(課標通用)甘肅省2019年中考數(shù)學(xué)總復(fù)習(xí)優(yōu)化設(shè)計 單元檢測(四)圖形初步與三角形
《(課標通用)甘肅省2019年中考數(shù)學(xué)總復(fù)習(xí)優(yōu)化設(shè)計 單元檢測(四)圖形初步與三角形》由會員分享,可在線閱讀,更多相關(guān)《(課標通用)甘肅省2019年中考數(shù)學(xué)總復(fù)習(xí)優(yōu)化設(shè)計 單元檢測(四)圖形初步與三角形(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、單元檢測(四) 圖形初步與三角形 (考試用時:90分鐘 滿分:120分) 一、選擇題(本大題共10小題,每小題3分,共30分) 1.如圖,三角板的直角頂點落在矩形紙片的一邊上.若∠1=35°,則∠2的度數(shù)是( ) A.35° B.45° C.55° D.65° 答案C 解析∵∠1+∠3=90°,∠1=35°, ∴∠3=55°, ∴∠2=∠3=55°. 2.已知下列命題:①若ab>1,則a>b;②若a+b=0,則|a|=|b|;③等邊三角形的三個內(nèi)角都相等;④底角相等的兩個等腰三角形全等.其中原命題與逆命題均為真命題的個數(shù)是( )
2、 A.1個 B.2個 C.3個 D.4個 答案A 解析∵當(dāng)b<0時,如果ab>1,那么a
3、米 C.100tan 35°米 D.100tan 55°米 答案C 解析∵PA⊥PB,PC=100米,∠PCA=35°, ∴小河寬PA=PCtan∠PCA=100tan35°米. 4.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C'的坐標為( ) A.32,0 B.(2,0) C.52,0 D.(3,0) 答案C 解析過點B作BD⊥x軸于點D, ∵∠ACO+∠BCD=90°
4、,∠OAC+ACO=90°, ∴∠OAC=∠BCD, 在△ACO與△BCD中, ∠OAC=∠BCD,∠AOC=∠BDC,AC=BC, ∴△ACO≌△CBD(AAS),∴OC=BD,OA=CD, ∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1), ∴設(shè)反比例函數(shù)的解析式為y=kx, 將B(3,1)代入y=kx,得k=3,∴y=3x,∴把y=2代入y=3x,得x=32, 當(dāng)頂點A恰好落在該雙曲線上時,此時點A移動了32個單位長度, ∴C也移動了32個單位長度,此時點C的對應(yīng)點C'的坐標為52,0. 5. 如圖,在Rt△ABC中,∠ACB=90°,CD為
5、AB邊上的高,CE為AB邊上的中線,AD=2,CE=5,則CD=( ) A.2 B.3 C.4 D.23 答案C 解析在Rt△ABC中,∠ACB=90°,CE為AB邊上的中線,∴CE=AE=5, 又∵AD=2,∴DE=AE-AD=5-2=3, ∵CD為AB邊上的高,∴∠CDE=90°, ∴△CDE為直角三角形 ∴CD=CE2-DE2=52-32=4. 6. (2018湖南婁底)如圖,由四個全等的直角三角形圍成的大正方形的面積是169,小正方形的面積為49,則sin α-cos α=( ) A.513 B.-513 C.713 D.-713 答案D 解析∵小正方形
6、面積為49,大正方形面積為169, ∴小正方形的邊長是7,大正方形的邊長是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132, 整理得AC2+7AC-60=0,解得AC=5,AC=-12(舍去), ∴BC=AB2-AC2=12, ∴sinα=ACAB=513,cosα=BCAB=1213, ∴sinα-cosα=513-1213=-713. 7. (2018陜西)在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足為D,∠ABC的平分線交AD于點E,則AE的長為( ) A.423 B.22 C.823 D.32 答案C
7、 解析∵AD⊥BC,∴△ADC是直角三角形, ∵∠C=45°,∴∠DAC=45°,∴AD=DC, ∵AC=8,∴AD=42,在Rt△ABD中,∠B=60°,∴BD=ADtan60°=423=463, ∵BE平分∠ABC,∴∠EBD=30°, ∴DE=BD·tan30°=463×33=423, ∴AE=AD-DE=42-423=823. 8.(2018湖北黃岡)如圖,在△ABC中,DE是AC的垂直平分線,且分別交BC,AC于點D和E,∠B=60°,∠C=25°,則∠BAD為( ) A.50° B.70° C.75° D.80° 答案B 解析由三角形的內(nèi)角和定理,得∠BAC
8、=180°-∠B-∠C=180°-60°-25°=95°. 又由垂直平分線的性質(zhì),知∠C=∠DAC=25°,∴∠BAC=∠BAD+∠DAC=∠BAD+∠C=∠BAD+25°=95° ∴∠BAD=95°-25°=70°. 9.如圖,△ABC的面積是12,點D,E,F,G分別是BC,AD,BE,CE的中點,則△AFG的面積是( ) A.4.5 B.5 C.5.5 D.6 答案A 解析∵點D,E,F,G分別是BC,AD,BE,CE的中點,∴AD是△ABC的中線,BE是△ABD的中線,CF是△ACD的中線,AF是△ABE的中線,AG是△ACE的中線, ∴△AEF的面積=12×△AB
9、E的面積=14×△ABD的面積=18×△ABC的面積=32, 同理可得△AEG的面積=32, △BCE的面積=12×△ABC的面積=6, 又∵FG是△BCE的中位線,∴△EFG的面積=14×△BCE的面積=32, ∴△AFG的面積是32×3=92=4.5. 10. (2018江蘇南通)如圖,等邊△ABC的邊長為3 cm,動點P從點A出發(fā),以每秒1 cm的速度,沿A→B→C的方向運動,到達點C時停止,設(shè)運動時間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖象大致為( ) 答案C 解析∵正△ABC的邊長為3cm, ∴∠A=∠B=∠C=60°,AC=3cm. ①當(dāng)0≤x≤
10、3時,即點P在線段AB上時,AP=xcm(0≤x≤3);
解法一:根據(jù)余弦定理知cosA=AP2+AC2-PC22PA·AC,即12=x2+9-y6x,
解得y=x2-3x+9(0≤x≤3);該函數(shù)圖象是開口向上的拋物線;
解法二:過C作CD⊥AB,則AD=1.5cm,CD=323cm,
點P在AB上時,AP=xcm,PD=|1.5-x|cm,∴y=PC2=3232+(1.5-x)2=x2-3x+9(0≤x≤3),
該函數(shù)圖象是開口向上的拋物線;
②當(dāng)3 11、(3 12、180°-∠4-∠5=30°,
∴∠3=180°-∠6=150°.
13.三角形三邊長分別為3,4,5,那么最長邊上的中線長等于 .?
答案2.5
解析∵32+42=25=52,∴該三角形是直角三角形,∴12×5=2.5.
14.(2018湖南湘潭)《九章算術(shù)》是我國古代最重要的數(shù)學(xué)著作之一,在“勾股”章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折者高幾何?”翻譯成數(shù)學(xué)問題是:如圖所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的長,如果設(shè)AC=x,則可列方程為 .?
答案x2+32=(10-x)2
解析設(shè)AC= 13、x,∵AC+AB=10,∴AB=10-x.
∵在Rt△ABC中,∠ACB=90°,
∴AC2+BC2=AB2,即x2+32=(10-x)2.
15.一個三角形的兩邊長分別為3和6,第三邊長是方程x2-10x+21=0的根,則三角形的周長為 .?
答案16
解析x2-10x+21=0,因式分解得(x-3)(x-7)=0,解得x1=3,x2=7,
∵三角形的第三邊是x2-10x+21=0的根,
∴三角形的第三邊為3或7,
當(dāng)三角形第三邊為3時,3+3=6,不能構(gòu)成三角形,舍去;
當(dāng)三角形第三邊為7時,三角形三邊分別為3,6,7,能構(gòu)成三角形,
則第三邊的長為7.
∴三 14、角形的周長為:3+6+7=16.
16.
(2018湖南婁底)如圖,△ABC中,AB=AC,AD⊥BC于D點,DE⊥AB于點E,BF⊥AC于點F,DE=3 cm,則BF= cm.?
答案6
解析在Rt△ADB與Rt△ADC中,
AB=ACAD=AD,∴Rt△ADB≌Rt△ADC(HL).
∴S△ABC=2S△ABD=2×12AB·DE=AB·DE=3AB,
∵S△ABC=12AC·BF,∴12AC·BF=3AB,
∵AC=AB,∴12BF=3,∴BF=6.
17.(2018四川達州)如圖,△ABC的周長為19,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為 15、N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為 .?
答案52
解析∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,
在△BNA和△BNE中,
∠ABN=∠EBN,BN=BN,∠ANB=∠ENB,
∴△BNA≌△BNE(ASA),∴BA=BE,
∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴點N是AE中點,點M是AD中點(三線合一),∴MN是△ADE的中位線,
∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,
∴MN=12DE=52.
18.(2018廣東)如圖,已知等邊 16、△OA1B1,頂點A1在雙曲線y=3x(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為 .?
答案(26,0)
解析如圖,作A2C⊥x軸于點C,設(shè)B1C=a,則A2C=3a,
OC=OB1+B1C=2+a,A2(2+a,3a).
∵點A2在雙曲線y=3x(x>0)上,
∴(2+a)·3a=3,
解得a=2-1,或a=-2- 17、1(舍去),
∴OB2=OB1+2B1C=2+22-2=22,
∴點B2的坐標為(22,0);
作A3D⊥x軸于點D,設(shè)B2D=b,則A3D=3b,
OD=OB2+B2D=22+b,A2(22+b,3b).
∵點A3在雙曲線y=3x(x>0)上,
∴(22+b)·3b=3,
解得b=-2+3,或b=-2-3(舍去),
∴OB3=OB2+2B2D=22-22+23=23,
∴點B3的坐標為(23,0);
同理可得點B4的坐標為(24,0)即(4,0);…,
∴點Bn的坐標為(2n,0),
∴點B6的坐標為(26,0).
三、解答題(本大題共6小題,共58分)
19 18、.(8分)(2018貴州銅仁)已知:如圖,點A,D,C,B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:AE∥BF.
證明∵AD=BC,∴AC=BD,
在△ACE和△BDF中,AC=BD,AE=BF,CE=DF,
∴△ACE≌△BDF(SSS),
∴∠A=∠B,∴AE∥BF.
20.(8分)(2018浙江杭州)閱讀下列題目的解題過程:
已知a,b,c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2)(B)
∴c2=a2+b2(C)
∴△ABC 19、是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號: ;?
(2)錯誤的原因為: ;?
(3)本題正確的結(jié)論為: .?
解(1)由題目中的解答步驟可得,
錯誤步驟的代號為:C;
(2)錯誤的原因為:沒有考慮a=b的情況,
(3)本題正確的結(jié)論為:△ABC是等腰三角形或直角三角形.
21.(10分)如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
(1)證明∵AD⊥BC,∴∠AD 20、B=∠ADC=90°,
在△BDG和△ADC中,BD=AD,∠BDG=∠ADC,DG=DC,
∴△BDG≌△ADC(SAS),
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分別是BG,AC的中點,∴DE=12BG=EG,DF=12AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;
(2)解∵AC=10,∴DE=DF=5,由勾股定理得,EF=DE2+DF2=52.
22.(10分)(2018湖南張家界)2017年9月8日—10日,第六屆翼裝飛行世界錦標賽在我市天門山風(fēng)景區(qū)隆重舉行,來自全球11個國家的 21、16名選手參加了激烈的角逐.如圖,某選手從離水平地面1 000米高的A點出發(fā)(AB=1 000米),沿俯角為30°的方向直線飛行1 400米到達D點,然后打開降落傘沿俯角為60°的方向降落到地面上的C點,求該選手飛行的水平距離BC.
解過點D作DE⊥AB于E,DF⊥BC于點F,
由題意知∠ADE=30°,∠CDF=30°,在Rt△DAE中.
AE=12AD=12×1400=700,
cos∠ADE=DEAD=32,
DE=1400×32=7003
EB=AB-AE=1000-700=300
DF=BE=300
tan∠CDF=FCDF=33
FC=300×33=100 22、3
∴BC=BF+FC=DE+FC=7003+1003=8003(米).
23.(10分)在△ABC中,∠A=30°,點P從點A出發(fā)以2 cm/s的速度沿折線A-C-B運動,點Q從點A出發(fā)以a(cm/s)的速度沿AB運動,P,Q兩點同時出發(fā),當(dāng)某一點運動到點B時,兩點同時停止運動.設(shè)運動時間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.
(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達式;
(3)當(dāng)點P運動到線段BC上某一段時△APQ的面積,大于當(dāng)點P在線段AC上任意一點時△APQ的面積,求x的取值范圍.
解(1)如圖,作PD 23、⊥AB于D,
∵∠A=30°,∴PD=12AP=x,
由題圖2可知,當(dāng)x=1時,y=12,
∴12×a×1=12,∴a=1.
(2)如圖,作PD⊥AB于D,
由圖象可知,PB=5×2-2x=10-2x,PD=PB·sinB=(10-2x)·sinB,
∴y=12×AQ×PD=12x×(10-2x)·sinB,
∵當(dāng)x=4時,y=43,∴12×4×(10-2×4)·sinB=43,解得sinB=13,
∴y=12x×(10-2x)×13=-13x2+53x;
(3)12x2=-13x2+53x,
解得x1=0,x2=2,
由圖象可知,當(dāng)x=2時,y=12x2有最大值 24、,最大值是12×22=2,
-13x2+53x=2,
解得,x1=3,x2=2,
∴當(dāng)2 25、=-1上的一個動點,求使△PBC為直角三角形的點的坐標.
解(1)依題意得-b2a=-1,a+b+c=0,c=3,解之得a=-1,b=-2,c=3,
∴拋物線的解析式:y=-x2-2x+3.
∵對稱軸為x=-1,且拋物線經(jīng)過A(1,0),
∴把B(-3,0),C(0,3)分別代入直線y=mx+n,得-3m+n=0n=3,解之得m=1n=3,
∴直線y=mx+n的解析式為y=x+3.
(2)直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最小,把x=-1代入直線y=x+3得y=2,
∴M(-1,2).即當(dāng)點M到點的距離與到點的距離之和最小時M的坐標為(-1,2).
( 26、注:本題只求M坐標沒說要證明為何此時MA+MC的值最小,所以答案沒證明MA+MC的值最小的原因).
(3)設(shè)P(-1,t),又B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,
①若點B為直角頂點,則BC2+PB2=PC2即:18+4+t2=t2-6t+10解之得t=-2,
②若點C為直角頂點,則BC2+PC2=PB2即:18+t2-6t+10=4+t2解之得t=4,
③若點P為直角頂點,則PB2+PC2=BC2即:4+t2+t2-6t+10=18解之得
t1=3+172,t2=3-172.
綜上所述的坐標為(-1,-2)或(-1,4)或-1,3+172或-1,3-172.
13
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)生產(chǎn)決策報告
- 進口鐵礦粉的燒結(jié)性能及配礦方法
- 經(jīng)濟學(xué)說史第十四章新凱恩斯主義
- 時間管理從拖延走向高效的基石
- (聽賞)月光下的鳳尾竹
- 課題1水的組成 (10)(精品)
- 客戶溝通方法與技巧
- 大中華國際交易廣場寫字樓項目營銷推廣報告
- 易拉罐尺寸的最優(yōu)設(shè)計方案
- 智慧教室核舟記
- 信息化 BI 商業(yè)智能與企業(yè)即時戰(zhàn)情中心
- 語文蘇教版六年級上冊《船長》第一課時
- 曲軸工藝基礎(chǔ)知識
- 電信集團網(wǎng)規(guī)網(wǎng)優(yōu)A+級培訓(xùn)——11-CDMA功率控制及參數(shù)設(shè)置
- 三、物質(zhì)的密度 (2)