人教版必修1《“方程的根與函數(shù)的零點”》教學設(shè)計.doc
《人教版必修1《“方程的根與函數(shù)的零點”》教學設(shè)計.doc》由會員分享,可在線閱讀,更多相關(guān)《人教版必修1《“方程的根與函數(shù)的零點”》教學設(shè)計.doc(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
“方程的根與函數(shù)的零點”教學設(shè)計(1) 一、內(nèi)容和內(nèi)容解析 本節(jié)課是在學生學習了《基本初等函數(shù)(Ⅰ)》的基礎(chǔ)上,學習函數(shù)與方程的第一課時,本節(jié)課中通過對二次函數(shù)圖象的繪制、分析,得到零點的概念,從而進一步探索函數(shù)零點存在性的判定,這些活動就是想讓學生在了解初等函數(shù)的基礎(chǔ)上,利用計算機描繪函數(shù)的圖象,通過對函數(shù)與方程的探究,對函數(shù)有進一步的認識,解決方程根的存在性問題,為下一節(jié)《用二分法求方程的近似解》做準備. 從教材編寫的順序來看,《方程的根與函數(shù)的零點》是必修1第三章《函數(shù)的應(yīng)用》一章的開始,其目的是使學生學會用二分法求方程近似解的方法,從中體會函數(shù)與方程之間的聯(lián)系.利用函數(shù)模型解決問題,作為一條主線貫穿了全章的始終,而方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解,是在建立和運用函數(shù)模型的大背景下展開的.方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解中均蘊涵了“函數(shù)與方程的思想”和“數(shù)形結(jié)合的思想”,建立和運用函數(shù)模型中蘊含的“數(shù)學建模思想”,是本章滲透的主要數(shù)學思想. 從知識的應(yīng)用價值來看,通過在函數(shù)與方程的聯(lián)系中體驗數(shù)學中的轉(zhuǎn)化思想的意義和價值,體驗函數(shù)是描述宏觀世界變化規(guī)律的基本數(shù)學模型,體會符號化、模型化的思想,體驗從系統(tǒng)的角度去思考局部問題的思想. 基于上述分析,確定本節(jié)的教學重點是:了解函數(shù)零點的概念,體會方程的根與函數(shù)零點之間的聯(lián)系,掌握函數(shù)零點存在性的判斷. 二、目標和目標解析 1.通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應(yīng)方程實數(shù)根之間的關(guān)系, 2.零點知識是陳述性知識,關(guān)鍵不在于學生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。 3.通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學生理解動與靜的辨證關(guān)系.掌握函數(shù)零點存在性的判斷. 4.在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想和轉(zhuǎn)化思想的意義和價值,發(fā)展學生對變量數(shù)學的認識,體會函數(shù)知識的核心作用. 三、教學問題診斷分析 1.零點概念的認識.零點的概念是在分析了眾多圖象的基礎(chǔ)上,由圖象與軸的位置關(guān)系得到的一個形象的概念,學生可能會設(shè)法畫出圖象找到所有任意函數(shù)的可能存在的所有零點,但是并不是所有函數(shù)的圖象都能具體的描繪出,所以在概念的接受上有一點的障礙. 2.零點存在性的判斷.正因為f(a)f(b)<0且圖象在區(qū)間[a,b]上連續(xù)不斷,是函數(shù)f(x)在區(qū)間[a,b]上有零點的充分而非必要條件,容易引起思維的混亂就是很自然的事了. 3.零點(或零點個數(shù))的確定.學生會作二次函數(shù)的圖象,但是要作出一般的函數(shù)圖象(或圖象的交點)就比較困難,而在這一節(jié)課最重要的恰恰就是利用函數(shù)圖象來研究函數(shù)的零點問題.這樣就在零點(或零點個數(shù))的確定上給學生帶來一定的困難. 基于上述分析,確定本節(jié)課的教學難點是:準確認識零點的概念,在合情推理中讓學生體會到判定定理的充分非必要性,能利用適當?shù)姆椒ㄅ袛嗔泓c的存在或確定零點. 四、教學支持條件分析 考慮到學生的知識水平和理解能力,教師可借助計算機工具和構(gòu)建現(xiàn)實生活中的模型,從激勵學生探究入手,講練結(jié)合,直觀演示能使教學更富趣味性和生動性. 通過讓學生觀察、討論、辨析、畫圖,親身實踐,在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想、轉(zhuǎn)化思想的意義和價值,發(fā)展學生對變量數(shù)學的認識,體會函數(shù)知識的核心作用. 五、教學過程設(shè)計 (一)引入課題 問題引入:求方程3x2+6 x-1=0的實數(shù)根。 變式:解方程3x5+6x-1=0的實數(shù)根. (一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運算,乘方與開方等運算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個方程的問題。) 設(shè)計意圖:從學生的認知沖突中,引發(fā)學生的好奇心和求知欲,推動問題進一步的探究。通過簡單的引導(dǎo),讓學生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點明本節(jié)課的目標。 (二)新知探究 1、零點的概念 問題1 求方程x2-2x-3=0的實數(shù)根,并畫出函數(shù)y=x2-2x-3的圖象; 方程x2-2x-3=0的實數(shù)根為-1、3。函數(shù)y=x2-2x-3的圖象如圖所示。 問題2 觀察形式上函數(shù)y=x2-2x-3與相應(yīng)方程x2-2x-3=0的聯(lián)系。 函數(shù)y=0時的表達式就是方程x2-2x-3=0。 問題3 由于形式上的聯(lián)系,則方程x2-2x-3=0的實數(shù)根在函數(shù)y=x2-2x-3的圖象中如何體現(xiàn)? y=0即為x軸,所以方程x2-2x-3=0的實數(shù)根就是y=x2-2x-3的圖象與x軸的交點橫坐標。 設(shè)計意圖:以學生熟悉二次函數(shù)圖象和二次方程為平臺,觀察方程和函數(shù)形式上的聯(lián)系,從而得到方程實數(shù)根與函數(shù)圖象之間的關(guān)系。理解零點是連接函數(shù)與方程的結(jié)點。 初步提出零點的概念:-1、3既是方程x2-2x-3=0的根,又是函數(shù)y=x2-2x-3在y=0時x的值,也是函數(shù)圖象與x軸交點的橫坐標。-1、3在方程中稱為實數(shù)根,在函數(shù)中稱為零點。 問題4 函數(shù)y=x2-2x+1和函數(shù)y=x2-2x+3零點分別是什么? 函數(shù)y=x2-2x+1的零點是-1。函數(shù)y=x2-2x+3不存在零點。 設(shè)計意圖:應(yīng)用定義,加深對概念的理解。 提出零點的定義:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點.(zero point) 2、函數(shù)零點的判定: 研究方程的實數(shù)根也就是研究相應(yīng)函數(shù)的零點,也就是研究函數(shù)的圖象與x軸的交點情況。 (Ⅰ) 問題5 如果把函數(shù)比作一部電影,那么函數(shù)的零點就像是電影的一個瞬間,一個鏡頭。有時我們會忽略一些鏡頭,但是我們?nèi)匀荒芡茰y出被忽略的片斷?,F(xiàn)在我有兩組鏡頭(如圖),哪一組能說明他的行程一定曾渡過河?(Ⅱ) 第Ⅰ組能說明他的行程中一定曾渡過河,而第Ⅱ組中他的行程就不一定曾渡過河。 設(shè)計意圖:從現(xiàn)實生活中的問題,讓學生體會動與靜的關(guān)系,系統(tǒng)與局部的關(guān)系。 問題6 將河流抽象成x軸,將前后的兩個位置視為A、B兩點。請問當A、B與x軸怎樣的位置關(guān)系時,AB間的一段連續(xù)不斷的函數(shù)圖象與x軸一定會有交點? A、B兩點在x軸的兩側(cè)。 設(shè)計意圖:將現(xiàn)實生活中的問題抽象成數(shù)學模型,進行合情推理,將原來學生只認為靜態(tài)的函數(shù)圖象,理解為一種動態(tài)的過程。 問題7 A、B與x軸的位置關(guān)系,如何用數(shù)學符號(式子)來表示? A、B兩點在x軸的兩側(cè)。可以用f(a)f(b)<0來表示。 設(shè)計意圖:由原來的圖象語言轉(zhuǎn)化為數(shù)學語言。培養(yǎng)學生的觀察能力和提取有效信息的能力。體驗語言轉(zhuǎn)化的過程。 問題8 滿足條件的函數(shù)圖象與x軸的交點一定在(a,b)內(nèi)嗎?即函數(shù)的零點一定在(a,b)內(nèi)嗎? 一定在區(qū)間(a,b)上。若交點不在(a,b)上,則它不是函數(shù)圖象。 設(shè)計意圖:讓學生體驗從現(xiàn)實生活中抽象成數(shù)學模型時,需要一定修正。加強學生對函數(shù)動態(tài)的感受,對函數(shù)的定義有進一步的理解。 通過上述探究,讓學生自己概括出零點存在性定理: 一般地,我們有: 如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線并且有f(a)f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根. (三)新知應(yīng)用與深化 例題1 觀察下表,分析函數(shù)在定義域內(nèi)是否存在零點? -2 -1 0 1 2 -109 -10 -1 8 107 分析:函數(shù)圖象是連續(xù)不斷的,又因為,所以在區(qū)間(0,1)上必存在零點。我們也可以通過計算機作圖(如圖)幫助了解零點大致的情況。 設(shè)計意圖:初步應(yīng)用零點的存在性定理來判斷函數(shù)零點的存在性問題。并引導(dǎo)學生探索判斷函數(shù)零點的方法,通過作出x,的對應(yīng)值表,來尋找函數(shù)值異號的區(qū)間,還可以借助計算機來作函數(shù)的圖象分析零點問題。而且對函數(shù)有一個零點形成直觀認識. 例題2 求函數(shù)的零點個數(shù). 分析:用計算器或計算機作出x,的對應(yīng)值表和圖象。 1 2 3 4 5 6 7 8 9 -4.0 -1.3 1.1 3.4 5.6 7.8 9.9 12.1 14.2 由表可知,f (2)<0,f (3)>0,則,這說明函數(shù)在區(qū)間(2,3)內(nèi)有零點。結(jié)合函數(shù)的單調(diào)性,進而說明零點是只有唯一一個. 設(shè)計意圖:學生應(yīng)用例題1方法來解決例題2的零點存在性問題,并結(jié)合函數(shù)的單調(diào)性,從圖象的直觀上去判斷零點的個數(shù)問題。 練習:判斷下列函數(shù)是否存在零點,指出零點所在的大致區(qū)間? ① f(x)=2xln(x-2)-3; ②f(x)= 2x+2x-6. (四)總結(jié)歸納設(shè)計 通過引導(dǎo)讓學生回顧零點概念、意義與求法,以及零點存在性判斷,鼓勵學生積極回答,然后老師再從數(shù)學思想方面進行總結(jié). (五)目標檢測設(shè)計 必作題: 1.教材P92習題3.1(A組)第2題; 2.求下列函數(shù)的零點: (1) (2); (3) (4) 3.求下列函數(shù)的零點,圖象頂點的坐標,畫出各自的簡圖,并指出函數(shù)值在哪些區(qū)間上大于零,哪些區(qū)間上小于零: (1) (2). 4.已知. (1)為何值時,函數(shù)的圖象與軸有兩個零點; (2)如果函數(shù)至少有一個零點在原點右側(cè),求的值. 選做題:設(shè)函數(shù). (1)利用計算機探求和時函數(shù)的零點個數(shù); (2)當時,函數(shù)的零點是怎樣分布的?- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- “方程的根與函數(shù)的零點” 人教版 必修 方程 函數(shù) 零點 教學 設(shè)計
鏈接地址:http://www.820124.com/p-9312493.html