影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

【備考2014 志鴻優(yōu)化設(shè)計】(湖南專用)2013版中考數(shù)學總復習 專題六 方案設(shè)計與決策(專題講練+名師解讀+考向例析+提升演練)(含解析) 湘教版

上傳人:無*** 文檔編號:96060352 上傳時間:2022-05-25 格式:DOC 頁數(shù):8 大小:12.10MB
收藏 版權(quán)申訴 舉報 下載
【備考2014 志鴻優(yōu)化設(shè)計】(湖南專用)2013版中考數(shù)學總復習 專題六 方案設(shè)計與決策(專題講練+名師解讀+考向例析+提升演練)(含解析) 湘教版_第1頁
第1頁 / 共8頁
【備考2014 志鴻優(yōu)化設(shè)計】(湖南專用)2013版中考數(shù)學總復習 專題六 方案設(shè)計與決策(專題講練+名師解讀+考向例析+提升演練)(含解析) 湘教版_第2頁
第2頁 / 共8頁
【備考2014 志鴻優(yōu)化設(shè)計】(湖南專用)2013版中考數(shù)學總復習 專題六 方案設(shè)計與決策(專題講練+名師解讀+考向例析+提升演練)(含解析) 湘教版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【備考2014 志鴻優(yōu)化設(shè)計】(湖南專用)2013版中考數(shù)學總復習 專題六 方案設(shè)計與決策(專題講練+名師解讀+考向例析+提升演練)(含解析) 湘教版》由會員分享,可在線閱讀,更多相關(guān)《【備考2014 志鴻優(yōu)化設(shè)計】(湖南專用)2013版中考數(shù)學總復習 專題六 方案設(shè)計與決策(專題講練+名師解讀+考向例析+提升演練)(含解析) 湘教版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題六 方案設(shè)計與決策 方案設(shè)計與決策在中考中是常見題型.涉及代數(shù)方面的有方程(組)、不等式(組)和函數(shù)兩類;涉及幾何方面的有測量、包裝等. 考向一 利用方程(組)或不等式(組)進行方案設(shè)計 生活中許多實際問題需借助方程(組)或不等式(組)的求解,不僅如此還需要對方程(組)或不等式(組)的解,進行有針對性的分析作出方案設(shè)計與決策. 【例1】 (2011湖南永州)某學校為開展“陽光體育”活動,計劃拿出不超過3 000元的資金購買一批籃球、羽毛球拍和乒乓球拍,已知籃球、羽毛球拍和乒乓球拍的單價比為8∶3∶2,且其單價和為130元. (1)請問籃球、羽毛球拍和乒乓球拍的單價分別

2、是多少元? (2)若要求購買籃球、羽毛球拍和乒乓球拍的總數(shù)量是80個(副),羽毛球拍的數(shù)量是籃球數(shù)量的4倍,且購買乒乓球拍的數(shù)量不超過15副,請問有幾種購買方案? 分析:(1)已知籃球、羽毛球拍和乒乓球拍的單價比為8∶3∶2,且其單價和為130元.可以設(shè)它們的單價分別為8x,3x,2x元,列一元一次方程來解決;(2)根據(jù)購買籃球、羽毛球拍和乒乓球拍的總數(shù)量是80個(副),羽毛球拍的數(shù)量是籃球數(shù)量的4倍,找出羽毛球拍和乒乓球拍與籃球的關(guān)系,再根據(jù)購買乒乓球拍的數(shù)量不超過15副和不超過3 000元的資金購買一批籃球、羽毛球拍和乒乓球拍這兩個不等關(guān)系列不等式組,求出籃球數(shù)量的范圍,從而制定出方案

3、. 解:(1)因為籃球、羽毛球拍和乒乓球拍的單價比為8∶3∶2,所以,可以依次設(shè)它們的單價分別為8x,3x,2x元,于是,得8x+3x+2x=130,解得x=10. 所以,籃球、羽毛球拍和乒乓球拍的單價分別為80元、30元和20元. (2)設(shè)購買籃球的數(shù)量為y個,則購買羽毛球拍的數(shù)量為4y副,購買乒乓球拍的數(shù)量為(80-y-4y)副,根據(jù)題意,得 由不等式①,得y≤14,由不等式②,得y≥13. 于是,不等式組的解集為13≤y≤14, 因為y取整數(shù),所以y只能取13或14. 因此,一共有兩個方案: 方案一,當y=13時,籃球購買13個,羽毛球拍購買52副,乒乓球拍購買15副;

4、 方案二,當y=14時,籃球購買14個,羽毛球拍購買56副,乒乓球拍購買10副. 方法歸納 本類型題目主要特點有:(1)當利用不等關(guān)系來確定取值范圍時,要結(jié)合不等式的取值范圍來討論; (2)當利用方程來確定取值范圍時,往往利用解的整數(shù)性來解答. 需要說明的是利用方程(組)或不等式(組)進行方案設(shè)計常??山柚淮魏瘮?shù)的性質(zhì)進行決策. 考向二 利用二次函數(shù)進行方案設(shè)計 在商業(yè)活動或生產(chǎn)活動過程中常常遇到最優(yōu)化問題.解決此類問題一般可借助二次函數(shù)以及二次函數(shù)的最大(小)值進行最優(yōu)方案的選擇或設(shè)計. 【例2】 (2011江津)在“五個重慶”建設(shè)中,為了提高市民的宜居環(huán)境,某區(qū)規(guī)劃修建一個

5、文化廣場(平面圖形如圖所示),其中四邊形ABCD是矩形,分別以AB,BC,CD,DA邊為直徑向外作半圓,若整個廣場的周長為628米,設(shè)矩形的邊長AB=y(tǒng)米,BC=x米.(注:取π=3.14) (1)試用含x的代數(shù)式表示y. (2)現(xiàn)計劃在矩形ABCD區(qū)域上種植花草和鋪設(shè)鵝卵石等,平均每平方米造價為428元,在四個半圓的區(qū)域上種植草坪及鋪設(shè)花崗巖,平均每平方米造價為400元; ①設(shè)該工程的總造價為w元,求w關(guān)于x的函數(shù)關(guān)系式. ②若該工程政府投入1千萬元,問能否完成該工程的建設(shè)任務(wù)?若能,請列出設(shè)計方案,若不能,請說明理由. ③若該工程在政府投入1千萬元的基礎(chǔ)上,又增加企業(yè)募捐資

6、金64.82萬元,但要求矩形的邊BC的長不超過AB長的三分之二,且建設(shè)廣場恰好用完所有資金,問:能否完成該工程的建設(shè)任務(wù)?若能,請列出所有可能的設(shè)計方案,若不能,請說明理由. 分析:(1)根據(jù)圓周長列出關(guān)于x,y的等式;(2)①根據(jù)三個區(qū)域的面積和價格標準,列出關(guān)于x的函數(shù)關(guān)系式;②比較二次函數(shù)的最小值與1千萬的大小,給出判斷;③根據(jù)“建設(shè)剛好把政府投入的1千萬與企業(yè)募捐資金64.82萬元剛好用完”列出相應(yīng)的一元二次方程,解出方程的根,根據(jù)長寬的要求進行取舍. 解:(1)由題意得πy+πx=628. ∵π=3.14,∴3.14y+3.14x=628. ∴x+y=200.則y=200-x

7、. (2)①w=428xy+400π2+400π2=428x(200-x)+400×3.14×+400×3.14×=200x2-40 000x+12 560 000. ②僅靠政府投入的1千萬元不能完成該工程的建設(shè)任務(wù),其理由如下: 由①知w=200(x-100)2+1.056×107>107, 所以不能. ③由題意,得x≤y,即x≤(200-x),解得x≤80. ∴0≤x≤80. 又根據(jù)題意,得w=200(x-100)2+1.056×107=107+6.482×105. 整理,得(x-100)2=441,解得x1=79,x2=121(不合題意,舍去). ∴只能取x=79,則y

8、=200-79=121. ∴設(shè)計的方案是:AB長為121米,BC長為79米,再分別以各邊為直徑向外作半圓. 方法歸納 利用二次函數(shù)解決方案設(shè)計問題一般地需要先建立二次函數(shù)解析式,然后根據(jù)求二次函數(shù)最值的方法,即當x=-時,y有最大(小)值求得最值.最后要結(jié)合問題情境確定方案.注意有時確定最值時,需要考慮要在x的取值范圍內(nèi). 考向三 利用幾何知識進行方案設(shè)計與決策 利用幾何知識進行方案設(shè)計,不僅要有一定的幾何作圖能力,而且要能熟練地運用幾何的有關(guān)性質(zhì)及全等、相似、圖形變換、方程及三角函數(shù)的有關(guān)知識,并注意充分發(fā)揮分類討論、類比歸納、猜想驗證等數(shù)學思想方法的作用. 【例3】 某校數(shù)學研

9、究性學習小組準備作測量旗桿的數(shù)學實踐活動,來到旗桿下,發(fā)現(xiàn)旗桿AB頂端A垂下一段繩子ABC如圖1.經(jīng)研究發(fā)現(xiàn),原來制定的一系列測量方案,在此都不需要.如今只借助垂下的繩子和一根皮尺,在不攀爬旗桿的情況下,測量相關(guān)數(shù)據(jù),就可以計算出旗桿的高度. 圖1 (1)請你給出具體的測量方案,并寫出推算旗桿高度的過程; (2)推測這個數(shù)學研究性學習小組原來制定的一系列測量旗桿的方案是什么? 分析:針對該問題所提供的情境知道:(1)旗桿垂直于地面;(2)旗桿AB頂端A垂下一段繩子,即繩子比旗桿長出的部分可度量.因此可聯(lián)系相關(guān)的數(shù)學知識利用勾股定理探討具體測量方案. 解:(1)測量方案設(shè)計如下:

10、 ①測量繩子比旗桿多出的部分BC=a m; ②把繩子ABC拉緊到地面D處如圖2,測量B到D的距離BD=b m. 圖2 推算過程:設(shè)旗桿的高度為x m,則AD是(x+a) m. 在直角△ABD中,根據(jù)AB2+BD2=AD2得x2+b2=(x+a)2,x2+b2=x2+a2+2ax,解得x=. (2)這個數(shù)學研究性學習小組原來制定的測量旗桿的方案可能有以下幾個: 圖3   圖4 方法歸納 關(guān)于物體的測量是一個實際問題,因此必須考慮實際環(huán)境,結(jié)合實際環(huán)境,充分運用所學知識制定方案,制定方案時要遵循可操作性強、簡單易行原則.第2個問題的測量方案還可有其他的,有興

11、趣的同學可自行進一步探討.對于以上2種測量方案的相關(guān)計算方法,請同學們自己給出. 一、選擇題 1.小芳家房屋裝修時,選中了一種漂亮的正八邊形地磚.建材店老板告訴她,只用一種八邊形地磚是不能密輔地面的,便向她推薦了幾種形狀的地磚.你認為要使地面密鋪,小芳應(yīng)選擇另一種形狀的地磚是(  ) 2.現(xiàn)有球迷150人欲同時租用A,B,C三種型號客車去觀看世界杯足球賽,其中A,B,C三種型號客車載客量分別為50人,30人,10人,要求每輛車必須載滿,其中A型客車最多租2輛,則球迷們一次性到達賽場的租車方案有(  ) A.3種 B.4種 C.5種 D.6種 二、填空題 3.某班為籌備

12、運動會,準備用365元購買兩種運動服,其中甲種運動服20元/套,乙種運動服35元/套,在錢都用盡的條件下,有__________種購買方案. 4.如圖,點A1,A2,A3,A4是某市正方形道路網(wǎng)的部分交匯點,且它們都位于同一對角線上.某人從點A1出發(fā),規(guī)定向右或向下行走,那么到達點A3的走法共有__________. 三、解答題 5.某樓盤一樓是車庫(暫不出售),二樓至二十三樓均為商品房(對外銷售).商品房售價方案如下:第八層售價為3 000元/米2,從第八層起每上升一層,每平方米的售價增加40元;反之,樓層每下降一層,每平方米的售價減少20元.已知商品房每套面積均為120平方米.開

13、發(fā)商為購買者制定了兩種購房方案: 方案一:購買者先交納首付金額(商品房總價的30%),再辦理分期付款(即貸款). 方案二:購買者若一次付清所有房款,則享受8%的優(yōu)惠,并免收五年物業(yè)管理費(已知每月物業(yè)管理費為a元). (1)請寫出每平方米售價y(元/米2)與樓層x(2≤x≤23,x是正整數(shù))之間的函數(shù)解析式. (2)小張已籌到120 000元,若用方案一購房,他可以購買哪些樓層的商品房呢? (3)有人建議老王使用方案二購買第十六層,但他認為此方案還不如不免收物業(yè)管理費而直接享受9%的優(yōu)惠劃算.你認為老王的說法一定正確嗎?請用具體數(shù)據(jù)闡明你的看法. 6.一塊洗衣肥皂長、寬、高分別是1

14、6 cm,6 cm,3 cm.一箱肥皂30條,請你為雕牌肥皂廠設(shè)計一種符合下列要求的包裝箱,并使包裝箱所用材料最少. (1)肥皂裝箱時,相同的面積要互相對接; (2)包裝箱是一個長方形; (3)裝入肥皂后不留空隙. 7.如圖,飛機沿水平方向(A,B兩點所在直線)飛行,前方有一座高山,為了避免飛機飛行過低,就必須測量山頂M到飛行路線AB的距離MN.飛機能夠測量的數(shù)據(jù)有俯角和飛行距離(因安全因素,飛機不能飛到山頂?shù)恼戏絅處才測飛行距離),請設(shè)計一個求距離MN的方案,要求: (1)指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標出); (2)用測出的數(shù)據(jù)寫出求距離MN的步驟. 8.知識

15、背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具有特殊價值的綠色食品.在當?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖). (1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米. ①按方案1(如圖)做一個紙箱,需要矩形硬紙板A1B1C1D1的面積是多少平方米? ②小明認為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板A2B2C2D2做一個紙箱比方案1更優(yōu),你認為呢?請說明理由. (2)拓展思維:北方一家水果商打算在基地購進一批“野生楊梅”,但他感覺(

16、1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證. 紙箱示意圖  紙箱展開圖(方案1) 紙箱展開圖(方案2) 備用圖形 參考答案 專題提升演練 1.B 正八邊形的內(nèi)角度數(shù)為135°,正三角形一個內(nèi)角度數(shù)為60°,設(shè)密鋪時,一個接縫點周圍有m塊正八邊形,n塊正三角形,則有135m+60n=360,通過試根,沒有滿足條件的正整數(shù)m,n的值使方程成立,因此A選項錯誤;依次類推,分別把60°換成90°,120°,經(jīng)過試根,只有90°可以找到滿足條件的正整數(shù)m,n的值使方程成立,因

17、此,選B. 2.B 因為A型車最多租用2輛,所以有兩種情況,租用1輛A型車或租用2輛A型車,設(shè)租用B型車x輛,C型車y輛.①租用1輛A型車時,50+30x+10y=150,其正整數(shù)解為②租用2輛A型車時,100+30x+10y=150,其正整數(shù)解為 綜上所述,共有4種情況. 3.2 設(shè)購買甲、乙兩種運動服分別為x套和y套(x,y為正整數(shù)), 依題意,得20x+35y=365, 整理,得4x+7y=73. y==11-≥1. ∵x,y為正整數(shù),∴x+1是7的倍數(shù). ∴解得≤k≤, ∴整數(shù)k=1或2, ∴或 4.6種 從點A1出發(fā),先向下走有三種走法,先向右走也有三種走法,共

18、6種. 5.解:(1)1°當2≤x≤8時,每平方米的售價應(yīng)為:3 000-(8-x)×20=20x+2 840(元/平方米). 2°當9≤x≤23時,每平方米的售價應(yīng)為:3 000+(x-8)·40=40x+2 680(元/平方米). ∴y=x為正整數(shù). (2)由(1)知: 1°當2≤x≤8時,小張首付款為(20x+2 840)·120·30%=36(20x+2 840)≤36(20·8+2 840)=108 000元<120 000元. ∴2~8層可任選. 2°當9≤x≤23時,小張首付款為(40x+2 680)·120·30%=36(40x+2 680)元. 36(40x+

19、2 680)≤120 000,解得:x≤=16. ∵x為正整數(shù),∴9≤x≤16. 綜上得:小張用方案一可以購買二至十六層的任何一層. (3)若按方案二購買第十六層,則老王要實交房款為:y1=(40·16+2 680)·120·92%-60a(元). 若按老王的想法則要交房款為:y2=(40·16+2 680)·120·91%(元). ∵y1-y2=3 984-60a, 當y1>y2即y1-y2>0時,解得0<a<66.4,此時老王想法正確; 當y1≤y2即y1-y2≤0時,解得a≥66.4,此時老王想法不正確. 6.解:方案一:以16×3的面相對連放三塊構(gòu)成底層,再如此放10層

20、,整個表面積為最小值2 616 cm2; 方案二:以16×3的面相對連放五塊構(gòu)成底層,再如此放6層,整個表面積仍為最小值2 616 cm2. 7.解:答案不唯一. (1)如圖,測出飛機在A處對山頂?shù)母┙菫棣粒瑴y出飛機在B處對山頂?shù)母┙菫棣?,測出AB的距離為d,連接AM,BM. (2)第一步,在Rt△AMN中,tan α=,∴AN=; 第二步,在Rt△BMN中,tan β=,∴BN=; 其中AN=d+BN,解得MN=. 8.解:(1)①設(shè)這個紙箱底面的長為x,則寬為0.6x. ∵x×0.6x×0.5=0.3, ∴x2=1,解得x=1. 由圖示可知, =[1+2×(0.5+0.5)]×[0.6+2×(0.5+0.3)]=3×2.2=6.6(平方米). ②方案2優(yōu)惠.由圖示 可知,=,解得h1=. =,解得h2=. ∴=×=×=5.625(平方米). ∵5.625平方米<6.6平方米, ∴采用方案2優(yōu)惠. (2)設(shè)現(xiàn)在設(shè)計的紙箱的底面長為x米,寬為y米, 則x+y=0.8,xy=0.3. 即y=0.8-x和y=,其圖象如圖所示. 因為兩個函數(shù)圖象無交點,所以要將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,水果商的這種要求不能辦到. 8

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!