人教版九級下冊數(shù)學期末試卷三套匯編十四含答案.docx
《人教版九級下冊數(shù)學期末試卷三套匯編十四含答案.docx》由會員分享,可在線閱讀,更多相關(guān)《人教版九級下冊數(shù)學期末試卷三套匯編十四含答案.docx(22頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2016年人教版九年級下冊數(shù)學期末試卷三套匯編十四含答案 九年級下冊數(shù)學期末檢測題一 (時間:120分鐘 滿分:120分) 一、選擇題(每小題3分,共30分) 1.已知反比例函數(shù)的圖象經(jīng)過點(-1,2),則它的解析式是( B ) A.y=- B.y=- C.y= D.y= 2.下列幾何體的主視圖既是中心對稱圖形又是軸對稱圖形的是( D ) 3.如圖,已知∠α的一邊在x軸上,另一邊經(jīng)過點A(2,4),頂點為(-1,0),則sinα的值是( D ) A. B. C. D. ,第3題圖) ,第4題圖) ,第7題圖) 4.如圖,反比例函數(shù)y1=和正比例函數(shù)y2=k2x的圖象交于A(-1,-3),B(1,3)兩點,若>k2x,則x的取值范圍是( C ) A.-1<x<0 B.-1<x<1 C.x<-1或0<x<1 D.-1<x<0或x>1 5.若函數(shù)y=的圖象在其所在的每一象限內(nèi),函數(shù)值y隨自變量x的增大而增大,則m的取值范圍是( A ) A.m<-2 B.m<0 C.m>-2 D.m>0 6.在△ABC中,(2cosA-)2+|1-tanB|=0,則△ABC一定是( D ) A.直角三角形 B.等腰三角形 C.等邊三角形 D.等腰直角三角形 7.(2015日照)小紅在觀察由一些相同小立方塊搭成的幾何體時,發(fā)現(xiàn)它的主視圖、俯視圖、左視圖均為如圖,則構(gòu)成該幾何體的小立方塊的個數(shù)有( B ) A.3個 B.4個 C.5個 D.6個 8.如圖,先鋒村準備在坡角為α的山坡上栽樹,要求相鄰兩樹之間的水平距離為5米,那么這兩棵樹在坡面上的距離AB為( B ) A.5cosα B. C.5sinα D. ,第8題圖) ,第9題圖) ,第10題圖) 9.如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( B ) A.-3 B.-4 C.- D.-2 10.如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足=,連接AF并延長交⊙O于點E,連接AD,DE,若CF=2,AF=3,給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tanE=;④S△DEF=4.其中正確的是( C ) A.①②③ B.②③④ C.①②④ D.①③④ 二、填空題(每小題3分,共24分) 11.小亮在上午8時、9時30分、10時、12時四次到室外的陽光下觀察向日葵的頭莖隨太陽轉(zhuǎn)動的情況,無意之中,他發(fā)現(xiàn)這四個時刻向日葵影子的長度各不相同,那么影子最長的時刻為__上午8時__. 12.已知△ABC與△DEF相似且面積比為9∶25,則△ABC與△DEF的相似比為__3∶5__. 13.若∠A為銳角,且cosA=,則∠A的范圍是__60<∠A<90__. 14.如圖,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,則△ABC與__△A′B′C′__是位似圖形,相似比是__7∶4__. ,第14題圖) ,第15題圖) 15.如圖,點P,Q,R是反比例函數(shù)y=的圖象上任意三點,PA⊥y軸于點A,QB⊥x軸于點B,RC⊥x軸于點C,S1,S2,S3分別表示△OAP,△OBQ,△OCR的面積,則S1,S2,S3的大小關(guān)系是__S1=S2=S3__. 16.某河道要建一座公路橋,要求橋面離地面高度AC為3 m,引橋的坡角∠ABC為15,則引橋的水平距離BC的長是__11.2__m.(精確到0.1 m;參考數(shù)據(jù):sin15≈0.258 8,cos15≈0.965 9,tan15≈0.267 9) ,第16題圖) ,第17題圖) ,第18題圖) 17.如圖,在平行四邊形ABCD中,E,F(xiàn)分別是邊AD,BC的中點,AC分別交BE,DF于點M,N,給出下列結(jié)論:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S△ABC,其中正確的結(jié)論是__①②③__.(填序號) 18.如圖,在已建立直角坐標系的44的正方形方格中,△ABC是格點三角形(三角形的三個頂點是小正方形的頂點),若以格點P,A,B為頂點的三角形與△ABC相似(全等除外),則格點P的坐標是__(1,4)或(3,4)__. 三、解答題(共66分) 19.(8分)先化簡,再求代數(shù)式(+)的值,其中a=tan60-2sin30. 解:化簡得原式=,把a=-1代入得,原式= 20.(8分)如圖,反比例函數(shù)的圖象經(jīng)過點A,B,點A的坐標為(1,3),點B的縱坐標為1,點C的坐標為(2,0). (1)求該反比例函數(shù)的解析式; (2)求直線BC的解析式. 解:(1)y= (2)y=x-2 21.(8分)一艘觀光游船從港口A處以北偏東60的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)生了求救信號,一艘在港口正東方向B處的海警船接到求救信號,測得事故船在它的北偏東37方向,馬上以40海里/時的速度前往救援,求海警船到達事故船C處所需的大約時間.(參考數(shù)據(jù):sin53≈0.8,cos53≈0.6) 解:作CD⊥AB于點D,在Rt△ACD中,AC=80,∠CAB=30,∴CD=40(海里),在Rt△CBD中,CB=≈=50(海里),∴航行的時間t==1.25(h) 22.(10分)已知Rt△ABC的斜邊AB在平面直角坐標系的x軸上,點C(1,3)在反比例函數(shù)y=的圖象上,且sin∠BAC=. (1)求k的值和邊AC的長; (2)求點B的坐標. 解:(1)k=3,AC=5 (2)分兩種情況,當點B在點A右側(cè)時,如圖①,AD==4,AO=4-1=3,∵△ACD∽△ABC,∴AC2=ADAB,∴AB==,∴OB=AB-AO=-3=,此時B的點坐標為(,0);當點B在點A左側(cè)時,如圖②,此時AO=4+1=5,OB=AB-AO=-5=,此時B點坐標為(-,0).綜上可知,點B坐標為(,0)或(-,0) 23.(10分)如圖,樓房CD旁邊有一池塘,池塘中有一電線桿BE高10米,在池塘邊F處測得電線桿頂端E的仰角為45,樓房頂點D的仰角為75,又在池塘對面的A處,觀測到A,E,D在同一直線上時,測得電線桿頂端E的仰角為30. (1)求池塘A,F(xiàn)兩點之間的距離; (2)求樓房CD的高. 解:(1)∵BE=10米,∠A=30,∴AE=20米,∴AB=10米,又∵∠EFB=45,BE⊥AF,∴BE=BF=10米,∴AF=AB+BF=(10+10)米 (2)過E作EG⊥DF于G點,∵EF=10,∠EFD=60,∴FG=5,EG=5,又∵∠AEF=180-30-45=105,∴∠DEF=75,∴∠DEG=45,∴ED=EG=10,∴在Rt△ADC中,sin30===,∴DC=(10+5)米 24.(10分)如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,M為AD中點,連接CM交BD于點N,且ON=1. (1)求BD的長; (2)若△DCN的面積為2,求四邊形ABNM的面積. 解:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M為AD中點,∴MD=AD=BC,∴=,即BN=2DN,設(shè)OB=OD=x,則BD=2x,BN=OB+ON=x+1,DN=x-1,∴x+1=2(x-1),解得x=3,∴BD=2x=6 (2)∵△MND∽△CNB,且相似比為1∶2,∴==,∴S△MND=S△CND=1,S△BNC=2S△CND=4,∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6,∴S四邊形ABNM=S△ABD-S△MND=6-1=5 25.(12分)如圖,點B在線段AC上,點D,E在AC的同側(cè),∠A=∠C=90,BD⊥BE,AD=BC. (1)求證:AC=AD+CE; (2)若AD=3,AB=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q,當點P與A,B兩點不重合時,求的值. 解:(1)∵BD⊥BE,A,B,C三點共線,∴∠ABD+∠CBE=90,∵∠C=90,∴∠CBE+∠E=90,∴∠ABD=∠E,又∵AD=BC,∴△DAB≌△BCE(AAS),∴AB=CE,∴AC=AB+BC=AD+CE (2)連接DQ,設(shè)BD與PQ交于點F,∵∠DPF=∠QBF=90,∠DFP=∠QFB,∴△DFP∽△QFB,∴=,又∵∠DFQ=∠PFB,∴△DFQ∽△PFB,∴∠DQP=∠DBA,∴tan∠DQP=tan∠DBA,即在Rt△DPQ和Rt△DAB中,=,∵AD=3,AB=5,∴= 九年級下冊數(shù)學期末檢測題二 班級 ________姓名__________得分_________ 友情提示:本試卷滿分150分,共有六個大題,25個小題,考試時間為120分鐘。 親愛的同學,你好!今天是展示你才能的時候了,只要你仔細審題、認真答題,把平常的水平發(fā)揮出來,你就會有出色的表現(xiàn),放松一點,相信自己的實力! 一、填空題(每題5分,共50分) 1.已知一元二次方程ax2+x-b=0的一根為1,則a-b的值是____________. 2、寫出一個無理數(shù)使它與的積是有理數(shù) 3. 在,,,中任取其中兩個數(shù)相乘.積為有理數(shù)的概率為 。 4.直線y=x+3上有一點P(m-5,2m),則P點關(guān)于原點的對稱點P′為______. 5.若式子有意義,則x的取值范圍是 ?。? A B P x y C O 6.計算:= . 7、如圖同心圓,大⊙O的弦AB切小⊙O于P, 且AB=6,則圓環(huán)的面積為 。 8.如圖,P是射線y=x(x>0)上的一點,以P為 圓心的圓與y軸相切于C點,與x軸的正半軸交于 A、B兩點,若⊙P的半徑為5,則A點坐標是_________; 9.在半徑為2的⊙O中,弦AB的長為2,則弦AB所對的圓周角的度數(shù)為 。 10、如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC 相切于點D,交AB于E,交AC于F,點P是⊙A上的一點, 且∠EPF=40,則圖中陰影部分的面積是__________(結(jié)果保留) 二、選擇題(每題4分,共24分) 11. 下列成語所描述的事件是必然發(fā)生的是( ). A. 水中撈月 B. 拔苗助長 C. 守株待免 D. 甕中捉鱉 12.如圖,點A、C、B在⊙O上,已知∠AOB =∠ACB = a. 則a的值為( ). A. 135 B. 120 C. 110 D. 100 13.圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關(guān)系是( ). A. 在OO內(nèi) B. 在OO上 C. 在OO外 D. 不能確定 14、已知兩圓的半徑是方程兩實數(shù)根,圓心距為8,那么這兩個圓的位置關(guān)系是( ) A.內(nèi)切 B.相交 C.外離 D.外切 15.有下列事件:(1)367人中至少有2人的生日相同;(2)擲一枚均勻的骰子兩次,朝上一面的點數(shù)之和一定大于等于2;(3)在標準大氣壓下,溫度低于0℃時冰融化;(4)如果a、b為實數(shù),那么a+b=b+a。其中是必然事件的有( ?。? A.1個 B.2個 C.3個 D. 4個 16、三角形三邊垂直平分線的交點是三角形的( ?。? A.外心 B.內(nèi)心 C.重心 D.垂心 三、解答題(共3小題,第17小題6分,第18、19小題各8分) 17.計算: -+- - 18.已知a、b、c均為實數(shù),且+︳b+1︳+ =0 求方程的根。 19.已知、、是三角形的三條邊長,且關(guān)于的方程有兩個相等的實數(shù)根,試判斷三角形的形狀.。 四、解答題(共2小題,每小題9分,共18分) 20、在一次晚會上,大家圍著飛鏢游戲前。只見靶子設(shè)計成如圖形式.已知從里到外的三個圓的半徑分別為l,2。3,并且形成A,B,C三個區(qū)域.如果飛鏢沒有停落在最大圓內(nèi)或只停落在圓周上,那么可以重新投鏢. (1)分別求出三個區(qū)域的面積; (2)小紅與小明約定:飛鏢停落在A、B區(qū)域小紅得1分,飛鏢落在C區(qū)域小明得1分.你認為這個游戲公平嗎? 為什么? 如果不公平,請你修改得分規(guī)則,使這個游戲公平. 21.如圖?!袿上有A、B、C、D、E五點,且已知AB = BC = CD = DE,AB∥ED. (1)求∠A、∠E的度數(shù); (2)連CO交AE于G。交于H,寫出四條與直徑CH有關(guān)的正確結(jié)論.(不必證明) 22.(本題滿分8分)如圖,P為正比例函數(shù)圖像上一個動點,⊙P的半徑為3,設(shè)點P的坐標為(x,y). (1)求⊙P與直線x=2相切時點P的坐標; (2)請直接寫出⊙P與直線x=2相交、相離時x的取值范圍. 23、(本題滿分9分) 如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作: (1) 請在圖中確定該圓弧所在圓心D點的位置,D點坐標為________; (2) 連接AD、CD,求⊙D的半徑(結(jié)果保留根號)及扇形ADC的圓心角度數(shù); (3) 若扇形DAC是某一個圓錐的側(cè)面展開圖, 求該圓錐的底面半徑 (結(jié)果保留根號). 五、解答題(共2小題,第24小題9分,第25小題10分,共19分) 24.我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊. (1)寫出你所學過的特殊四邊形中是勾股四邊形的兩種圖形的名稱_________,________; (2)如圖,已知格點(小正方形的頂點),,,請你寫出所有以格點為頂點,為勾股邊且對角線相等的勾股四邊形的頂點M的坐標; (3)如圖,將繞頂點按順時針方向旋轉(zhuǎn),得到,連結(jié),.求證:,即四邊形是勾股四邊形. 25.如圖1,在平面直角坐標系中,以坐標原點O為圓心的⊙O的半徑為-1,直線l: y=-X-與坐標軸分別交于A,C兩點,點B的坐標為(4,1) ,⊙B與X軸相切于點M.。 (1)求點A的坐標及∠CAO的度數(shù); (2) ⊙B以每秒1個單位長度的速度沿X軸負方向平移,同時,直線l繞點A順時針勻速旋轉(zhuǎn).當⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切.問:直線AC繞點A每秒旋轉(zhuǎn)多少度? X Y A O E O1 圖2 C (3)如圖2.過A,O,C三點作⊙O1 ,點E是劣弧上一點,連接EC,EA.EO,當點E在劣弧上運動時(不與A,O兩點重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說明理由. C A l O x B M 圖1 . 溫馨提示:恭喜,你已經(jīng)解答完所有問題,請再仔細檢查一次,預(yù)祝你取得好成績! 答案 一填空題: (1)、—1 (2)、如 — 不唯一 (3)、 (4)、 (7,4) (5)、X≥—1且X≠0 (6)、+1 (7)、 (8)、 (1,0) (9)、 300 或1500 (10)、4— 二、選擇題 11、 D 12、B 13、B 14、C 15、 C 16、A 三、解答題: 17.解:原式=2—+3——1+—2 …….算對每項1分,共5分 = ………… ……………6分 18、解:a = 2 b = —1 c = —3 ................... 3分 2X2—X—3=0 ( 2X—3)(X+1)=0 ......................... 6分 X1= X2= —1 ...................... 8分 19、解:由已知條件得 ...............2分 整理為........................................................5分 ∴ ............................................... 6分 ∵ ∴ 這個三角形是等腰三角形. ............................ 8分 20.解:(1)SA=π12=π,SB=π22-π12=3π,SC=π32-π22=5π ……4分 (2)P(A)==,P(B)= =,P(C)= = …………………5分 P(小紅得分)= 1+1=,P(小明得分)= 1= ……………6分 ∵P(小紅得分)≠P(小明得分) ∴這個游戲不公平. …………………7分 修改得分規(guī)則:飛鏢停落在A區(qū)域得2分,飛鏢停落在B區(qū)域、C區(qū)域得1分,這樣游戲就公平了. …………………9分 21.解:(1)∵AB=BC=CD=DE ∴=== ∴= ………2分 ∴∠A=∠E ………3分 又∵AB∥ED ∴∠A+∠E=180 ∴∠A=∠E=90 ………5分 (2) ①CH平分∠BCD ②CH∥BA ③CH∥DE ④CH⊥AE ⑤=⑥AG=EG 等(寫出其中4條即可,每條1分) …9分 22、解: (1).P1 (—1, -- ) P2(5, ) ...................4分 (2).相交 -- <X< ...........................................6分 相離 -- > 或 X<—1 ........ 8分 23、解:(1).D(2, 0) ............................................ 2分 (2).R=2 …………................ 1分 圓心角度900 ............2分 (3).r= ................................4分 24、解: (1).長方形 .,正方形........................................... 2分 (2). M1(3, 4) M2(4, 3) …………................ 4分 (3).證明:;連結(jié)EC ……………………5分 ∵⊿ABC≌⊿DBE ………6分 ∴BC=BE AC=DE 又∵∠CBE=600 ∴⊿CBE是等邊三角形 ………7分 ∴∠BCE=600 BC=EC 又∵∠DCB=300 ∴∠BCE+∠DCB=900 即∠DCE=900 ........8分 DC2+EC2=AC2 ..... ...9分 25、解:(1)、A(-,0) ∵C(0,-),∴OA=OC。 ∵OA⊥OC ∴∠CAO=450 (2)如圖,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,此時,直線l旋轉(zhuǎn)到l’恰好與⊙B1第一次相切于點P, ⊙B1與X軸相切于點N, 連接B1O,B1N,則MN=t, OB1= B1N⊥AN ∴MN=3 即t=3 連接B1A, B1P 則B1P⊥AP B1P = B1N ∴∠PA B1=∠NAB1 ∵OA= OB1= ∴∠A B1O=∠NAB1 ∴∠PA B1=∠A B1O ∴PA∥B1O 在Rt⊿NOB1中,∠B1ON=450, ∴∠PAN=450, ∴∠1= 900. ∴直線AC繞點A平均每秒300. (3). 的值不變,等于,,,如圖在CE上截取CK=EA,連接OK, ∵∠OAE=∠OCK, OA=OC ∴⊿OAE≌⊿OCK, ∴OE=OK ∠EOA=∠KOC ∴∠EOK=∠AOC= 900. l’ ∴EK=EO , ∴= X Y A O E O1 圖2 C K 1 N C A l O x B M 圖1 B1 P 九年級下冊數(shù)學期末檢測題三 (時間:120分鐘 卷面:120分) 一、選擇題(每小題3分,共30分) 1.式子 在實數(shù)范圍內(nèi)有意義,則x的取值范圍是( ) A.x≥3, B.x≤3, C.x>3, D.x<3 2.在平面直角坐標系中,點A(2O13,2014)關(guān)于原點O對稱的點A′的坐標為( ) A.(-2013,2014) B.(2013,-2014) C.(2014,2013) D.(-2014,-2013) 3.下列函數(shù)中,當x>0時,y的值隨x 的值增大而增大的是( ) A.y=-x2 B.y=x-1 C.y=-x+1 D.y= 4.下列說法正確的是( ?。? A.要了解一批燈泡的使用壽命,應(yīng)采用普查的方式 B.若一個游戲的中獎率是1%,則做100次這樣的游戲一定會中獎 C.甲、乙兩組數(shù)據(jù)的樣本容量與平均數(shù)分別相同,若方差 ,,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定 D.“擲一枚硬幣,正面朝上”是必然事件 5.若關(guān)于x的一元二次方程x2+2x+k=0有兩個不相等的實數(shù)根,則k的取值范圍是( ) A.k<1, B.k>1, C.k=1, D.k≥0 6.將等腰Rt△ABC繞點A逆時針旋轉(zhuǎn)15得到△AB′C′,若AC=1,則圖中陰影部分面積為( ) A. B. C. D.3 7.如圖,直線AB、AD分別與⊙O相切于點B、D,C為⊙O上一點,且∠BCD=140,則∠A的度數(shù)是( ?。? A.70 B.105 C.100 D.110 8.已知是方程的兩根,則的值為( ?。? A.3 B.5 C.7 D. 9.如圖,在⊙O內(nèi)有折線OABC,點B、C在圓上,點A在⊙O內(nèi),其中OA=4cm,BC=10cm,∠A=∠B=60,則AB的長為( ) A.5cm B.6cm C.7cm D.8cm 10.已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸x=-1,給出下列結(jié)果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0;則正確的結(jié)論是( ?。? A.①②③④ B.②④⑤ C.②③④ D.①④⑤ 二、填空題(每小題3分,共18分) 11.計算 . 12.一個扇形的弧長是20πcm,面積是240πcm2,則扇形的圓心角是 . 13.某校準備組織師生觀看北京奧運會球類比賽,在不同時間段里有3場比賽,其中2場是乒乓球賽,1場是羽毛球賽,從中任意選看2場,則選看的2場恰好都是乒乓球比賽的概率是 ?。? 14.已知整數(shù)k<5,若△ABC的邊長均滿足關(guān)于x的方程,則△ABC的周長是 ?。? 15.如圖,直線與x軸、y軸分別交于A、B兩點,把△AOB繞點A順時針旋轉(zhuǎn)90后得到△AO′B′,則點B′的坐標是 . 16.如圖,在平面直角坐標系中,拋物線y=經(jīng)過平移得到拋物線y=,其對稱軸與兩段拋物線所圍成的陰影部分的面積為 . 三、解答題(共72分) 17.(9分)先化簡,再求值 (-),其中a=1-,b=1+. 18.(8分)已知關(guān)于x的方程x2-2(k-1)x+k2=0有兩個實數(shù)根x1,x2. (1)求k的取值范圍;(4分) (2)若|x1+x2|=x1x2-1,求k的值.(4分) 19.(8分)如圖,在四邊形ABCD中,∠BAD=∠C=90,AB=AD,AE⊥BC于E,AF⊥DF于F,△BEA旋轉(zhuǎn)后能與△DFA重疊. (1)△BEA繞_______點________時針方向旋轉(zhuǎn)_______度能與△DFA重合;(4分) (2)若AE=cm,求四邊形AECF的面積.(4分) 20.(9分)為豐富學生的學習生活,某校九年級1班組織學生參加春游活動,所聯(lián)系的旅行社收費標準如下: 春游活動結(jié)束后,該班共支付給該旅行社活動費用2800元,請問該班共有多少人參加這次春游活動? 21.(9分)已知甲同學手中藏有三張分別標有數(shù)字,,1的卡片,乙同學手中藏有三張分別標有數(shù)字1,3,2的卡片,卡片的外形相同,現(xiàn)從甲、乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a、b. (1)請你用樹形圖或列表法列出所有可能的結(jié)果;(4分) (2)現(xiàn)制訂這樣一個游戲規(guī)則,若所選出的a、b能使ax2+bx+1=0有兩個不相等的實數(shù)根,則稱甲勝;否則乙勝,請問這樣的游戲規(guī)則公平嗎?請你用概率知識解釋.(5分) 22.(9分)如圖,AB為⊙O的直徑,AD與⊙O相切于一點A,DE與⊙O相切于點E,點C為DE延長線上一點,且CE=CB. (1)求證:BC為⊙O的切線;(4分) (2)若,AD=2,求線段BC的長.(5分) 23.(10分)某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎(chǔ)價和浮動價兩部分組成,其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數(shù)據(jù), 薄板的邊長(cm) 20 30 出廠價(元/張) 50 70 (1)求一張薄板的出廠價與邊長之間滿足的函數(shù)關(guān)系式;(4分) (2)已知出廠一張邊長為40cm的薄板,獲得利潤是26元(利潤=出廠價-成本價). ①求一張薄板的利潤與邊長這之間滿足的函數(shù)關(guān)系式. ②當邊長為多少時,出廠一張薄板獲得的利潤最大?最大利潤是多少?(6分) 24.(10分)如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,A點在原點的左則,B點的坐標為(3,0),與y軸交于C(0,―3)點,點P是直線BC下方的拋物線上一動點。 (1)求這個二次函數(shù)的表達式;(3分) (2)連結(jié)PO、PC,在同一平面內(nèi)把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由;(3分) (3)當點P運動到什么位置時,四邊形ABPC的面積最大,并求出此時P點的坐標和四邊形ABPC的最大面積.(4分) 參考答案 一、選擇題(30分) 1.A 2.D 3.B 4.C 5.D 6.B 7.C 8.A 9.B 10.D 二、填空題(18分) 11.4 12.150 13. 14.10 15.(7,3) 16.4 三、解答題(72分) 17.(9分)原式==(5分) 當a=1-,b=1+時,原式=2.(4分) 18.(每問4分,共8分)(1)△=[-2(k-1)]2-4k2≥0,即4(k-1)2≥4k2,∴k≤ (2)x1+x2=2(k-1),x1x2=k2,又|x1+x2|=x1x2-1,∴|2(k-1)| =k2-1 ∵k≤,∴-2(k-1) =k2-1 k2+2k-3=0 k1=-3,k2=1(不合題意,舍去) ∴k=-3(5分,未舍k=1,扣1分) 19.(每問4分,共8分)(1)A 逆 90 (或A、順 、270) (2)6cm2 20.(9分)解∵25人的費用為2500元<2800元,∴參加這次春游活動的人數(shù)超過25人. 設(shè)該班參加這次春游活動的人數(shù)為x名. 根據(jù)題意,得[100-2(x-25)]x=2800 整理,得x2-75x+1400=0. 解得x1=40,x2=35. x1=40時,100-2(x-25)=70<75,不合題意,舍去. x2=35時,100-2(x-25)=80>75, 答:該班共有35人參加這次春游活動. 21.(9分)(1)(a、b)的可能結(jié)果有(,1),(,2),32 (,3) ,(,1),(,2),(,3),(1,1),(1,2),(1,3),∴(a,b)可能的取值結(jié)果共有9種。(4分) (2)∵△=b2-4a與對應(yīng)(1)中的結(jié)果為:-1、2、7、0、3、8、-3、0、5 ∴P(甲獲勝)=P(△>0)=>P(乙獲勝) = ∴這樣的游戲規(guī)則對甲有利,不公平。(5分) 22.(9分)(1)連結(jié)OE、OC, ∵CB=CE,OB=OE,OC=OC,∴△OBC≌△OEC. ∴∠OBC=∠OEC. 又∵DE與⊙O相切于點E,∴∠OEC=90 ∴∠OBC=90,∴BC為⊙O的切線.(4分) (2)過點D作DF⊥BC于點F,則四邊形ABFD是矩形,BF=AD=2,DF=AB= ∵AD、DC、BC分別切⊙O于點A、E、B,∴DA=DE,CE =CB. 設(shè)BC為x,則CE=x-2,DC=x+2. 在Rt△DFC中, ∴BC=(5分) 23.(10分)解:(1)設(shè)一張薄板的邊長為x cm,它的出廠價為y元,基礎(chǔ)價為n元,浮動價為kx元,則y=kx+n 由表格中數(shù)據(jù)得 解得 ∴y=2x+10 (4分) (2)①設(shè)一張薄板的利潤為P元,它的成本價為mx2元,由題意得P=y-mx2=2x+10-mx2 將x=40,P=26代入P=2x+10-mx2中,得26=240+10-m402 解得m= ∴P=-x2+2x+10 (3分) ②∵a=-<0 ∴當(在5~50之間)時, 即出廠一張邊長為25cm的薄板,所獲得的利潤最大,最大利潤為35元 (3分) 24.(10分)解:(1)將B、C兩點坐標代入得 解得:.所以二次函數(shù)的表示式為: (3分) (2)存在點P,使四邊形POP′C為菱形,設(shè)P點坐標為,PP′交CO于E,若四邊形POP′C是菱形,則有PC=PO,連結(jié)PP′,則PE⊥OC于E,∴OE=EC=,∴ ∴,解得,(不合題意,舍去) ∴P點的坐標為(3分) (3)過點P作y軸的平行線與BC交于點Q,與OB交于點F,設(shè)P,易得,直線BC的解析式為,則Q點的坐標為 當時,四邊形ABPC的面積最大 此時P點的坐標為,四邊形ABPC的面積的最大值為.(4分)- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 人教版九級 下冊 數(shù)學 期末試卷 匯編 十四 答案
鏈接地址:http://www.820124.com/p-8766142.html