購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。有不明白之處,可咨詢QQ:1304139763
畢業(yè)設計(論文)任務書
課題名稱
撥叉鉆F18孔夾具設計
系 部
機械工程學院
專 業(yè)
機械設計制造及其自動化
班 級
姓 名
學 號
任務起止日期
2014
年
12
月
26
日至
2015
年
5
月
27
日共
17
周
指導教師簽名(校內)
莫文輝
指導教師簽名(校外)
教學主任簽名
年
月
日
一、課題內容
夾具是機械零件加工中的重要組成部分。夾具設計的好壞直接影響零件加工質量。設計撥叉鉆F18孔夾具。 大批量生產。撥叉零件圖見大連理工大學《機械制圖》263頁。
二、課題任務要求
1.按要求完成開題報告;
2.完成總體設計、部分主要另、部件設計合計圖紙量2.5-3張零號圖;
3.翻譯與專業(yè)相關的資料不少于3000漢字;
4. 撰寫設計論文不少于15000字;
序號
設計(論文)各階段名稱
日 期
1
熟悉、分析畢業(yè)設計的具體技術要求;調研、查閱相關文獻資料;初步制定課題方案完成開題報告。
27/12-12/3
2
確定課題總體研究方案。進行方案的優(yōu)劣分析、比較;最終選擇確定應用方案;翻譯與專業(yè)相關外文資料一份.
13/3-26/3
3
進行計算、設計裝配圖。
27/3-17/4
4
設計零件圖。
18/4-27/4
5
整理設計資料;撰寫完成畢業(yè)設計論文。
28/4-26/5
6
整理、檢查、匯總畢業(yè)設計資料、交畢業(yè)設計資料,準備畢業(yè)答辯并整理資料。
27/5-3/6
三、進程安排
四、應閱讀的主要參考文獻
1.《機床夾具設計手冊》 機機械工業(yè)出版社,2010年。
2.《機床夾具設計》 機機械工業(yè)出版社,2009年。
夾具夾緊力的優(yōu)化及對工件定位精度的影響
B.Li 和 S.N.Mellkote
布什伍德拉夫機械工程學院,佐治亞理工學院,格魯吉亞,美國研究所
由于夾緊和加工,在工件和夾具的接觸部位會產生局部彈性變形,使工件尺寸發(fā)生變化,進而影響工件的最終加工質量。這種效應可通過最小化夾具設計優(yōu)化,夾緊力是一個重要的設計變量,可以得到優(yōu)化,以減少工件的位移。本文提出了一種確定多夾緊夾具受到準靜態(tài)加工部位的最佳夾緊力的新方法。該方法采用彈性接觸力學模型代表夾具與工件接觸,并涉及制定和解決方案的多目標優(yōu)化模型的約束。夾緊力的最優(yōu)化對工件定位精度的影響通過3-2-1式銑夾具的例子進行了分析。
關鍵詞:彈性 接觸 模型 夾具 夾緊力 優(yōu)化
前言
定位和夾緊的工件加工中的兩個關鍵因素。要實現(xiàn)夾具的這些功能,需將工件定位到一個合適的基準上并夾緊,采用的夾緊力必須足夠大,以抑制工件在加工過程中產生的移動。然而,過度的夾緊力可誘導工件產生更大的彈性變形 ,這會影響它的位置精度,并反過來影響零件質量。所以有必要確定最佳夾緊力,來減小由于彈性變形對工件的定位誤差,同時滿足加工的要求。在夾具分析和綜合領域上的研究人員使用了有限元模型的方法或剛體模型的方法。大量的工作都以有限元方法為基礎被報道[參考文獻1-8]。隨著得墨忒耳[8],這種方法的限制是需要較大的模型和計算成本。同時,多數(shù)的有限元基礎研究人員一直重點關注的夾具布局優(yōu)化和夾緊力的優(yōu)化還沒有得到充分討論,也有少數(shù)的研究人員通過對剛性模型[9-11]對夾緊力進行了優(yōu)化,剛型模型幾乎被近似為一個規(guī)則完整的形狀。得墨忒耳[12,13]用螺釘理論解決的最低夾緊力,總的問題是制定一個線性規(guī)劃,其目的是盡量減少在每個定位點調整夾緊力強度的法線接觸力。接觸摩擦力的影響被忽視,因為它較法線接觸力相對較小,由于這種方法是基于剛體假設,獨特的三維夾具可以處理超過6個自由度的裝夾,復和倪[14]也提出迭代搜索方法,通過假設已知摩擦力的方向來推導計算最小夾緊力,該剛體分析的主要限制因素是當出現(xiàn)六個以上的接觸力是使其靜力不確定,因此,這種方法無法確定工件移位的唯一性。
這種限制可以通過計算夾具——工件系統(tǒng)[15]的彈性來克服,對于一個相對嚴格的工件,該夾具在機械加工工件的位置會受夾具點的局部彈性變形的強烈影響。Hockenberger和得墨忒耳[16]使用經驗的接觸力變形的關系(稱為元功能),解決由于夾緊和準靜態(tài)加工力工件剛體位移。同一作者還考察了加工工件夾具位移對設計參數(shù)的影響[17]。桂 [18] 等 通過工件的夾緊力的優(yōu)化定位精度彈性接觸模型對報告做了改善,然而,他們沒有處理計算夾具與工件的接觸剛度的方法,此外,其算法的應用沒有討論機械加工刀具路徑負載有限序列。李和Melkote [19]和烏爾塔多和Melkote [20]用接觸力學解決由于在加載夾具夾緊點彈性變形產生的接觸力和工件的位移,他們還使用此方法制定了優(yōu)化方法夾具布局[21]和夾緊力[22]。但是,關于multiclamp系統(tǒng)及其對工件精度影響的夾緊力的優(yōu)化并沒有在這些文件中提到 。
本文提出了一種新的算法,確定了multiclamp夾具工件系統(tǒng)受到準靜態(tài)加載的最佳夾緊力為基礎的彈性方法。該法旨在盡量減少影響由于工件夾緊位移和加工荷載通過系統(tǒng)優(yōu)化夾緊力的一部分定位精度。接觸力學模型,用于確定接觸力和位移,然后再用做夾緊力優(yōu)化,這個問題被作為多目標約束優(yōu)化問題提出和解決。通過兩個例子分析工件夾緊力的優(yōu)化對定位精度的影響,例子涉及的銑削夾具3-2-1布局。
1. 夾具——工件聯(lián)系模型
1.1 模型假設
該加工夾具由L定位器和帶有球形端的c形夾組成。工件和夾具接觸的地方是線性的彈性接觸,其他地方完全剛性。工件——夾具系統(tǒng)由于夾緊和加工受到準靜態(tài)負載。夾緊力可假定為在加工過程中保持不變,這個假設是有效的,在對液壓或氣動夾具使用。在實際中,夾具工件接觸區(qū)域是彈性分布,然而,這種模式的發(fā)展,假設總觸剛度(見圖1)第i夾具接觸力局部變形如下:
(1) 其中(j=x,y,z)表示,在當?shù)刈幼鴺讼登芯€和法線方向的接觸剛度
第 19 頁 共 15 頁
圖1 彈簧夾具——
工件接觸模型。
表示在第i個
接觸處的坐標系
(j=x,y,z)是對應沿著xyz方向的彈性變形,分別 (j= x,y,z)的代表和切向力接觸 ,法線力接觸。
1.2 工件——夾具的接觸剛度模型
集中遵守一個球形尖端定位,夾具和工件的接觸并不是線性的,因為接觸半徑與隨法線力呈非線性變化 [23]。由于法線力接觸變形作用于半徑和平面工件表面之間,這可從封閉赫茲的辦法解決縮進一個球體彈性半空間的問題。對于這個問題, 是法線的變形,在[文獻23 第93頁]中給出如下:
(2)
其中式中 和是工件和夾具的彈性模量,、分別是工件和材料的泊松比。
切向變形沿著和切線方向)硅業(yè)切力距有以下形式[文獻23第217頁]
(3)
其中、 分別是工件和夾具剪切模量
一個合理的接觸剛度的線性可以近似從最小二乘獲得適合式 (2),這就產生了以下線性化接觸剛度值:在計算上述的線性近似,
(4)
(5)
正常的力被假定為從0到1000N,且最小二乘擬合相應的R2值認定是0.94。
2.夾緊力優(yōu)化
我們的目標是確定最優(yōu)夾緊力,將盡量減少由于工件剛體運動過程中,局部的夾緊和加工負荷引起的彈性變形,同時保持在準靜態(tài)加工過程中夾具——工件系統(tǒng)平衡,工件的位移減少,從而減少定位誤差。實現(xiàn)這個目標是通過制定一個多目標約束優(yōu)化問題的問題,如下描述。
2.1 目標函數(shù)配方
工件旋轉,由于部隊輪換往往是相當小[17]的工件定位誤差假設為確定其剛體翻譯基本上,其中 、、和 是 沿,和三個正交組件(見圖2)。
圖2 工件剛體平移和旋轉
工件的定位誤差歸于裝夾力,然后可以在該剛體位移的范數(shù)計算如下:
(6)
其中表示一個向量二級標準。
但是作用在工件的夾緊力會影響定位誤差。當多個夾緊力作用于工件,由此產生的夾緊力為,有如下形式:
(7)
其中夾緊力是矢量,夾緊力的方向矩陣,是夾緊力是矢量的方向余弦,、和 是第i個夾緊點夾緊力在、和方向上的向量角度(i=1、2、3...,C)。
在這個文件中,由于接觸區(qū)變形造成的工件的定位誤差,被假定為受的作用力是法線的,接觸的摩擦力相對較小,并在進行分析時忽略了加緊力對工件的定位誤差的影響。意指正常接觸剛度比,是通過(i=1,2…L)和最小的所有定位器正常剛度相乘,并假設工件、、取決于、、的方向,各自的等效接觸剛度可有下式計算得出(見圖3),工件剛體運動,歸于夾緊行動現(xiàn)在可以寫成:
(8)
工件有位移,因此,定位誤差的減小可以通過盡量減少產生的夾緊力向量 范數(shù)。因此,第一個目標函數(shù)可以寫為:
最小化 (9)
要注意,加權因素是與等效接觸剛度成正比的在、和 方向上。通過使用最低總能量互補參考文獻[15,23]的原則求解彈性力學接觸問題得出A的組成部分是唯一確定的,這保證了夾緊力和相應的定位反應是“真正的”解決方案,對接觸問題和產生的“真正”剛體位移,而且工件保持在靜態(tài)平衡,通過夾緊力的隨時調整。因此,總能量最小化的形式為補充的夾緊力優(yōu)化的第二個目標函數(shù),并給出:
最小化 (10)
其中代表機構的彈性變形應變能互補,代表由外部力量和力矩配合完成,是遵守對角矩陣的, 和是所有接觸力的載體。
如圖3 加權系數(shù)計算確定的基礎
內蒙古科技大學本科生畢業(yè)設計(外文翻譯)
2.2 摩擦和靜態(tài)平衡約束
在(10)式優(yōu)化的目標受到一定的限制和約束,他們中最重要的是在每個接觸處的靜摩擦力約束。庫侖摩擦力的法律規(guī)定(是靜態(tài)摩擦系數(shù)),這方面的一個非線性約束和線性化版本可以使用,并且[19]有:
(11)
假設準靜態(tài)載荷,工件的靜力平衡由下列力和力矩平衡方程確保(向量形式):
(12)
其中包括在法線和切線方向的力和力矩的機械加工力和工件重量。
2.3界接觸力
由于夾具——工件接觸是單側面的,法線的接觸力只能被壓縮。這通過以下的的約束表(i=1,2…,L+C) (13)
它假設在工件上的法線力是確定的,此外,在一個法線的接觸壓力不能超過壓工件材料的屈服強度()。這個約束可寫為:
(i=1,2,…,L+C) (14)
如果是在第i個工件——夾具的接觸處的接觸面積,完整的夾緊力優(yōu)化模型,可以寫成:最小化 (15)
3.模型算法求解
式(15)多目標優(yōu)化問題可以通過求解約束[24]。這種方法將確定的目標作為首要職能之一,并將其轉換成一個約束對。該補充()的主要目的是處理功能,并由此得到夾緊力()作為約束的加權范數(shù)最小化。對為主要目標的選擇,確保選中一套獨特可行的夾緊力,因此,工件——夾具系統(tǒng)驅動到一個穩(wěn)定的狀態(tài)(即最低能量狀態(tài)),此狀態(tài)也表示有最小的夾緊力下的加權范數(shù)。 的約束轉換涉及到一個指定的加權范數(shù)小于或等于,其中是 的約束,假設最初所有夾緊力不明確,要確定一個合適的。在定位和夾緊點的接觸力的計算只考慮第一個目標函數(shù)(即)。雖然有這樣的接觸力,并不一定產生最低的夾緊力,這是一個“真正的”可行的解決彈性力學問題辦法,可完全抑制工件在夾具中的位置。這些夾緊力的加權系數(shù),通過計算并作為初始值與比較,因此,夾緊力式(15)的優(yōu)化問題可改寫為:
最小化 (16)
由: (11)–(14) 得。
類似的算法尋找一個方程根的二分法來確定最低的上的約束, 通過盡可能降低上限,由此產生的最小夾緊力的加權范數(shù)。 迭代次數(shù)K,終止搜索取決于所需的預測精度和,有參考文獻[15]:
(17)
其中表示上限的功能,完整的算法在如圖4中給出。
圖4 夾緊力的優(yōu)化算法(在示例1中使用)。 圖5 該算法在示例2使用
4. 加工過程中的夾緊力的優(yōu)化及測定
上一節(jié)介紹的算法可用于確定單負載作用于工件的載體的最佳夾緊力,然而,刀具路徑隨磨削量和切割點的不斷變化而變化。因此,相應的夾緊力和最佳的加工負荷獲得將由圖4算法獲得,這大大增加了計算負擔,并要求為選擇的夾緊力提供標準, 將獲得滿意和適宜的整個刀具軌跡 ,用保守的辦法來解決下面將被討論的問題,考慮一個有限的數(shù)目(例如m)沿相應的刀具路徑設置的產生m個最佳夾緊力,選擇記為, , …,在每個采樣點,考慮以下四個最壞加工負荷向量:
(18)、和表示在、和方向上的最大值,、和上的數(shù)字1,2,3分別代替對應的和另外兩個正交切削分力,而且有:
雖然4個最壞情況加工負荷向量不會在工件加工的同一時刻出現(xiàn),但在每次常規(guī)的進給速度中,刀具旋轉一次出現(xiàn)一次,負載向量引入的誤差可忽略。因此,在這項工作中,四個載體負載適用于同一位置,(但不是同時)對工件進行的采樣 ,夾緊力的優(yōu)化算法圖4,對應于每個采樣點計算最佳的夾緊力。夾緊力的最佳形式有:
(i=1,2,…,m) (j=x,y z,r) (19)
其中是最佳夾緊力的四個情況下的加工負荷載體,(C=1,2,…C)是每個相應的夾具在第i個樣本點和第j負荷情況下力的大小。是計算每個負載點之后的結果,一套簡單的“最佳”夾緊力必須從所有的樣本點和裝載條件里發(fā)現(xiàn),并在所有的最佳夾緊力中選擇。這是通過在所有負載情況和采樣點排序,并選擇夾緊點的最高值的最佳的夾緊力,見于式 (20):
(k=1,2,…,C) (20)
只要這些具備,就得到一套優(yōu)化的夾緊力,驗證這些力,以確保工件夾具系統(tǒng)的靜態(tài)平衡。否則,會出現(xiàn)更多采樣點和重復上述程序。在這種方式中,可為整個刀具路徑確定“最佳”夾緊力 ,圖5總結了剛才所描述的算法。請注意,雖然這種方法是保守的,它提供了一個確定的夾緊力,最大限度地減少工件的定位誤差的一套系統(tǒng)方法。
5.影響工件的定位精度
它的興趣在于最早提出了評價夾緊力的算法對工件的定位精度的影響。工件首先放在與夾具接觸的基板上,然后夾緊力使工件接觸到夾具,因此,局部變形發(fā)生在每個工件夾具接觸處,使工件在夾具上移位和旋轉。隨后,準靜態(tài)加工負荷應用造成工件在夾具的移位。工件剛體運動的定義是由它在、和方向上的移位和自轉(見圖2),
如前所述,工件剛體位移產生于在每個夾緊處的局部變形,假設為相對于工件的質量中心的第i個位置矢量定位點,坐標變換定理可以用來表達在工件的位移,以及工件自轉如下: (21)
其中表示旋轉矩陣,描述當?shù)卦诘趇幀相聯(lián)系的全球坐標系和是一個旋轉矩陣確定工件相對于全球的坐標系的定位坐標系。假設夾具夾緊工件旋轉,由于旋轉很小,故也可近似為:
(22)
方程(21)現(xiàn)在可以改寫為: (23)
其中是經方程(21)重新編排后變換得到的矩陣式,是夾緊和加工導致的工件剛體運動矢量。工件與夾具單方面接觸性質意味著工件與夾具接觸處沒有拉力的可能。因此,在第i裝夾點接觸力可能與的關系如下:
(24)
其中是在第i個接觸點由于夾緊和加工負荷造成的變形,意味著凈壓縮變形,而負數(shù)則代表拉伸變形; 是表示在本地坐標系第i個接觸剛度矩陣,是單位向量. 在這項研究中假定液壓/氣動夾具,根據對外加工負荷,故在法線方向的夾緊力的強度保持不變,因此,必須對方程(24)的夾緊點進行修改為:
(25)
其中是在第i個夾緊點的夾緊力,讓表示一個對外加工力量和載體的6×1矢量。并結合方程(23)—(25)與靜態(tài)平衡方程,得到下面的方程組:
(26)
其中,其中表示相乘。由于夾緊和加工工件剛體移動,q可通過求解式(26)得到。工件的定位誤差向量, (見圖6),
現(xiàn)在可以計算如下: (27)
其中是考慮工件中心加工點的位置向量,且
6.模擬工作
較早前提出的算法是用來確定最佳夾緊力及其對兩例工件精度的影響例如:
1.適用于工件單點力。
2.應用于工件負載準靜態(tài)銑削序列
如左圖7 工件夾具配置中使用的模擬研究 工件夾具定位聯(lián)系; 、和全球坐標系。
3-2-1夾具圖7所示,是用來定位并控制7075 - T6鋁合金(127毫米×127毫米×38.1毫米)的柱狀塊。假定為球形布局傾斜硬鋼定位器/夾具在表1中給出。工件——夾具材料的摩擦靜電對系數(shù)為0.25。使用伊利諾伊大學開發(fā)EMSIM程序[參考文獻26] 對加工瞬時銑削力條件進行了計算,如表2給出例(1),應用工件在點(109.2毫米,25.4毫米,34.3毫米)瞬時加工力,圖4中表3和表4列出了初級夾緊力和最佳夾緊力的算法 。該算法如圖5所示 ,一個25.4毫米銑槽使用EMSIM進行了數(shù)值模擬,以減少起步(0.0毫米,25.4毫米,34.3毫米)和結束時(127.0毫米,25.4毫米,34.3毫米)四種情況下加工負荷載體,
(見圖8)。模擬計算銑削力數(shù)據在表5中給出。
圖8最終銑削過程模擬例如2。
表6中5個坐標列出了為模擬抽樣調查點。最佳夾緊力是用前面討論過的排序算法計算每個采樣點和負載載體最后的夾緊力和負載。
7.結果與討論
例如算法1的繪制最佳夾緊力收斂圖9,
圖9
對于固定夾緊裝置在圖示例假設(見圖7),由此得到的夾緊力加權范數(shù)有如下形式:.結果表明,最佳夾緊力所述加工條件下有比初步夾緊力強度低得多的加權范數(shù),最初的夾緊力是通過減少工件的夾具系統(tǒng)補充能量算法獲得。由于夾緊力和負載造成的工件的定位誤差,如表7。結果表明工件旋轉小,加工點減少錯誤從13.1%到14.6%不等。在這種情況下,所有加工條件改善不是很大,因為從最初通過互補勢能確定的最小化的夾緊力值已接近最佳夾緊力。圖5算法是用第二例在一個序列應用于銑削負載到工件,他應用于工件銑削負載一個序列。最佳的夾緊力,,對應列表6每個樣本點,隨著最后的最佳夾緊力,在每個采樣點的加權范數(shù)和最優(yōu)的初始夾緊力繪圖10,在每個采樣點的加權范數(shù)的,,和繪制。
結果表明,由于每個組成部分是各相應的最大夾緊力,它具有最高的加權范數(shù)。如圖10所示,如果在每個夾緊點最大組成部分是用于確定初步夾緊力,則夾緊力需相應設置,有比相當大的加權范數(shù)。故是一個完整的刀具路徑改進方案。上述模擬結果表明,該方法可用于優(yōu)化夾緊力相對于初始夾緊力的強度,這種做法將減少所造成的夾緊力的加權范數(shù),因此將提高工件的定位精度。
圖10
8.結論
該文件提出了關于確定多鉗夾具,工件受準靜態(tài)加載系統(tǒng)的優(yōu)化加工夾緊力的新方法。夾緊力的優(yōu)化算法是基于接觸力學的夾具與工件系統(tǒng)模型,并尋求盡量減少應用到所造成的工件夾緊力的加權范數(shù),得出工件的定位誤差。該整體模型,制定一個雙目標約束優(yōu)化問題,使用-約束的方法解決。該算法通過兩個模擬表明,涉及3-2-1型,二夾銑夾具的例子。今后的工作將解決在動態(tài)負載存在夾具與工件在系統(tǒng)的優(yōu)化,其中慣性,剛度和阻尼效應在確定工件夾具系統(tǒng)的響應特性具有重要作用。
9.參考資料:
1、J. D. Lee 和L. S. Haynes .《柔性夾具系統(tǒng)的有限元分析》交易美國ASME,工程雜志工業(yè) :134-139頁。
2、W. Cai, S. J. Hu 和J. X. Yuan .“柔性鈑金夾具:原理,算法和模擬”,交易美國ASME,制造科學與工程雜志 :1996 318-324頁。
3、P. Chandra, S. M. Athavale, R. E. DeVor 和S. G. Kapoor.“負載對表面平整度的影響”工件夾具制造科學研討會論文集1996,第一卷:146-152頁。
4、R. J. Menassa 和V. R. DeVries.“適用于選拔夾具設計與優(yōu)化方法,美國ASME工業(yè)工程雜志:113 、 412-414,1991。
5、A. J. C. Trappey, C. Su 和J. Hou.《計算機輔助夾具分析中的應用有限元分析和數(shù)學優(yōu)化模型》, 1995 ASME程序,MED: 777-787頁。
6、 S. N. Melkote, S. M. Athavale, R. E. DeVor, S. G. Kapoor 和J. Burkey .“基于加工過程仿真的加工裝置作用力系統(tǒng)研究”, NAMRI/SME:207–214頁, 1995
7、“考慮工件夾具,夾具接觸相互作用布局優(yōu)化模擬的結果” 341-346,1998。
8、E. C. DeMeter. 《快速支持布局優(yōu)化》,國際機床制造, 碩士論文 1998。
9、Y.-C. Chou, V. Chandru, M. M. Barash .《加工夾具機械構造的數(shù)學算法:分析和合成》,美國ASME,工程學報工業(yè)“:1989 299-306頁。
10、S. H. Lee 和 M. R. Cutkosky. 《具有摩擦性的夾具規(guī)劃》 美國ASME,工業(yè)工程學報:1991,320–327頁。
11、S. Jeng, L. Chen 和W. Chieng.“最小夾緊力分析”,國際機床制造,碩士論文 1995年。
12、E. C. DeMeter.《加工夾具的性能的最小——最大負荷標準》 美國ASME,工業(yè)工程雜志 :1994
13、E. C. DeMeter .《加工夾具最大負荷的性能優(yōu)化模型》 美國ASME,工業(yè)工程雜志 1995。
14、JH復和AYC倪.“核查和工件夾持的夾具設計”方案優(yōu)化,設計和制造,4,碩士論文: 307-318,1994。
15、T. H. Richards、埃利斯 霍伍德.1977,《應力能量方法分析》,1977。
16、M. J. Hockenberger and E. C. DeMeter. 對工件準靜態(tài)分析功能位移在加工夾具的應用程序,制造科學雜志與工程: 325–331頁, 1996。
畢業(yè)設計(開題報告)
課題名稱
撥叉鉆F18孔夾具設計
系 部
機械工程學院
專 業(yè)
機械設計制造及其自動化
班 級
姓 名
學 號
任務起止日期
2014
年
12
月
26
日至
2015
年
5
月
27
日共
17
周
指導教師簽名(校內)
莫文輝
指導教師簽名(校外)
教學主任簽名
年
月
日
1 前言
撥叉的加工工藝及夾具設計為本課題的研究內容,對此研究查閱大量的資料,首先明白機械加工工藝過程就是用切削的方法改變毛坯的形狀、尺寸和材料的物理機械性質成為具有所需要的一定形狀尺寸精度、粗糙度等的零件。
為了十分具體確切的說明過程,盡可能使工件能按照零件圖的技術要求加工出來,就得制定嚴謹合理的機械加工工藝規(guī)程來作為生產的指導性技術文件,學習理解,深入研究制定機械加工工藝規(guī)程的意義與作用就是本課題研究目的。
在整個設計過程中,我們將學習到更多的知識。
(1)我們必須仔細了解零件結構,首先通過對零件圖進行認真的分析,培養(yǎng)我們獨立識圖能力,進一步增強我們對零件圖的認識和了解,其次通過對零件圖的繪制,能增強我們的繪圖能力和運用制圖軟件的能力。
(2)制訂工藝規(guī)程、確定加工余量、工藝尺寸計算、工時定額計算、定位誤差分析等工藝設計。在整個設計中也是非常重要的,通過這些設計,不僅讓我們更為全面地了解零件的加工過程、加工尺寸的確定,而且讓我們知道工藝路線和加工余量的確定,必須與工廠的實際狀況相結合相適應。這是對以前學習過的知識理論的復習,也是對以后參加工作進行實踐的一個很好的鋪墊。
(3)在這個設計過程中,我們還必須考慮工件的安裝和夾緊.安裝的正確與否直接影響工件加工精度,安裝是否方便和迅速,又會影響輔助時間的長短,從而影響生產率,夾具是加工工件時,為完成某道工序,用來正確迅速安裝工件的裝置.它對保證加工精度、提高生產率和減輕工人勞動量有很大作用。這是整個設計的重點,也是一個難點
?近年來,機械制造工藝有著飛速的發(fā)展。比如,應用人工智能選擇零件的工藝規(guī)程。因為特種加工的微觀物理過程非常復雜,往往涉及電磁場、熱力學、流體力學、電化學等諸多領域,其加工機理的理論研究極其困難,通常很難用簡單的解析式來表達。近年來,雖然各國學者采用各種理論對不同的特種加工技術進行了深入的研究,并取得了卓越的理論成就,但離定量的實際應用尚有一定的距離。然而采用每一種特種加工方法所獲得的加工精度和表面質量與加工條件參數(shù)間都有其規(guī)律。因此,目前常采用研究傳統(tǒng)切削加工機理的實驗統(tǒng)計方 法來了解特種加工的工藝規(guī)律,以便實際應用,但還缺乏系統(tǒng)性。受其限制,目前特種加工的工藝參數(shù)只能憑經驗選取,還難以實現(xiàn)最優(yōu)化和自動化,例如,電火花成形電極的沉入式 加工工藝,它在占電火花成形機床總數(shù)95%以上的非數(shù)控電火花成形加工機床和較大尺寸的模具型腔加工中得到廣泛應用。雖然已有學者對其CAD、CAPP和CAM原理開展了一些研究,并取得了一些成果,但由于工藝數(shù)據的缺乏,仍未有成熟的商品化的CAD/CAM系統(tǒng)問世。通常只能采用手工的方法或部分借助于CAD造型、部分生成復雜電極的三維型面數(shù)據。隨著模糊 數(shù)學、神經元網絡及專家系統(tǒng)等多種人工智能技術的成熟發(fā)展,人們開始嘗試利用這一技術來建立加工效果和加工條件之間的定量化的精度、效率、經濟性等實驗模型,并得到了初步 的成果。因此,通過實驗建模,將典型加工實例和加工經驗作為知識存儲起來,建立描述特種加工工藝規(guī)律的可擴展性開放系統(tǒng)的條件已經成熟。并為進一步開展特種加工加工工藝過程的計算機模擬,應用人工智能選擇零件的工藝規(guī)程和虛擬加工奠定基礎。同時,在機械加工過程中,夾具占有非常重要的地位,它可靠地保證了工件的加工精度,提高了加工效率,減輕了勞動的強度,夾具的設計過程中,應深入生產實際,(對工件的圖紙,工藝文件,生產綱領等分析),精心調查研究,吸取國內外的先進技術,制訂出合理的設計方案。
我們都知道減少停工檢修期是提高生產力、使生產能力利用系數(shù)最大化的一項重要因素。然而零件加工過程中的精確定位和裝夾的重復精度也是改進效率和質量的關鍵。譬如柔性加工中心的產生就是為了減少產品循環(huán)周期。
2 國內外研究現(xiàn)狀、水平和發(fā)展趨勢
目前中國制造業(yè)發(fā)展迅猛,以前的我國制造業(yè)普遍使用剛性專機加工各種各樣的零部件,導致改型和生產個零部件周期較長。隨著我國制造業(yè)發(fā)展和各種各種零件的需求與日俱增,加工設備和工藝也向著柔性化的方向轉變。加工裝備的柔性概念和需求主要體現(xiàn)在對設備快速性和適應性的需求上,因此制造商不得不尋求柔性和產量之間的最佳組合。當然,在滿足了柔性的條件下、也有著不同的解決方案,如:模塊化、可變換化、可重新配置化、在線兼容性等。不論采用哪種方案,使用高性能的液壓夾具都顯得尤為重要,現(xiàn)在,柔性專機、可重新配置的機床及專用加工中心的組合應用,使得發(fā)動機零件的加工變得越來越柔性化,具體情況取決于每個加工項目的產量配額
使用液壓夾具的主要優(yōu)勢是能節(jié)省夾緊和松卸工件時所花的大量的時間。有關統(tǒng)計資料表明液壓夾緊相比機械夾緊節(jié)省90%~95%的時間,縮小了生產循環(huán)周期,從而增加了產量也就意味著降低了成本。
當加工一長型鋁合金零件時,刀具通過時旋轉油缸可快速讓開,刀具通過后可快速復位。液壓夾具系統(tǒng)的第二項重要特點是可實現(xiàn)非常高的定位精度。關鍵在于夾緊力在定位和夾緊過程中保持恒定不變。從而確保了同一道工序下的加工質量一致性。由于變形造成的廢品率將會微乎其微
夾具是機械加工不可缺少的部件,在機床技術向高速、高效、精密、復合、智能、環(huán)保方向發(fā)展的帶動下,夾具技術正朝著高精、高效、模塊、組合、通用、經濟的方向發(fā)展
3 本課題的基本內容,預計可能遇到的困難,提出解決問題的方法和措施
本課題的基本內容:撥叉加工工藝及夾具設計
1 撥叉加工工藝
(1) 制訂規(guī)程,關鍵是工序的劃分和定位基準的選擇。在設計開始的過程中,我們必須要認真分析零件圖,了解其箱體零件的結構特點和相關的技術要求,對箱體零件的每一個細節(jié),都應仔細的分析,如箱體加工表面的平行度、粗糙度、垂直度,特別是要注意箱體零件各孔系自身精度(同軸度、圓度、粗糙度等)和它們的相互位置精度(軸線之間的平行度、垂直度以及軸線與平面之間的平行度、垂直度等要求),箱體零件的尺寸是整個零件加工的關鍵,必須弄清箱體零件的每一個尺寸。繪制零件圖是一個重點,同時因為箱體零件比較復雜,所以也是一個難點。我們采用solidworks軟件繪制零件圖,一方面增加我們對零件各部分構造的認識,另一方面增加我們對solidworks軟件的熟悉。
(2) 工序的劃分 ,確定加工順序和工序內容,安排工序的集中和分散程度,劃分工序階段,這項工作與生產綱領有密切關系,具體可以根據生產類型、零件的結構特點、技術要求和機床設備等。根據實際生產條件確定工藝過程的工序次數(shù);如批量小時可采用在通用機床上工序集中原則,批量大時即可按工序分散原則,組織流水線生產,也可利用高生產率的通用設備,按工序集中原則組織生產。
(3) 定位基準的選擇,根據粗基準,精基準的選擇原則;遵循基準統(tǒng)一、基準重合。由零件圖具體分析可得:撥叉首先以一側面和一個為粗基準,對底平面A進行粗加工,再以底平面A為精基準加工孔。
2 夾具設計可能遇到的問題:
工件定位是否正確,定位精度是否滿足要求,工件夾緊牢固是否可靠等等。工件在夾具中的定位精度,主要與定位基準是否與工序基準重合、定位基準與定位元件的配合狀況等諸多因素有關,可提高夾具的制造精度,減少配合間隙,就能提高夾具在機床上的定位精度,夾具中出現(xiàn)過定位時,可通過撤消多余定位元件,使多余定位元件失去限制重復自由度的能力,增加過定位元件與定位基準的配合間隙等辦法來解決。
夾緊必須可靠,但夾緊力不可過大,以免工件或夾具產生過大變形??刹捎枚帱c夾緊或在工件鋼性薄弱部位安放適當?shù)妮o助支撐。夾具的設計必須要保證夾具的定位準確和機構合理,考慮夾具的定位誤差和安裝誤差。我們將通過對工件與夾具的認真分析,結合一些夾具的具體設計事例,查閱相關的夾具設計資料,聯(lián)系在實習工廠看到的一些箱體零件加工的夾具來解決這些問題.
上述即為可能遇到問題以及初步考慮的解決措施
4 本論文課題擬采用的研究手段(途徑)和可行性分析
根據不同的研究對象擬采用不同的研究手段(途徑),本課題包括兩方面內容:
一 撥叉加工工藝的設計和夾具設計
二 制定工藝規(guī)程的研究途徑和可行性分析
毛坯的選擇:
?根據生產綱領和零件結構選擇毛坯,毛坯的種類一般在零件圖上已有規(guī)定。對于鑄件和鍛件應了解其分模面、澆口、冒口位置和拔模率,以便在選擇定位基準和計算加工余量時有所考慮。如果毛坯是棒料或型材,則按其標準確定尺寸規(guī)格,并決定每批加工件數(shù)。
毛坯的種類和其質量對機械加工的質量有密切的關系。同時對勞動生產率、材料消耗、成本高低有很大的影響。撥叉毛坯材料為灰鑄鐵(HT150),硬度范圍在150~200HBS,需要承受中等載荷。采用砂型鑄造方法,由于大批量生產故宜采用實體金屬模進行兩箱造型,這不僅簡化了造型和合箱操作,還因型砂緊實度較為均勻,提高鑄件的表面質量。在切削加工前進行石墨化退火處理,消除鑄件表層和壁厚較薄的部位可能出現(xiàn)的白口組織(大量滲碳體出現(xiàn))以便進行切削加工。
擬訂工藝路線:
表示零件的加工順序及加工方法,分出工序,安裝或工位及工步等。并選擇各工序所使用的機床型號、刀具、夾具及量具等。擬訂工藝路線從實際出發(fā),理論和實際生產實踐結合起來。常常需要提出幾個方案,進行分析比較后再確定。
計算切削用量、加工余量及工時定額:
?查閱《切削用量手冊》等資料并進行計算確定。根據相關的規(guī)律,對單件小批量生產不規(guī)定切削用量,而是由工人根據實際生產的情況自行選定,但對于自動線和流水線,為保證生產的節(jié)拍,必須規(guī)定切削用量,這些內容并不能隨意確定和蓋面。計算加工余量、工序尺寸及公差是要控制各工序的加工質量以保證最終加工質量。工時定額一般按各工廠的實際經驗積累起來的統(tǒng)計資料來估算。隨著生產的發(fā)展,工藝的改進,新工藝,新技術的不斷出現(xiàn),工時定額應進行相應的修改。
?對機械加工工藝規(guī)程基本要求可歸結為質量、生產率和經濟性。雖然有時互相矛盾,但只要把它們處理好,就會成為一個統(tǒng)一體。在三個要求中,質量是生產的核心。質量表現(xiàn)在機械產品的各項技術性能指標,質量不能保證,根本談不上數(shù)量;質量和生產率之間是密切聯(lián)系的,在確保高質量的前提下,應該不斷地最大限度地提高生產率,滿足生產量的要求。如果兩者矛盾,則生產率要服從于質量,應在保證質量的前提下解決生產率問題。在保證質量和上產率的前提下,應盡可能的節(jié)約耗費,減少投資,降低制造成本,這就是經濟性。
因此,撥叉的工藝規(guī)程研究途徑應該體現(xiàn)質量、生產率和經濟性的平衡統(tǒng)一,達到經濟合理及可行的最優(yōu)方案。
5 夾具設計的研究途徑和可行性分析
?撥叉鏜、銑、鉆等工序使用的專用夾具,此類夾具的特點是針對性強、加工質量好、結構緊湊、操作簡便、生產率高。
夾具設計最關鍵是工件精確定位和可靠的夾緊。為了解決此問題,首先得了解影響定位精度的因素。然后采取措施解決具體的問題。如定位基準與定位元件的配合狀況和影響定位精度,那么可以提高夾具的制造精度,減小配合間隙就能提高夾具在機床上的定位精度。
除此之外,選擇夾具的類型與結構型式必須與零件生產批量大小相適應,夾具結構與零部件應具有足夠的剛度和強度,從而保證夾具操作方便、夾緊可靠、使用安全、并有合理的裝卸空間。
參考文獻:
[1] 劉德榮,組合夾具結構簡圖的初步探討,組合夾具,1982. (1)
[2] 孫已德,機床夾具圖冊[M],北京:機械工業(yè)出版社,1984:20-23。
[3] 貴州工學院機械制造工藝教研室,機床夾具結構圖冊[M],貴陽:貴州任命出版社,1983:42-50。
[4] 劉友才,機床夾具設計[M] ,北京:機械工業(yè)出版社,1992 。
[5] 孟少龍,機械加工工藝手冊第1卷[M],北京:機械工業(yè)出版社,1991。
[6] 《金屬機械加工工藝人員手冊》修訂組,金屬機械加工工藝人員手冊[M],上海:上??茖W技術出版社,1979。
[7] 李洪,機械加工工藝師手冊[M],北京:機械工業(yè)出版社,1990。
[8] 馬賢智,機械加工余量與公差手冊[M],北京:中國標準出版社,1994。
[9] 上海金屬切削技術協(xié)會,金屬切削手冊[M],上海:上??茖W技術出版社,1984。
[10] 周永強,高等學校畢業(yè)設計指導[M],北京:中國建材工業(yè)出版社,2002。
[11] 薛源順,機床夾具設計(第二版) [M],機械工業(yè)出版社,2003.1
[12] 余光國,馬俊,張興發(fā),機床夾具設計[M],重慶:重慶大學出版社,1995。
[13] 東北重型機械學院,洛陽農業(yè)機械學院,長春汽車廠工人大學,機床夾具設計手冊[M],上海:上海科學技術出版社,1980。
[14] 李慶壽,機械制造工藝裝備設計適用手冊[M],銀州:寧夏人民出版社,1991。
[15] 廖念釗,莫雨松,李碩根,互換性與技術測量[M],中國計量出版社,2000:9-19。
[16] 哈爾濱工業(yè)大學,哈爾濱市教育局,專用機床夾具設計與制造,黑農江人民出版社,1979.12
[17] 樂兌謙,金屬切削刀具,機械工業(yè)出版社,2005:4-17。
[18] Machine Tools N.chernor 1984.
[19] Machine Tool Metalworking John L.Feirer 1973.
[20] Handbook of Machine Tools Manfred weck 1984 .
[21] Sors l.fatigue design of machine components.oxford:pergramon press.1971