跡成為機床加工的一個問題,在編程時應該采用一系列的水平與豎直的臺階來生成曲線。構成臺階的每一個線段越短,曲線就越光滑。臺階中的每一個線段都必須經過計算。
在這個問題促使下,于1959年誕生了自動編程工具(APT)語言。這是一個專門適用于數控的編程語言,使用類似于英語的語句來定義零件的幾何形狀,描述切削刀具的形狀和規(guī)定必要的運動。APT語言的研究和發(fā)展是在數控技術進一步發(fā)展過程中的一大進步。最初的數控系統下
今天應用的數控系統是有很大差別的。在那時的機床中,只有硬線邏輯電路。指令程序寫在穿孔紙帶上(它后來被塑料帶所取代),采用帶閱讀機將寫在紙帶或磁帶上的指令給機器翻譯出來。所有這些共同構成了機床數字控制方面的巨大進步。然而,在數控發(fā)展的這個階段中還存在著許多問題。
一個主要問題是穿孔紙帶的易損壞性。在機械加工過程中,載有編程指令信息的紙帶斷裂和被撕壞是常見的事情。在機床上每加工一個零件,都需要將載有編程指令的紙帶放入閱讀機中重新運行一次。因此,這個問題變得很嚴重。如果需要制造100個某種零件,則應該將紙帶分別通過閱讀機100次。易損壞的紙帶顯然不能承受嚴配的車間環(huán)境和這種重復使用。
這就導致了一種專門的塑料磁帶的研制。在紙帶上通過采用一系列的小孔來載有編程指令,而在塑料帶上通過采用一系列的磁點瞇載有編程指令。塑料帶的強度比紙帶的強度要高很多,這就可以解決常見的撕壞和斷裂問題。然而,它仍然存在著兩個問題。
其中最重要的一個問題是,對輸入到帶中指令進行修改是非常困難的,或者是根本不可能的。即使對指令程序進行最微小的調整,也必須中斷加工,制作一條新帶。而且?guī)ㄟ^閱讀機的次數還必須與需要加工的零件的個數相同。幸運的是,計算機技術的實際應用很快解決了數控技術中與穿孔紙帶和塑料帶有關的問題。
在形成了直接數字控制(DNC)這個概念之后,可以不再采用紙帶或塑料帶作為編程指令的載體,這樣就解決了與之有關的問題。在直接數字控制中,幾臺機床通過數據傳輸線路聯接到一臺主計算機上。操縱這些機床所需要的程序都存儲在這臺主計算機中。當需要時,通過數據傳輸線路提供給每臺機床。直接數字控制是在穿孔紙帶和塑料帶基礎上的一大進步。然而,它敢有著同其他信賴于主計算機技術一樣的局限性。當主計算機出現故障時,由其控制的所有機床都將停止工作。這個問題促使了計算機數字控制技術的產生。
微處理器的發(fā)展為可編程邏輯控制器和微型計算機的發(fā)展做好了準備。這兩種技術為計算機數控(CNC)的發(fā)打下了基礎。采用CNC技術后,每臺機床上都有一個可編程邏輯控制器或者微機對其進行數字控制。這可以使得程序被輸入和存儲在每臺機床內部。它還可以在機床以外編制程序,并將其下載到每臺機床中。計算機數控解決了主計算機發(fā)生故障所帶來的問題,但是它產生了另一個被稱為數據管理的問題。同一個程序可能要分別裝入十個相互之間沒有通訊聯系的微機中。這個問題目前正在解決之中,它是通過采用局部區(qū)域網絡將各個微機聯接起來,以得于更好地進行數據管理。
本文摘自:
《Integration and Automation of Manufacturing Systems》by Hugh Jack
The instruction of machining
1 Lathes
Lathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool.
The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod.
The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.
The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.
Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle.
The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw.
The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers.
Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up to 3658mm(12 feet) are not uncommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes-with swings usually not over 330 mm (13 inches ) –also are available in bench type, designed for the bed to be mounted on a bench on a bench or cabinet.
Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the work piece, thy are not suitable for quantity production. Often the actual chip-production tine is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operator’s time is consumed by simple, repetitious adjustments and in watching chips being made. Consequently, to reduce or eliminate the amount of skilled labor that is required, turret lathes, screw machines, and other types of semiautomatic and automatic lathes have been highly developed and are widely used in manufacturing.
2 Numerical Control
One of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC). Prior to the advent of NC, all machine tools ere manually operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator. Numerical control represents the first major step away from human control of machine tools.?
Numerical control means the control of machine tools and other manufacturing systems through the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool. For a machine tool to be numerically controlled, it must be interfaced with a device for accepting and decoding the programmed instructions, known as a reader.
Numerical control was developed to overcome the limitation of human operators, and it has done so. Numerical control machines are more accurate than manually operated machines, they can produce parts more uniformly, they are faster, and the long-run tooling costs are lower. The development of NC led to the development of several other innovations in manufacturing technology:
Electrical discharge machining,Laser cutting,Electron beam welding.
Numerical control has also made machine tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide of parts, each involving an assortment of widely varied and complex machining processes. Numerical control has allowed manufacturers to undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tolls and processes.
Like so many advanced technologies, NC was born in the laboratories of the Massachusetts Institute of Technology. The concept of NC was developed in the early 1950s with funding provided by the U.S. Air Force. In its earliest stages, NC machines were able to made straight cuts efficiently and effectively.
However, curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter the straight lines making up the steps, the smoother is the curve, Each line segment in the steps had to be calculated.
This problem led to the development in 1959 of the Automatically Programmed Tools (APT) language. This is a special programming language for NC that uses statements similar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the fur ther development from those used today. The machines had hardwired logic circuits. The instructional programs were written on punched paper, which was later to be replaced by magnetic plastic tape. A tape reader was used to interpret the instructions written on the tape for the machine. Together, all of this represented a giant step forward in the control of machine tools. However, there were a number of problems with NC at this point in its development.
A major problem was the fragility of the punched paper tape medium. It was common for the paper tape containing the programmed instructions to break or tear during a machining process. This problem was exacerbated by the fact that each successive time a part was produced on a machine tool, the paper tape carrying the programmed instructions had to be rerun through the reader. If it was necessary to produce 100 copies of a given part, it was also necessary to run the paper tape through the reader 100 separate tines. Fragile paper tapes simply could not withstand the rigors of a shop floor environment and this kind of repeated use.
This led to the development of a special magnetic plastic tape. Whereas the paper carried the programmed instructions as a series of holes punched in the tape, the plastic tape carried the instructions as a series of magnetic dots. The plastic tape was much stronger than the paper tape, which solved the problem of frequent tearing and breakage. However, it still left two other problems.
The most important of these was that it was difficult or impossible to change the instructions entered on the tape. To made even the most minor adjustments in a program of instructions, it was necessary to interrupt machining operations and make a new tape. It was also still necessary to run the tape through the reader as many times as there were parts to be produced. Fortunately, computer technology became a reality and soon solved the problems of NC associated with punched paper and plastic tape.
The development of a concept known as direct numerical control (DNC) solved the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions. In direct numerical control, machine tools are tied, via a data transmission link, to a host computer. Programs for operating the machine tools are stored in the host computer and fed to the machine tool an needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However, it is subject to the same limitations as all technologies that depend on a host computer. When the host computer goes down, the machine tools also experience downtime. This problem led to the development of computer numerical control.
From:
《Integration and Automation of Manufacturing Systems》by Hugh Jack
畢業(yè)實習報告
題目名稱:大板錠抓具設計
院系名稱:
班 級:
學 號:
學生姓名:
指導教師:
目 錄
1 實習目的 - 1 -
2 公司簡介 - 1 -
3 實習內容 - 4 -
4 現場參觀及收集資料 - 4 -
5 實習體會 - 6 -
6 參考資料 - 7 -
1 實習目的
本組在中國鋁業(yè)股份有限公司河南分公司下屬分公司實習,由于畢業(yè)設計的題目材料均來自于該公司,其中我所選的題目是大板錠抓具設計即鋁板抓具。是用于鑄造鋁廠抓取鋁板的抓具。該系列抓具加緊力大自動化程度高,使用安全可靠。由王老師帶著本組成員進行了此次畢業(yè)實習。
2 公司簡介
該公司是境外上市公司中國鋁業(yè)股份有限公司河南分公司的二級單位,是從事設備制造和備件生產,并通過IS09000質量體系認證、取得BRl級壓力容器制造資質的生產企業(yè),具有年產綜合機械產品7000噸、氧氣26萬瓶及年創(chuàng)設備安裝、大修產值1300萬元能力的中型設備與備件制造廠。擁有固定資產7000余萬元,大型、數控及精密等各類設備逾470臺。有表面沉積和激光加工中心,可承制冶金、礦山、建材、有色、化工等行業(yè)所需成套、大型、精密設備以及各種毛坯、機械零配件。80年代之前曾長年承擔國家軍工精密零部件制造的機械制造公司,在市場經濟的大潮中,面對入世,對標國際,與時俱進,創(chuàng)新發(fā)展,形成了以市場為導向、以質量為中心、以產品開發(fā)為龍頭的產供銷一體化生產經營新格局。公司技術力量雄厚,擁有教授級高工1人,高級工程師15人,工程師22人。98年以來,公司走企業(yè)與大專院校、科研院所聯合開發(fā)高新技術之路,先后研制的貝氏體磨球、高效耐磨固液泵、無螺栓磨機襯板、鋁電解陽極提升機等通過省部級鑒定,分別達到國內和國際領先水平。新型無螺栓襯板,是該公司研制開發(fā)的高技術產品,獲中國有色科技三等獎。該產品具有運轉效率高、維護工作量小、不漏料的特點,使用壽命是高錳鋼襯板的兩倍。此項技術處于國內領先水平,是球磨機高錳鋼襯板的更新換代產品。高效耐磨固液泵,獲中國有色科技二等獎。該產品具有節(jié)能、耐磨、運行平穩(wěn)、低噪聲等優(yōu)點,產品性能達到90年代初期國際領先水平,為"九五"國家科技成果重點推廣項目。
鋁電解行業(yè)設備主要有鋁錠連續(xù)鑄造機、真空鋁水抬包、鋁導桿校直機、陽極(母線)提升裝置等。該公司生產的不同噸位、多種規(guī)格、兩點及多點陽極提升機,適用于鋁電解生產的各種槽型,是冶金工業(yè)預焙電解槽傳動系統中的重要設備之一。該裝置能承受巨大負荷,操作先進、升降穩(wěn)定,也可作為機車、大型車輛、船舶的制造、修理升降裝置。20kg鋁綻連續(xù)生產機組用于電解鋁鑄錠工序的鋁錠鑄造、堆裝,具有連續(xù)高效的工作特點。該設備技術先進、結構緊湊、操作方便、動作可靠,同時無污染、噪聲小,改善了工作環(huán)境。碳素行業(yè)設備主要有單工位振動成型機、煅燒爐設備、混捏鍋等。新型碳塊成型機,獲鄭州市技術進步一等獎。現己制作12臺,分別在蘭州、焦作、重慶、山東等地安裝使用,受到用戶高度贊揚。該公司是鄭州市"文明單位標兵"和市工商局"重合同守信用企業(yè)",多年來恪守"售后服務十項承諾",力行"快速反應,馬上行動"的工作作風,竭誠為用戶提供設計、制作、安裝、調試、技術指導、維修、貨運等的服務。
3 實習內容
此次實習由公司技術科的施科長及其工作人員帶領我們現場參觀,就各自所設計的題目收集資料現場觀察。
4 現場參觀及收集資料
(1)始建于1958年的機械制造公司,位于僅距我國交通樞紐鄭州市37公里的"中國鋁都"上街區(qū),其地理位置優(yōu)越,交通便利。隴海鐵路、鄭汴洛高速公路、310國道在這里并行而過,并均有專線進廠。
為了更加直觀的了解所設計的相關題目,由工程師帶領我們參觀了生產第一線。該廠的產品特點為單件小批生產。根據收集顧客信息(內部顧客及相關外部顧客)的情況,對顧客的要求進行設計,對國外引進設備的改型設計,制造安裝和售后服務。公司設有營銷部、技術科、生產車間、大修車間、鉚焊車間、金工
圖1 圖2
車間等。該企業(yè)有三米立式銑床三米滾齒機十二米液壓刨邊機三百噸單缸壓力機還有最大切削直徑達五米的落地車床和深九米的井式爐等。在現場看到的很多機器都是該公司根據自己和顧客的需要設計和研發(fā)出來的,是一家冶金設備的大型企業(yè),能滿足顧客的各種不同需要。
(2)在生產現場看到了我所要設計的大板錠抓具,如圖1,2。對抓具來說最重要的性能就是安全可靠,我所見到的大板錠抓具一側有掛鉤設計,工程師介紹講解說掛鉤是為了保證抓具在放下大板錠升起后有一定的張口尺寸方便再次使用。工程師介紹此抓具是為大板錠等鋁合金產品專門設計制造的,利用杠桿原理設計抓具的關鍵是四個連桿的受力情況,與我以前想象不同的就是這四個桿的長度和形狀都是不同的,設計掛鉤是一方面原因,受力大小也是要謹慎考慮的方面,保證抓具能抓起的重量并安全可靠,其自動化程度也較高。通過對實物的了解,對設計題目有了深刻的認識,根據最大載重量來設計四連桿的長度和所選材料等。
圖3 圖4
工程師帶著大家參觀了每一個車間,了解了大體情況,并耐心為我們講解熱心回答我們提出的各種問題。工廠車間里的工作是辛苦的,但只有積累了基本的生產經驗才有可能設計出更好的產品。機械是嚴謹的不容許有半點的馬虎,稍不留神就會造成巨大的損失。
5 實習體會
這次實習對畢業(yè)設計來說是十分必要的,在參觀過程中將實物轉換為圖紙,其中看不明白的地方及時向工程師和老師請教,使得這次實習能對我的畢業(yè)設計有很大的幫助。從實習中也看到了自己的很多不足,以前書本上的東西已經不能滿足設計的需要,設計產品要從實際出發(fā)使其能滿足生產等各個方面的要求。
很快就要踏上社會工作了,就象王老師說的那樣不能眼高手低,將最基本的知識掌握牢固才能在更高的層次上發(fā)展?,F在就要仔細復習所學過的東西才能順利完成畢業(yè)設計為將來更好的工作打下基礎。
6 參考資料
1、聯合編寫組.機械零件設計手冊[S].北京:機械工業(yè)出版社, 1987.9.
2、成大先.機械設計手冊(單行本):常用設計資料[S].北京:化學工業(yè)出版社,2004.1.
3、成大先.機械設計手冊(單行本):機械傳動[S].北京:化學工業(yè)出版社,2004.1.
4、路甬祥.液壓氣動技術手冊[S].北京:機械工業(yè)出版社,2004.5
5、汪啟明等.基于單片機控制的液壓泵站設計研究[J].制造業(yè)自動化2003年06期.
6、張利平.液壓控制系統及設計[S].北京:化學工業(yè)出版社,2006.6.
7、趙則祥.公差配合與質量控制[M].開封:河南大學出版社。1997
7
收藏