六槽移鋼機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)【11張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢(xún)QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢(xún)QQ:414951605或者1304139763 ========================
畢業(yè)設(shè)計(jì)(論文)
六槽移鋼機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)
院 (系):
專(zhuān) 業(yè):機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué)生姓名:
學(xué) 號(hào):
指導(dǎo)教師單位:
姓 名:
職 稱(chēng):
2015年06月22日
摘 要
本次畢業(yè)設(shè)計(jì)是關(guān)于六槽移鋼機(jī)的設(shè)計(jì)。首先對(duì)六槽移鋼機(jī)作了簡(jiǎn)單的概述;接著分析了六槽移鋼機(jī)的選型原則及計(jì)算方法;然后根據(jù)這些設(shè)計(jì)準(zhǔn)則與計(jì)算選型方法按照給定參數(shù)要求進(jìn)行選型設(shè)計(jì);接著對(duì)所選擇的六槽移鋼機(jī)各主要零部件進(jìn)行了校核。在六槽移鋼機(jī)的設(shè)計(jì)、制造以及應(yīng)用方面,目前我國(guó)與國(guó)外先進(jìn)水平相比仍有較大差距,國(guó)內(nèi)在設(shè)計(jì)制造六槽移鋼機(jī)過(guò)程中存在著很多不足。
整機(jī)結(jié)構(gòu)主要由電動(dòng)機(jī)產(chǎn)生動(dòng)力將需要的動(dòng)力通過(guò)聯(lián)軸器傳遞到齒輪上,通過(guò)齒輪再過(guò)渡到另外一組齒輪上,然后再通過(guò)齒輪過(guò)渡到蝸輪蝸桿上。同時(shí)本文對(duì)該方案六槽移鋼機(jī)的關(guān)鍵零部件設(shè)計(jì)過(guò)程進(jìn)行了詳細(xì)闡述,其主要內(nèi)容包括系統(tǒng)總體方案的設(shè)計(jì)、電動(dòng)機(jī)的選擇、執(zhí)行機(jī)構(gòu)的設(shè)計(jì)、傳動(dòng)零部件的設(shè)計(jì)、軸的設(shè)計(jì)與校核以及軸承的選擇、等。
本文主要介紹六槽移鋼機(jī)的發(fā)展?fàn)顩r,六槽移鋼機(jī)結(jié)構(gòu)設(shè)計(jì)原理,六槽移鋼機(jī)總體方案分析及確定,六槽移鋼機(jī)結(jié)構(gòu)設(shè)計(jì)內(nèi)容所包含的機(jī)械圖紙的繪制,的計(jì)算,結(jié)構(gòu)設(shè)計(jì)結(jié)論與建議。
本論文研究?jī)?nèi)容:
(1) 六槽移鋼機(jī)總體結(jié)構(gòu)設(shè)計(jì)。
(2) 六槽移鋼機(jī)工作性能分析。
(3)電動(dòng)機(jī)的選擇。
(4) 六槽移鋼機(jī)的傳動(dòng)系統(tǒng)、執(zhí)行部件。
(5)對(duì)設(shè)計(jì)零件進(jìn)行設(shè)計(jì)計(jì)算分析和校核。
(6)繪制整機(jī)裝配圖及重要部件裝配圖和設(shè)計(jì)零件的零件圖。?
關(guān)鍵詞:六槽移鋼機(jī),傳動(dòng)裝置,連桿,減速器
55
Abstract
This graduation design is about the design of the six slot steel machine. First of six trough moving steel machine has made the simple outline; then analyzes the six slot steel machine type selection and calculation method of displacement. Then according to these design criteria and selection method in accordance with the given parameters requirements selection of design; then on the selected six tank shift steel machine and the main components were checked. Groove in the shift steel machine design, manufacturing and application, at present our country and the overseas advanced level compared to still have a large gap, in the design and manufacture of domestic six trough steel moving machine process exists many problems.
The whole structure mainly by the motor generates dynamics will require the power through the coupling transfer to the gear, through the gear and the transition to another set of gear, and then through the transition gear to worm. At the same time, the paper on the six slot shift steel machine is the key part of the design process are detailed. The main contents include the design of the overall scheme of the system design, motor selection, actuator design, transmission parts, the shaft of the design and check and bearing selection, etc..
This paper mainly introduces the groove shift the development condition of the steel machine, the six slot shift steel structure design principle, six trough shift the overall scheme of steel machine analysis and determination, the six slot shift steel structure design content contained in the mechanical drawing of rendering, the calculation of structure design conclusion and suggestions.
Research content of this thesis:
(1) the overall structure design of the six slot steel machine.
(2) analysis of working performance of the six slot machine.
(3) motor selection.
(4) transmission system and executing component of the six slot machine.
(5) design and calculation analysis and verification of design parts.
(6) drawing the assembly drawing and the assembly drawing of the important parts.
Key words: Six slot machine, transmission device, connecting rod, reducer
目 錄
摘 要 II
Abstract III
1 緒論 1
1.1 六槽移鋼機(jī)的發(fā)展史 1
1.2 六槽移鋼機(jī)的用途 1
1.3 六槽移鋼機(jī)的優(yōu)越性 2
1.3.1 六槽移鋼機(jī)的特點(diǎn) 2
1.3.2 六槽移鋼機(jī)與其他移鋼機(jī)的比較 2
1.4六槽移鋼機(jī)減速器 3
2 六槽移鋼機(jī)總體方案 6
2.1 六槽移鋼機(jī)設(shè)計(jì)方案 6
2.1.1六槽移鋼機(jī)方案一 6
2.1.2 六槽移鋼機(jī)方案二 6
2.1.3六槽移鋼機(jī)方案三 7
2.1.4六槽移鋼機(jī)方案四 7
2.2 六槽移鋼機(jī)執(zhí)行機(jī)構(gòu)的選型與設(shè)計(jì) 8
2.3 六槽移鋼機(jī)傳動(dòng)裝置方案確定 9
3 電動(dòng)機(jī)選擇、傳動(dòng)系統(tǒng)運(yùn)動(dòng)和動(dòng)力參數(shù)計(jì)算 11
3.1 主要參數(shù) 11
3.2電動(dòng)機(jī)的選擇 11
3.3 傳動(dòng)裝置總傳動(dòng)比的確定及各級(jí)傳動(dòng)比的分配 13
3.4 運(yùn)動(dòng)參數(shù)和動(dòng)力參數(shù)計(jì)算 14
4 圓柱齒輪傳動(dòng)零件的設(shè)計(jì)計(jì)算 15
4.1 選擇齒輪材料及精度等級(jí) 15
4.2按齒面接觸疲勞強(qiáng)度設(shè)計(jì) 15
4.3 根據(jù)齒根彎曲疲勞強(qiáng)度設(shè)計(jì) 17
5 蝸輪蝸桿傳動(dòng)設(shè)計(jì)計(jì)算 20
5.1 選擇蝸桿傳動(dòng)類(lèi)型 20
5.2 選擇材料 20
5.3 按齒面接觸疲勞強(qiáng)度進(jìn)行設(shè)計(jì) 20
5.4 蝸桿與蝸輪的主要參數(shù)與幾何尺寸 22
5.5 校核齒根彎曲疲勞強(qiáng)度 22
5.6 驗(yàn)算效率 23
5.7 精度等級(jí)公差和表面粗糙度的確定 23
5.8 熱平衡核算 24
6 軸的設(shè)計(jì)計(jì)算 25
6.1 Ⅰ軸的結(jié)構(gòu)設(shè)計(jì) 25
6.2 Ⅱ軸的結(jié)構(gòu)設(shè)計(jì) 28
6.3 Ⅲ軸的結(jié)構(gòu)設(shè)計(jì) 30
6.4 校核Ⅱ軸的強(qiáng)度 32
7 軸承的選擇和校核 38
7.1 高速軸軸承的校核 38
7.2 低速軸軸承的校核 39
7.3 計(jì)算輸入軸軸承 41
7.4 計(jì)算輸出軸軸承 44
8 鍵聯(lián)接的選擇和校核 46
8.1 鍵的選擇 46
8.2 鍵的校核 46
8.3 聯(lián)軸器的選擇 47
9 減速器的潤(rùn)滑、密封和潤(rùn)滑牌號(hào)的選擇 48
9.1 傳動(dòng)零件的潤(rùn)滑 48
9.1.1 齒輪傳動(dòng)潤(rùn)滑 48
9.1.2滾動(dòng)軸承的潤(rùn)滑 48
9.2 減速器密封 48
9.2.1 軸外伸端密封 48
9.2.2 軸承靠箱體內(nèi)側(cè)的密封 48
9.2.3 箱體結(jié)合面的密封 48
10 減速器箱體設(shè)計(jì)及附件的選擇和說(shuō)明 49
11 六槽移鋼機(jī)其他零件設(shè)計(jì) 51
結(jié)束語(yǔ) 53
參考文獻(xiàn) 54
致謝 55
1 緒論
進(jìn)入21世紀(jì),我國(guó)工件工業(yè)快速發(fā)展,深加工產(chǎn)業(yè)規(guī)模也在飛速擴(kuò)大,現(xiàn)有工件機(jī)械設(shè)備生產(chǎn)能力小,不能滿(mǎn)足大型加工廠的生成要求。因此,改進(jìn)和擴(kuò)大現(xiàn)有工件機(jī)械設(shè)備是完全必要的。六槽移鋼機(jī)作為工件加工的基礎(chǔ)設(shè)備, 在我國(guó)廣泛應(yīng)用幾十年。生產(chǎn)實(shí)踐證明,該設(shè)備對(duì)品種、粒度等適應(yīng)性強(qiáng),與其他給料設(shè)備相比,具有運(yùn)行安全可靠、性能穩(wěn)定、噪音低、維護(hù)工作量少等優(yōu)點(diǎn),仍不失推廣使用的價(jià)值。
1.1 六槽移鋼機(jī)的發(fā)展史
運(yùn)輸機(jī)設(shè)備是礦生產(chǎn)系統(tǒng)的主要設(shè)備之一,給設(shè)備的可靠性,特別是關(guān)鍵咽喉部位給設(shè)備的可靠性,直接影響整個(gè)生產(chǎn)系統(tǒng)的正常運(yùn)行。目前,我國(guó)礦使用的給設(shè)備主要是六槽移鋼機(jī)和電振工件六槽移鋼機(jī)。 六槽移鋼機(jī)最早研制于20世紀(jì)60年代初,70年代,國(guó)外工件六槽移鋼機(jī)發(fā)展?fàn)顩r也與國(guó)內(nèi)大相徑庭,并沒(méi)有更高的技術(shù)含量,但價(jià)格卻是國(guó)內(nèi)同類(lèi)產(chǎn)品的4~5倍。
1.2 六槽移鋼機(jī)的用途
國(guó)內(nèi)外無(wú)縫鋼管市場(chǎng),目前均處于消費(fèi)增長(zhǎng)期,國(guó)內(nèi)無(wú)縫鋼管消費(fèi)量將保持較快的增長(zhǎng)速度,為我國(guó)無(wú)縫鋼管的發(fā)展提供了有利時(shí)機(jī)。
首先,能源、交通、石化用管需求量不減,高性能品種增長(zhǎng)迅速。能源、交通、石油化工等設(shè)施的建設(shè)和維修所需無(wú)縫鋼管仍在鋼材市場(chǎng)需求中占有相當(dāng)重要的地位。近幾年對(duì)高性能新品種的需求量增長(zhǎng)較快,例如高性能油井管、大口徑電站鍋爐用管、耐腐蝕、耐低溫的石化用管以及不銹鋼管等等。
其次,輸送石油、天然氣、成品油、煤漿、礦漿等流體的管線管,尤其是高強(qiáng)度管線用管的需求量將會(huì)大幅上升。
第三,建筑業(yè)的高速增長(zhǎng),建筑結(jié)構(gòu)用高檔網(wǎng)架管材需求量增長(zhǎng)迅速。
第四,高技術(shù)含量的鋼管需求量增加。汽車(chē)、家電、造船、設(shè)備制造等行業(yè)對(duì)無(wú)縫鋼管數(shù)量需求增加、品種及質(zhì)量要求提高,無(wú)縫鋼管品種向高技術(shù)含量方向發(fā)展。
1.3 六槽移鋼機(jī)的優(yōu)越性
1.3.1 六槽移鋼機(jī)的特點(diǎn)
(1) 結(jié)構(gòu)簡(jiǎn)單,維修量小
在六槽移鋼機(jī)中,電動(dòng)機(jī)和減速器均采用標(biāo)準(zhǔn)件,其余大部分是焊接件,易損部件少,用在礦惡劣條件下,其適用性深受使用單位的好評(píng)。
(2) 性能穩(wěn)定
六槽移鋼機(jī)對(duì)的牌號(hào),粒度組成,水分、物理性質(zhì)等要求不嚴(yán),當(dāng)來(lái)料不均勻,水分不穩(wěn)定且?jiàn)A有大塊、橡膠帶、木頭及鋼絲等時(shí),仍能正常工作。
(3) 噪音低
六槽移鋼機(jī)是非振動(dòng)式給料設(shè)備,其噪音發(fā)生源只有電動(dòng)機(jī)和減速器,而這兩個(gè)的噪音都很低。尤其在井下或倉(cāng)等封閉型場(chǎng)所,噪音無(wú)法擴(kuò)散,這一點(diǎn)是電動(dòng)給料機(jī)所無(wú)法達(dá)到的。
(4) 安裝方便、高度小
六槽移鋼機(jī)一般安裝在倉(cāng)倉(cāng)口,不需另外配制倉(cāng)口閘門(mén)溜槽及電動(dòng)機(jī)支座,安裝可一步到位,調(diào)整工作量小,而電動(dòng)工件六槽移鋼機(jī)由于不能直接承受倉(cāng)壓,需要另外安放倉(cāng)口過(guò)渡溜槽,相比之下,六槽移鋼機(jī)占有高度小,節(jié)省了建筑面積和投資。
1.3.2 六槽移鋼機(jī)與其他移鋼機(jī)的比較
往復(fù)式與振動(dòng)式工件六槽移鋼機(jī)兩種給料方式不同點(diǎn)是給料頻率和幅值以及運(yùn)動(dòng)軌跡不同。在使用過(guò)程中,由于振動(dòng)式給料機(jī)給料頻率高,噪聲也大;由于它是靠高頻振動(dòng)給料,其振動(dòng)和頻率受物料密度及比重影響較大,所以,給料量不穩(wěn)定,給料量的調(diào)整也比較困難;由于是靠振動(dòng)給料,給料機(jī)必須起振并穩(wěn)定在一定的頻率和振幅下,但振動(dòng)參數(shù)對(duì)底板受力狀態(tài)很敏感,故底板不能承受較大的倉(cāng)壓,需增加給料槽的長(zhǎng)度,結(jié)果是增加了整體高度,使工程投資加大;由于給料高度加大,無(wú)法用于替換目前大量使用的六槽移鋼機(jī)。減速器是一種由封閉在剛性殼體內(nèi)的齒輪傳動(dòng)、蝸桿傳動(dòng)或齒輪—蝸桿傳動(dòng)所組成的獨(dú)立部件,常用在動(dòng)力機(jī)與工作機(jī)之間作為減速的傳動(dòng)裝置;在少數(shù)場(chǎng)合下也用作增速的傳動(dòng)裝置,這時(shí)就稱(chēng)為增速器。減速器由于結(jié)構(gòu)緊湊、效率較高、傳遞運(yùn)動(dòng)準(zhǔn)確可靠、使用維護(hù)簡(jiǎn)單,并可成批生產(chǎn),故在現(xiàn)代機(jī)械中應(yīng)用很廣。
1.4六槽移鋼機(jī)減速器
減速器類(lèi)型很多,按傳動(dòng)級(jí)數(shù)主要分為:?jiǎn)渭?jí)、二級(jí)、多級(jí);按傳動(dòng)件類(lèi)型又可分為:齒輪、蝸桿、齒輪-蝸桿、蝸桿-齒輪等。
電動(dòng)機(jī)
聯(lián)軸器
高速軸
中間軸
低速軸
減速器系統(tǒng)框圖
以下對(duì)幾種減速器進(jìn)行對(duì)比:
1)圓柱齒輪減速器
當(dāng)傳動(dòng)比在8以下時(shí),可采用單級(jí)圓柱齒輪減速器。大于8時(shí),最好選用二級(jí)(i=8—40)和二級(jí)以上(i>40)的減速器。單級(jí)減速器的傳動(dòng)比如果過(guò)大,則其外廓尺寸將很大。二級(jí)和二級(jí)以上圓柱齒輪減速器的傳動(dòng)布置形式有展開(kāi)式、分流式和同軸式等數(shù)種。展開(kāi)式最簡(jiǎn)單,但由于齒輪兩側(cè)的軸承不是對(duì)稱(chēng)布置,因而將使載荷沿齒寬分布不均勻,且使兩邊的軸承受力不等。為此,在設(shè)計(jì)這種減速器時(shí)應(yīng)注意:1)軸的剛度宜取大些;2)轉(zhuǎn)矩應(yīng)從離齒輪遠(yuǎn)的軸端輸入,以減輕載荷沿齒寬分布的不均勻;3)采用斜齒輪布置,而且受載大的低速級(jí)又正好位于兩軸承中間,所以載荷沿齒寬的分布情況顯然比展開(kāi)好。這種減速器的高速級(jí)齒輪常采用斜齒,一側(cè)為左旋,另一側(cè)為右旋,軸向力能互相抵消。為了使左右兩對(duì)斜齒輪能自動(dòng)調(diào)整以便傳遞相等的載荷,其中較輕的齠輪軸在軸向應(yīng)能作小量游動(dòng)。同軸式減速器輸入軸和輸出軸位于同一軸線上,故箱體長(zhǎng)度較短。但這種減速器的軸向尺寸較大。
圓柱齒輪減速器在所有減速器中應(yīng)用最廣。它傳遞功率的范圍可從很小至40 000kW,圓周速度也可從很低至60m/s一70m/s,甚至高達(dá)150m/s。傳動(dòng)功率很大的減速器最好采用雙驅(qū)動(dòng)式或中心驅(qū)動(dòng)式。這兩種布置方式可由兩對(duì)齒輪副分擔(dān)載荷,有利于改善受力狀況和降低傳動(dòng)尺寸。設(shè)計(jì)雙驅(qū)動(dòng)式或中心驅(qū)動(dòng)式齒輪傳動(dòng)時(shí),應(yīng)設(shè)法采取自動(dòng)平衡裝置使各對(duì)齒輪副的載荷能得到均勻分配,例如采用滑動(dòng)軸承和彈性支承。
圓柱齒輪減速器有漸開(kāi)線齒形和圓弧齒形兩大類(lèi)。除齒形不同外,減速器結(jié)構(gòu)基本相同。傳動(dòng)功率和傳動(dòng)比相同時(shí),圓弧齒輪減速器在長(zhǎng)度方向的尺寸要比漸開(kāi)線齒輪減速器約30%。
2)圓錐齒輪減速器
它用于輸入軸和輸出軸位置布置成相交的場(chǎng)合。二級(jí)和二級(jí)以上的圓錐齒輪減速器常由圓錐齒輪傳動(dòng)和圓柱齒輪傳動(dòng)組成,所以有時(shí)又稱(chēng)圓錐—圓柱齒輪減速器。因?yàn)閳A錐齒輪常常是懸臂裝在軸端的,為了使它受力小些,常將圓錐面崧,作為,高速極:山手面錐齒輪的精加工比較困難,允許圓周速度又較低,因此圓錐齒輪減速器的應(yīng)用不如圓柱齒輪減速器廣。
3)蝸桿減速器
主要用于傳動(dòng)比較大(j>10)的場(chǎng)合。通常說(shuō)蝸桿傳動(dòng)結(jié)構(gòu)緊湊、輪廓尺寸小,這只是對(duì)傳減速器的傳動(dòng)比較大的蝸桿減速器才是正確的,當(dāng)傳動(dòng)比并不很大時(shí),此優(yōu)點(diǎn)并不顯著。由于效率較低,蝸桿減速器不宜用在大功率傳動(dòng)的場(chǎng)合。
蝸桿減速器主要有蝸桿在上和蝸桿在下兩種不同形式。蝸桿圓周速度小于4m/s時(shí)最好采用蝸桿在下式,這時(shí),在嚙合處能得到良好的潤(rùn)滑和冷卻條件。但蝸桿圓周速度大于4m/s時(shí),為避免攪油太甚、發(fā)熱過(guò)多,最好采用蝸桿在上式。
4)齒輪-蝸桿減速器
它有齒輪傳動(dòng)在高速級(jí)和蝸桿傳動(dòng)在高速級(jí)兩種布置形式。前者結(jié)構(gòu)較緊湊,后者效率較高。
通過(guò)比較,我們選定圓柱齒輪減速器。
減速器結(jié)構(gòu)
近年來(lái),減速器的結(jié)構(gòu)有些新的變化。為了和沿用已久、國(guó)內(nèi)目前還在普遍使用的減速器有所區(qū)別,這里分列了兩節(jié),并稱(chēng)之為傳統(tǒng)型減速器結(jié)構(gòu)和新型減速器結(jié)構(gòu)。
1)傳統(tǒng)型減速器結(jié)構(gòu)
絕大多數(shù)減速器的箱體是用中等強(qiáng)度的鑄鐵鑄成,重型減速器用高強(qiáng)度鑄鐵或鑄鋼。少量生產(chǎn)時(shí)也可以用焊接箱體。鑄造或焊接箱體都應(yīng)進(jìn)行時(shí)效或退火處理。大量生產(chǎn)小型減速器時(shí)有可能采用板材沖壓箱體。減速器箱體的外形目前比較傾向于形狀簡(jiǎn)單和表面平整。箱體應(yīng)具有足夠的剛度,以免受載后變形過(guò)大而影響傳動(dòng)質(zhì)量。箱體通常由箱座和箱蓋兩部分所組成,其剖分面則通過(guò)傳動(dòng)的軸線。為了卸蓋容易,在剖分面處的一個(gè)凸緣上攻有螺紋孔,以便擰進(jìn)螺釘時(shí)能將蓋頂起來(lái)。聯(lián)接箱座和箱蓋的螺栓應(yīng)合理布置,并注意留出扳手空間。在軸承附近的螺栓宜稍大些并盡量靠近軸承。為保證箱座和箱蓋位置的準(zhǔn)確性,在剖分面的凸緣上應(yīng)設(shè)有2—3個(gè)圓錐定位銷(xiāo)。在箱蓋上備有為觀察傳動(dòng)嚙合情況用的視孔、為排出箱內(nèi)熱空氣用的通氣孔和為提取箱蓋用的起重吊鉤。在箱座上則常設(shè)有為提取整個(gè)減速器用的起重吊鉤和為觀察或測(cè)量油面高度用的油面指示器或測(cè)油孔。關(guān)于箱體的壁厚、肋厚、凸緣厚、螺栓尺寸等均可根據(jù)經(jīng)驗(yàn)公式計(jì)算,見(jiàn)有關(guān)圖冊(cè)。關(guān)于視孔、通氣孔和通氣器、起重吊鉤、油面指示Oe等均可從有關(guān)的設(shè)計(jì)手冊(cè)和圖冊(cè)中查出。在減速器中廣泛采用滾動(dòng)軸承。只有在載荷很大、工作條件繁重和轉(zhuǎn)速很高的減速器才采用滑動(dòng)軸承。
2)新型減速器結(jié)構(gòu)
下面列舉兩種聯(lián)體式減速器的新型結(jié)構(gòu),圖中未將電動(dòng)機(jī)部分畫(huà)出。
1)齒輪—蝸桿二級(jí)減速器;2)圓柱齒輪—圓錐齒輪—圓柱齒輪三級(jí)減速器。
這些減速器都具有以下結(jié)構(gòu)特點(diǎn):
——在箱體上不沿齒輪或蝸輪軸線開(kāi)設(shè)剖分面。為了便于傳動(dòng)零件的安裝,在適當(dāng)部位有較大的開(kāi)孔。
——在輸入軸和輸出軸端不采用傳統(tǒng)的法蘭式端蓋,而改用機(jī)械密封圈;在盲孔端則裝有沖壓薄壁端蓋。
——輸出軸的尺寸加大了,鍵槽的開(kāi)法和傳統(tǒng)的規(guī)定不同,甚至跨越了軸肩,有利于充分發(fā)揮輪轂的作用。
和傳統(tǒng)的減速器相比,新型減速器結(jié)構(gòu)上的改進(jìn),既可簡(jiǎn)化結(jié)構(gòu),減少零件數(shù)目,同時(shí)又改善了制造工藝性。但設(shè)計(jì)時(shí)要注意裝配的工藝性,要提高某些裝配零件的制造精度。
2 六槽移鋼機(jī)總體方案
2.1 六槽移鋼機(jī)設(shè)計(jì)方案
設(shè)計(jì)方案:
1.采用分離氣缸和定位夾緊氣缸實(shí)現(xiàn)鋼管的運(yùn)送和分離
2.利用機(jī)械手進(jìn)行移動(dòng)物料
3.采用伺服電機(jī)控制工作臺(tái)進(jìn)行送料
4、采用電機(jī)帶動(dòng)減速器,然后帶動(dòng)連桿機(jī)構(gòu)實(shí)現(xiàn)往復(fù)運(yùn)動(dòng)
2.1.1六槽移鋼機(jī)方案一
方案一采用雙作用缸實(shí)現(xiàn)物料的分離功能和定位夾緊功能
氣動(dòng)送料機(jī)由兩個(gè)基本應(yīng)用模塊組成:物料分離模塊及傳送模塊。物料分離模塊由兩個(gè)雙作用氣缸組成,分別實(shí)現(xiàn)物料的分離功能和定位夾緊功能。
為保證真空系統(tǒng)的氣流通暢,以提高真空發(fā)生器的真空度,回路4中的真空控制回路不安裝節(jié)流閥。同時(shí),回路4中的所有連接氣管應(yīng)盡可能的短, 以減小空氣流通阻力,提高真空度。
采用氣缸的優(yōu)點(diǎn):
減少了物料的運(yùn)送步驟,縮短了加工時(shí)間,操作簡(jiǎn)單。
缺點(diǎn):
對(duì)物料的放置有很高的精度要求,造價(jià)高昂,一般的小型企業(yè)不采用
2.1.2 六槽移鋼機(jī)方案二
方案二利用機(jī)械手進(jìn)行送料
機(jī)械手是以小車(chē)形式通過(guò)鋼繩同滑塊聯(lián)接起來(lái), 由上升運(yùn)動(dòng)牽引小車(chē)作前進(jìn)的水平運(yùn)動(dòng)完成送料,由通過(guò)鋼繩連接的重物使小車(chē)作復(fù)位運(yùn)動(dòng)。
由小車(chē)機(jī)械手將工件進(jìn)行送料,提高了生產(chǎn)效率,保證了質(zhì)量,改善了勞動(dòng)強(qiáng)度,確保了人生安全。
采用機(jī)械手送料的優(yōu)點(diǎn):
送料相同,可以連續(xù)生產(chǎn)。
缺點(diǎn):
首先由于整個(gè)過(guò)程均由機(jī)械手實(shí)現(xiàn),所以對(duì)機(jī)械手的要求度很高,其次,如果工件大小不一要經(jīng)常更換。
2.1.3六槽移鋼機(jī)方案三
方案三采用伺服電機(jī)控制工作臺(tái)進(jìn)行送料
由單片機(jī)產(chǎn)生驅(qū)動(dòng)脈沖信號(hào),步進(jìn)電機(jī)的驅(qū)動(dòng)器收到驅(qū)動(dòng)脈沖信號(hào)后,步進(jìn)電機(jī)將會(huì)按照設(shè)定的方向轉(zhuǎn)動(dòng)一個(gè)固定的角度,將電脈沖轉(zhuǎn)化成交位移。電機(jī)的轉(zhuǎn)速由脈沖信號(hào)頻率來(lái)控制決定,再由電機(jī)控制工作臺(tái)進(jìn)行送料沖壓。
優(yōu)點(diǎn):
1、可以連續(xù)生產(chǎn),并且能實(shí)現(xiàn)一人控制幾臺(tái)機(jī)器
2、可靠性高,由于送料機(jī)構(gòu)外部由步進(jìn)電機(jī)控制,所以每次的行程都是固定值。
3、低功耗,低電壓。在許多沒(méi)有電力供應(yīng)的應(yīng)用場(chǎng)合,較低的功耗和工作電壓是生產(chǎn)便捷化的必要條件。
4、維護(hù)方便,經(jīng)濟(jì)實(shí)用。
六槽移鋼機(jī)結(jié)構(gòu)是由電動(dòng)機(jī)、減速器、聯(lián)軸器、H形架、連桿、底板(給料槽)、傳動(dòng)平臺(tái)、漏斗閘門(mén)、托輥等組成。
2.1.4六槽移鋼機(jī)方案四
方案四采用電機(jī)帶動(dòng)減速器,然后帶動(dòng)連桿機(jī)構(gòu)實(shí)現(xiàn)往復(fù)運(yùn)動(dòng)
傳動(dòng)原理:當(dāng)電動(dòng)機(jī)開(kāi)動(dòng)后,經(jīng)彈性聯(lián)軸器、減速器、曲柄連桿機(jī)構(gòu)拖動(dòng)傾斜的底板在托輥上作直線往復(fù)運(yùn)動(dòng),當(dāng)?shù)装逭袝r(shí),將槽形機(jī)體內(nèi)的帶到機(jī)體前端;底板逆行時(shí),槽形機(jī)體內(nèi)的被機(jī)體后部的斜板擋住,底板與之間產(chǎn)生相對(duì)滑動(dòng),機(jī)體前端的自行落下。將均勻地卸到運(yùn)輸機(jī)械或其它篩選設(shè)備上。該機(jī)設(shè)有帶漏斗、帶調(diào)節(jié)閥門(mén)和不帶漏斗、不帶調(diào)節(jié)閥門(mén)兩種形式。
綜合以上的比較,選擇方案4來(lái)設(shè)計(jì)六槽移鋼機(jī)機(jī)構(gòu)。
2.2 六槽移鋼機(jī)執(zhí)行機(jī)構(gòu)的選型與設(shè)計(jì)
(1)機(jī)構(gòu)分析
① 執(zhí)行機(jī)構(gòu)由電動(dòng)機(jī)驅(qū)動(dòng),原動(dòng)件輸出等速圓周運(yùn)動(dòng)。傳動(dòng)機(jī)構(gòu)應(yīng)有運(yùn)動(dòng)轉(zhuǎn)換功能,將原動(dòng)件的回轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)變?yōu)橥茥U的直線往復(fù)運(yùn)動(dòng),因此應(yīng)有急回運(yùn)動(dòng)特性。同時(shí)要保證機(jī)構(gòu)具有良好的傳力特性,即壓力角較小。
② 為合理匹配出力與速度的關(guān)系,電動(dòng)機(jī)轉(zhuǎn)速快扭矩小,因此應(yīng)設(shè)置蝸桿減速器,減速增扭。
(2)機(jī)構(gòu)選型
方案一:用擺動(dòng)導(dǎo)桿機(jī)構(gòu)實(shí)現(xiàn)運(yùn)動(dòng)形式的轉(zhuǎn)換功能。
方案二:用偏置曲柄滑塊機(jī)構(gòu)實(shí)現(xiàn)運(yùn)動(dòng)形式的轉(zhuǎn)換功能。
方案三:用曲柄搖桿機(jī)構(gòu)和搖桿滑塊機(jī)構(gòu)串聯(lián)組合,實(shí)現(xiàn)運(yùn)動(dòng)形式的轉(zhuǎn)換功能。
方案三
方案二
方案一
(3)方案評(píng)價(jià)
方案一:結(jié)構(gòu)簡(jiǎn)單,尺寸適中,最小傳動(dòng)角適中,傳力性能良好,且慢速行程為工作行程,快速行程為返回行程,工作效率高。
方案二:結(jié)構(gòu)簡(jiǎn)單,但是不夠緊湊,且最小傳動(dòng)角偏小,傳力性能差。
方案三:結(jié)構(gòu)復(fù)雜,且滑塊會(huì)有一段時(shí)間作近似停歇,工作效率低,不能滿(mǎn)足工作周期4.3秒地要求。
綜上所述,方案一作為六槽移鋼機(jī)執(zhí)行機(jī)構(gòu)的實(shí)施方案較為合適。
(4)機(jī)構(gòu)設(shè)計(jì)
(5)性能評(píng)價(jià)
圖示位置即為最小位置,經(jīng)計(jì)算。性能良好。
2.3 六槽移鋼機(jī)傳動(dòng)裝置方案確定
(1)傳動(dòng)方案設(shè)計(jì)
由于輸入軸與輸出軸有相交,因此傳動(dòng)機(jī)構(gòu)應(yīng)選擇錐齒輪或蝸輪蝸桿機(jī)構(gòu)。
方案一:二級(jí)圓錐——圓柱齒輪減速器。
方案二:齒輪——蝸桿減速器。
方案三:蝸桿——齒輪減速器。
方案三
方案二
方案一
(2)方案評(píng)價(jià)
由周期t=8s可知:
=7.5 r/min, = rad/s
,而電動(dòng)機(jī)同步轉(zhuǎn)速為1000r/min或1500r/min,故總傳動(dòng)比為133.33或200 , 較大,因此傳動(dòng)比較小的方案一不合適,應(yīng)在方案二與方案三中選。而方案二與方案三相比,結(jié)構(gòu)較緊湊,且蝸桿在低速級(jí),因此方案二較為合適。
3 電動(dòng)機(jī)選擇、傳動(dòng)系統(tǒng)運(yùn)動(dòng)和動(dòng)力參數(shù)計(jì)算
3.1 主要參數(shù)
1:外徑 外徑Φ60-Φ168mm 長(zhǎng)度10m;壁厚3.2-6.5mm
2: 移鋼機(jī)移送鋼管根數(shù) 6根
3: 移鋼機(jī)動(dòng)作周期 8s
其他所需參數(shù)見(jiàn)相關(guān)資料
3.2電動(dòng)機(jī)的選擇
1.確定電動(dòng)機(jī)類(lèi)型
按工作要求和條件,選用y系列三相交流異步電動(dòng)機(jī)。
2.確定電動(dòng)機(jī)的容量
由周期t=8s可知:
=7.5 r/min, = rad/s
3.選擇電動(dòng)機(jī)轉(zhuǎn)速
由[2]表13-2推薦的傳動(dòng)副傳動(dòng)比合理范圍
圓柱齒輪傳動(dòng) i齒小于8
蝸輪蝸桿傳動(dòng) i齒=8~40
則傳動(dòng)裝置總傳動(dòng)比的合理范圍為
i‘總=(2~8)×(8~40)=(16~200)
電動(dòng)機(jī)轉(zhuǎn)速的可選范圍為
故電動(dòng)機(jī)轉(zhuǎn)速可選范圍為。符合這一范圍的同步轉(zhuǎn)速
根據(jù)電動(dòng)機(jī)所需功率和同步轉(zhuǎn)速,查[2]表12-1,符合這一范圍的常用同步轉(zhuǎn)速有1500、1000。
移鋼機(jī)移動(dòng)的總重量G為:
=6×
式中 ---每根鋼管的質(zhì)量,
---重力加速度, g =9.8m/s2
則
=6×=6×ρ×π×R2×h×g
=6×7.85×103×3.14×(168/22-80.752)×10-6×10×9.8
=94.5 kN
上面的鋼管對(duì)與步進(jìn)梁相連接的齒輪產(chǎn)生的轉(zhuǎn)矩T為:
T=GL
式中 L---移鋼點(diǎn)到大齒輪中心的距離(鋼管重力對(duì)大齒輪產(chǎn)生轉(zhuǎn)矩的力臂),L=0.25m
T=GL=9.45×104×0.25=2.36×104 Nm
產(chǎn)生在與步進(jìn)梁相連接的齒輪的功率P為:
P=Tω=2.36×104×=18.5 kW
這6根鋼管由2臺(tái)移鋼機(jī)共同移動(dòng),故每臺(tái)移鋼機(jī)的功率為:
=
故 P移鋼機(jī)= =9.25 kW
4 確定電動(dòng)機(jī)的型號(hào)
選上述不同轉(zhuǎn)速的電動(dòng)機(jī)進(jìn)行比較,查《機(jī)械基礎(chǔ)》P499附錄50及相關(guān)資料得電動(dòng)機(jī)數(shù)據(jù)和計(jì)算出總的傳動(dòng)比,列于下表:
表3-1 電機(jī)參數(shù)比較表
方案
電機(jī)型號(hào)
額定功率kW
電機(jī)轉(zhuǎn)速r/min
電機(jī)質(zhì)量kg
參考
價(jià)格(元)
總傳動(dòng)比
同步
轉(zhuǎn)速
滿(mǎn)載轉(zhuǎn)速
1
Y160M-4
11
1500
1460
123
760
194.66
2
Y160L-6
11
1000
970
147
1022
129.33
選用同步轉(zhuǎn)速為:1500 r/min
為降低電動(dòng)機(jī)重量和價(jià)格,由表二選取同步轉(zhuǎn)速為1500r/min的Y系列電動(dòng)機(jī),型號(hào)為Y160M-4。
查《機(jī)械基礎(chǔ)》P500附錄51,得到電動(dòng)機(jī)的主要參數(shù)以及安裝的有關(guān)尺寸(mm),見(jiàn)以下兩表:
具體參數(shù)表如下:
表3-2 電動(dòng)機(jī)的技術(shù)數(shù)據(jù)
電動(dòng)機(jī)型號(hào)
額定功率
(kw)
同步轉(zhuǎn)速
(r/min)
滿(mǎn)載轉(zhuǎn)速
(r/min)
Y160M-4
11
1500
1460
2.2
2.2
圖3-1 電動(dòng)機(jī)
3.3 傳動(dòng)裝置總傳動(dòng)比的確定及各級(jí)傳動(dòng)比的分配
1.傳動(dòng)裝置總傳動(dòng)比
==
式中nm----電動(dòng)機(jī)滿(mǎn)載轉(zhuǎn)速:1460r/min;
nw----工作機(jī)的轉(zhuǎn)速:7.5r/min。
2.分配傳動(dòng)裝置各級(jí)傳動(dòng)比
取齒輪傳動(dòng)比為2.54
那么取蝸輪蝸桿減速比為51
其中、、、分別為
、單級(jí)圓柱齒輪、滾動(dòng)軸承、蝸桿傳動(dòng)、聯(lián)軸器和效率,查取《機(jī)械基礎(chǔ)》P459的附錄3 選取、=0.98(8級(jí)精度)、=0.99(球軸承)、、=0.99、
3.4 運(yùn)動(dòng)參數(shù)和動(dòng)力參數(shù)計(jì)算
1.各軸轉(zhuǎn)速計(jì)算
2.各軸輸入功率
3.各軸輸入轉(zhuǎn)矩
總體設(shè)計(jì)方案簡(jiǎn)圖3-2如下:
圖3-2 總體設(shè)計(jì)方案簡(jiǎn)圖
4 圓柱齒輪傳動(dòng)零件的設(shè)計(jì)計(jì)算
4.1 選擇齒輪材料及精度等級(jí)
根據(jù)傳動(dòng)方案,選用斜齒圓柱齒輪傳動(dòng)。
運(yùn)輸機(jī)為一般工作機(jī)器,速度不高,選用7級(jí)精度,要求齒面粗糙度。
因?yàn)檩d荷中有輕微振動(dòng),傳動(dòng)速度不高,傳動(dòng)尺寸無(wú)特殊要求,屬于一般的齒輪傳動(dòng),故兩齒輪均可用軟齒面齒輪。查《機(jī)械設(shè)計(jì)》P322表14-10,小齒輪選用45號(hào)鋼,調(diào)質(zhì)處理,硬度236HBS;大齒輪選用45號(hào)鋼,正火處理,硬度為190HBS。
取小齒輪齒數(shù),則大齒輪齒數(shù),使兩齒輪的齒數(shù)互為質(zhì)數(shù),取值,選取螺旋角。初選螺旋角
則實(shí)際傳動(dòng)比:
傳動(dòng)比誤差:
,可用
齒數(shù)比:
由表[1]?。ㄒ蚍菍?duì)稱(chēng)布置及軟齒面)。
4.2按齒面接觸疲勞強(qiáng)度設(shè)計(jì)
因兩齒輪均為鋼制齒輪,所以由課本公式得:
確定有關(guān)參數(shù)如下:
1)確定公式內(nèi)的各計(jì)算數(shù)值
1)試選=1.2
2)選取區(qū)域系數(shù) Z=2.43
3)
則
4)計(jì)算小齒輪傳遞的轉(zhuǎn)矩
5)由表10-7選取齒寬系數(shù)=0.9
6)由表10-6查得材料的彈性影響系數(shù)
(4)、許用接觸應(yīng)力
由圖[1]查得,
由式[1]計(jì)算應(yīng)力循環(huán)次數(shù)
由圖[1]查得接觸疲勞的壽命系數(shù),
通用齒輪和一般工業(yè)齒輪按一般可靠度要求選取安全系數(shù)。所以計(jì)算兩輪的許用接觸應(yīng)力:
故得:
則模數(shù):
由表[1]取初步選擇標(biāo)準(zhǔn)模數(shù):
(5)、校核齒根彎曲疲勞強(qiáng)度
4.3 根據(jù)齒根彎曲疲勞強(qiáng)度設(shè)計(jì)
由式(10-17)
(1) 確定計(jì)算參數(shù)
1) 計(jì)算載荷系數(shù)
2) 根據(jù)縱向重合度從圖10-28查得螺旋角影響系數(shù)
3) 計(jì)算當(dāng)量齒數(shù)
4) 查齒形系數(shù)
由表10-5查得,
5)查應(yīng)力校正系數(shù)
由表10-3查得,,
6)由圖10-20c查得小齒輪的彎曲疲勞強(qiáng)度極限;大齒輪的彎曲疲勞強(qiáng)度極限
7)由圖10-18取彎曲疲勞系數(shù),
8)計(jì)算彎曲疲勞許用應(yīng)力
取彎曲疲勞安全系數(shù)S=1.4,由式(10-12)得
9)計(jì)算大小齒輪的,并加以比較
大齒輪的數(shù)值較大
(1) 設(shè)計(jì)計(jì)算
對(duì)比計(jì)算結(jié)果,由齒根接觸疲勞強(qiáng)度計(jì)算法面模數(shù)大于齒面彎曲疲勞強(qiáng)度計(jì)算帶模數(shù),去,以滿(mǎn)足彎曲強(qiáng)度。
確定有關(guān)參數(shù)和系數(shù):
1)計(jì)算中心距
修正后的中心距為91.5mm.
2)按圓整后的中心距修整螺旋角
因改變不多,故參數(shù),等不必修正。
3)計(jì)算大小齒輪分度圓直徑
其他幾何尺寸的計(jì)算(,)
齒頂高 由于正常齒輪,
所以
齒根高,由于正常齒
所以
全齒高
表4-1 齒輪參數(shù)表
名 稱(chēng)
計(jì) 算 公 式
結(jié) 果 /mm
模數(shù)
m
2.5
壓力角
20
分度圓直徑
d1
51.53
d2
131.40
齒頂圓直徑`
齒根圓直徑
中心距
91.5
齒 寬
5 蝸輪蝸桿傳動(dòng)設(shè)計(jì)計(jì)算
5.1 選擇蝸桿傳動(dòng)類(lèi)型
根據(jù)GB/T10085—1988的推薦,采用漸開(kāi)線蝸桿(ZI) 。
5.2 選擇材料
考慮到蝸桿傳動(dòng)功率不大,速度只是中等,故蝸桿采用45鋼;因希望效率高些,耐磨性好些,故蝸桿螺旋齒面要求淬火,硬度為45~55HRC。蝸輪用鑄錫磷青銅ZCuSn10P1,金屬模鑄造。為了節(jié)約貴重的有色金屬,僅齒圈用青銅制造,而輪芯用灰鑄鐵HT100制造。
5.3 按齒面接觸疲勞強(qiáng)度進(jìn)行設(shè)計(jì)
根據(jù)閉式蝸桿傳動(dòng)的設(shè)計(jì)準(zhǔn)則,先按齒面接觸疲勞強(qiáng)度進(jìn)行設(shè)計(jì),再校核齒根彎曲疲勞強(qiáng)度。由教材【1】P254式(11—12),傳動(dòng)中心距
(1) 確定作用在蝸桿上的轉(zhuǎn)矩=173.79Nm
(2)確定載荷系數(shù)K
因工作載荷有輕微沖擊,故由教材【1】P253取載荷分布不均系數(shù)=1;由教材P253表11—5選取使用系數(shù)由于轉(zhuǎn)速不高,沖擊不大,可取動(dòng)載系數(shù);則由教材P252
(3)確定彈性影響系數(shù)
因選用的是鑄錫磷青銅蝸輪和鋼蝸桿相配,故=160。
(4)確定接觸系數(shù)
先假設(shè)蝸桿分度圓直徑和傳動(dòng)中心距的比值=0.35從教材P253圖11—18中可查得=2.9。
(5)確定許用接觸應(yīng)力
根據(jù)蝸輪材料為鑄錫磷青銅ZCuSn10P1,金屬模鑄造, 蝸桿螺旋齒面硬度>45HRC,可從從教材【1】P254表11—7查得蝸輪的基本許用應(yīng)力=268。由教材【1】P254應(yīng)力循環(huán)次數(shù)
應(yīng)力循環(huán)次數(shù)N=60=60127.28(2810365)=9.56
j為蝸輪每轉(zhuǎn)一周每個(gè)輪齒嚙合的次數(shù)j=1
兩班制,每班按照8小時(shí)計(jì)算,壽命10年。
壽命系數(shù)
則
(6)計(jì)算中心距
(6)取中心距a=200mm,因i=51,故從教材【1】P245表11—2中取模數(shù)m=6.3mm, 蝸輪分度圓直徑=63mm這時(shí)=0.315從教材【1】P253圖11—18中可查得接觸系數(shù)=2.9因?yàn)?,因此以上計(jì)算結(jié)果可用。
5.4 蝸桿與蝸輪的主要參數(shù)與幾何尺寸
(1) 蝸桿
軸向尺距mm;直徑系數(shù);
齒頂圓直徑;
齒根圓直徑;
蝸桿齒寬B1>=(9.5+0.09)m+25=112mm
蝸桿軸向齒厚mm;分度圓導(dǎo)程角;
(2) 蝸輪
蝸輪齒數(shù)53;
變位系數(shù)mm;
演算傳動(dòng)比mm,這時(shí)傳動(dòng)誤差比為, 是允許的。
蝸輪分度圓直徑mm
蝸輪喉圓直徑=346.5mm
蝸輪齒根圓直徑
蝸輪咽喉母圓半徑
蝸桿和軸做成一體,即蝸桿軸。由參考文獻(xiàn)【1】P270圖蝸輪采用齒圈式,青銅輪緣與鑄造鐵心采用H7/s6配合,并加臺(tái)肩和螺釘固定,螺釘選6個(gè)
5.5 校核齒根彎曲疲勞強(qiáng)度
當(dāng)量齒數(shù)
根據(jù)從教材【1】P255圖11—19中可查得齒形系數(shù)
螺旋角系數(shù)
從教材P25知許用彎曲應(yīng)力
從教材【1】P256表11—8查得由ZCuSn10P1制造的蝸輪的基本許用彎曲應(yīng)力=56
由教材P255壽命系數(shù)
<56Mpa可見(jiàn)彎曲強(qiáng)度是滿(mǎn)足的。
5.6 驗(yàn)算效率
已知=;;與相對(duì)滑動(dòng)速度有關(guān)。
從教材P【1】264表11—18中用插值法查得=0.0264, 代入式中得=0.884,大于原估計(jì)值,因此不用重算。
5.7 精度等級(jí)公差和表面粗糙度的確定
考慮到所設(shè)計(jì)的蝸桿傳動(dòng)是動(dòng)力傳動(dòng),屬于通用機(jī)械減速器,從GB/T10089—1988圓柱蝸桿、蝸輪精度中選擇7級(jí)精度,則隙種類(lèi)為f,標(biāo)注為8f GB/T10089—1988。然后由參考文獻(xiàn)【3】P187查得蝸桿的齒厚公差為 =71μm, 蝸輪的齒厚公差為 =130μm;蝸桿的齒面和頂圓的表面粗糙度均為1.6μm, 蝸輪的齒面和頂圓的表面粗糙度為1.6μm和3.2μm。
5.8 熱平衡核算
初步估計(jì)散熱面積:
取(周?chē)諝獾臏囟?為。
6 軸的設(shè)計(jì)計(jì)算
6.1 Ⅰ軸的結(jié)構(gòu)設(shè)計(jì)
1.選擇軸的材料及熱處理方法
查[1]表15-1選擇軸的材料為優(yōu)質(zhì)碳素結(jié)構(gòu)鋼45;根據(jù)齒輪直徑,熱處理方法為正火。
2.確定軸的最小直徑
查[1]的扭轉(zhuǎn)強(qiáng)度估算軸的最小直徑的公式:
mm
再查 [1]表15-3,
考慮鍵:因?yàn)殒I槽對(duì)軸的強(qiáng)度有削弱作用,開(kāi)有一個(gè)鍵槽,所以軸的軸徑要相應(yīng)增大
mm
3.確定各軸段直徑并填于下表內(nèi)
表6-1 各軸段直徑表
名稱(chēng)
依據(jù)
單位
確定結(jié)果
mm
且由前面的齒輪的設(shè)
計(jì)可得,齒輪的孔徑為30,mm
=30
=30
查 [2]表7-12 35
35
因?yàn)樘幯b軸承,所以只要>即可,選取7類(lèi)軸承,查 [2]表6-6,選取7208AC,故 =40
=40
46
由于是齒輪軸所以等于高速級(jí)小齒輪的分度圓直徑:
40
40
4.選擇軸承潤(rùn)滑方式,確定與軸長(zhǎng)有關(guān)的參數(shù)。
查 [2](2)“潤(rùn)滑方式”,及說(shuō)明書(shū)“(12)計(jì)算齒輪圓周速度” = 1.54,故選用脂潤(rùn)滑。
將與軸長(zhǎng)度有關(guān)的各參數(shù)填入下表
表6-2 與軸長(zhǎng)度有關(guān)的各參數(shù)
名稱(chēng)
依據(jù)
單位
確定結(jié)果
箱體壁厚
查 [2]表11-1
8
地腳螺栓直徑及數(shù)目n
查 [2]表11-1
查 [2]表3-13, ?。?0,
=16
軸承旁聯(lián)接螺栓直徑
查 [2]表11-1
查 [2]表3-9,?。?6
=12
軸承旁聯(lián)接螺栓扳手空間、
查 [2] 表11-1
軸承蓋聯(lián)接螺釘直徑
查 [2]表11-2
查 [2]表11-10,得當(dāng)取
軸承蓋厚度
查 [2]表11-10
,
小齒輪端面距箱體內(nèi)壁距離
查 [2]
=10
軸承內(nèi)端面至箱體內(nèi)壁距離
查 [2] 因?yàn)檫x用脂潤(rùn)滑,所以
=10
軸承支點(diǎn)距軸承寬邊端面距離a
查 [2]表6-6,選取7208AC軸承,
故
5.計(jì)算各軸段長(zhǎng)度。
表6-3各軸段長(zhǎng)度表
名稱(chēng)
計(jì)算公式
單位
計(jì)算結(jié)果
由于與大齒輪配合,則:
63
由公式
=56
由公式
32
由公式
=110.5
齒輪1輪轂寬度:
=65
由公式
=40
L(總長(zhǎng))
=365.5
(支點(diǎn)距離)
=197.5
6.2 Ⅱ軸的結(jié)構(gòu)設(shè)計(jì)
1.選擇軸的材料及熱處理方法
查[1]表15-1選擇軸的材料為優(yōu)質(zhì)碳素結(jié)構(gòu)鋼45;根據(jù)齒輪直徑,熱處理方法為正火回火。
2.確定軸的最小直徑
查[1]的扭轉(zhuǎn)強(qiáng)度估算軸的最小直徑的公式:
=(126~103)
再查 [1]表15-3,
3.確定各軸段直徑并填于下表內(nèi)
表6-4 各軸段直徑表
名稱(chēng)
依據(jù)
單位
確定結(jié)果
由于和軸承配合,取標(biāo)準(zhǔn)軸徑為:
=45
由于和齒輪配合,取
查 [2]表1-6,?。?0
=50
查 [2]表1-6,取=60
=60
與高速級(jí)大齒輪配合,取:
==45
=45
4.選擇軸承潤(rùn)滑方式,確定與軸長(zhǎng)有關(guān)的參數(shù)。
查 [2](二)“滾動(dòng)軸承的潤(rùn)滑”,及說(shuō)明書(shū)“六、計(jì)算齒輪速度” ,故選用脂潤(rùn)滑。
將與軸長(zhǎng)度有關(guān)的各參數(shù)填入下表
表6-5 與軸長(zhǎng)度有關(guān)的各參數(shù)表
名稱(chēng)
依據(jù)
單位
確定結(jié)果
軸承支點(diǎn)距軸承寬邊端面距離a
選用7209AC軸承,查 [2]表6-6
得
5.計(jì)算各軸段長(zhǎng)度
表6-6 各軸段長(zhǎng)度表
名稱(chēng)
計(jì)算公式
單位
計(jì)算結(jié)果
=43
=93
=10
齒輪配合長(zhǎng)度:
=58
=45.5
L(總長(zhǎng))
L=249.5
(支點(diǎn)距離)
196.1
6.3 Ⅲ軸的結(jié)構(gòu)設(shè)計(jì)
1.選擇軸的材料及熱處理方法
查[1]表15-1選擇軸的材料為優(yōu)質(zhì)碳素結(jié)構(gòu)鋼45;根據(jù)齒輪直徑,熱處理方法為正火回火。
2.確定軸的最小直徑
查[1]的扭轉(zhuǎn)強(qiáng)度估算軸的最小直徑的公式:
=
再查 [1]表15-3,
考慮鍵:因?yàn)殒I槽對(duì)軸的強(qiáng)度有削弱作用,開(kāi)有一個(gè)鍵槽,所以軸的軸徑要相應(yīng)增大
3.確定各軸段直徑并填于下表內(nèi)
表6-7 各軸段直徑表
名稱(chēng)
依據(jù)
單位
確定結(jié)果
由于與聯(lián)軸器配合,配合軸徑為d1=60mm
=60
考慮聯(lián)軸器定位:
查 [2]表7-12,取=70
=70
為了軸承裝配的方便: ,取符合軸承標(biāo)準(zhǔn)孔徑大小為
=75
考慮軸肩定位,查(1)表1-16,取標(biāo)準(zhǔn)值=86
=86
考慮齒輪的定位:
92
由于與齒輪配合=80mm
=80
由于軸承配合:==75
=75
4.選擇軸承潤(rùn)滑方式,確定與軸長(zhǎng)有關(guān)的參數(shù)。
表6-8 軸承支點(diǎn)距軸承寬邊端面距離表
查 [2](二)“滾動(dòng)軸承的潤(rùn)滑”,及說(shuō)明書(shū)“六、計(jì)算齒輪速度”, ,故選用脂潤(rùn)滑。將與軸長(zhǎng)度有關(guān)的各參數(shù)填入下表
名稱(chēng)
依據(jù)
單位
確定結(jié)果
軸承支點(diǎn)距軸承寬邊端面距離a
選用7015AC軸承,查 [2]表6-6
得
5.計(jì)算各軸段長(zhǎng)度
表6-9 各軸段長(zhǎng)度表
名稱(chēng)
計(jì)算公式
單位
計(jì)算結(jié)果
選聯(lián)軸器軸孔長(zhǎng)度為107mm,則:
105
由公式
=47
由公式
=39
由公式
=73
由公式
=10
配合齒輪4:
88
=51.5
L(總長(zhǎng))
413.5
(支點(diǎn)距離)
=184.3
6.4 校核Ⅱ軸的強(qiáng)度
齒輪的受力分析:
斜齒輪上的圓周力:;徑向力:;軸向力:
分別將:
代入以上3式,得:
表6-10和軸長(zhǎng)度有關(guān)的參數(shù)表
齒輪2上的圓周力
齒輪上的徑向力
齒輪上的軸向力
3189.49
1195.80
788.14
齒輪3上的圓周力
齒輪上的徑向力
齒輪上的軸向力
4958.7
2720.77
1750.14
求支反力、繪彎矩、扭矩圖
軸Ⅱ受力簡(jiǎn)圖
圖6-1 Ⅱ軸的受力圖
其中, 方向均向外;方向都指向軸心;向左,向右。
1.垂直平面支反力,如圖a)
軸向力平移至軸心線形成的彎矩分別為:
圖6-2(a) Ⅱ軸的受力圖
2.垂直平面彎矩圖,如圖b)
計(jì)算特殊截面的彎矩:
圖6-2(b) 垂直平面彎矩圖
3.水平平面支反力,如圖c)
圖6-2(c) 水平平面支反力圖
4.水平平面彎矩圖,如圖d)
計(jì)算特殊截面的彎矩:
圖6-2(d) 水平平面彎矩圖
5.合成彎矩圖, 如圖e)
圖6-2(e) 合成彎矩圖
6.扭矩圖,如圖f)
圖6-2(f) 扭矩圖
2.按彎扭合成校核軸的強(qiáng)度
(1)確定軸的危險(xiǎn)截面
根據(jù)軸的結(jié)構(gòu)尺寸和彎矩圖可知:截面3受到的合力矩最大,且大小為:
(2)按彎矩組合強(qiáng)度校核軸危險(xiǎn)截面強(qiáng)度
(軸的抗彎截面系數(shù),初選鍵:b=12,t=5,d=50;解得W=11050.63 mm3)
取,則:
查表15-1得[]=60mpa,因此,故安全。
7 軸承的選擇和校核
7.1 高速軸軸承的校核
①根據(jù)軸承型號(hào)30307查設(shè)計(jì)手冊(cè)取軸承基本額定動(dòng)載荷為:C=75200N;基本額定靜載荷為:
圖7-1 高速軸軸承
② 求兩軸承受到的徑向載荷
將軸系部件受到的空間力系分解為鉛垂面和水平面兩個(gè)平面力系。有力分析可知:
③求兩軸承的計(jì)算軸向力
對(duì)于圓錐滾子軸承,軸承派生軸向力,Y由設(shè)計(jì)手冊(cè)查得為1.9,因此可以估算:
則軸有向右竄動(dòng)的趨勢(shì),軸承1被壓緊,軸承2被放松
④求軸承當(dāng)量動(dòng)載荷
查設(shè)計(jì)手冊(cè)知e=0.31
查課本表13-5得徑向載荷系數(shù)和軸向載荷系數(shù)
軸承1
軸承2
因軸承運(yùn)轉(zhuǎn)中有輕微沖擊,查課本表13-6得 則
⑤ 驗(yàn)算軸承壽命
因?yàn)?所以按軸承1的受力大小驗(yàn)算
選擇軸承滿(mǎn)足壽命要求.
7.2 低速軸軸承的校核
①根據(jù)軸承型號(hào)30306查設(shè)計(jì)手冊(cè)取軸承基本額定動(dòng)載荷為:C=59000N;基本額定靜載荷為:
圖7-2 低速軸軸承
② 求兩軸承受到的徑向載荷
將軸系部件受到的空間力系分解為鉛垂面和水平面兩個(gè)平面力系。有力分析可知:
③求兩軸承的計(jì)算軸向力
對(duì)于圓錐滾子軸承,軸承派生軸向力,Y由設(shè)計(jì)手冊(cè)查得為1.9,因此可以估算:
則軸有向左竄動(dòng)的趨勢(shì),軸承1被壓緊,軸承2被放松
④求軸承當(dāng)量動(dòng)載荷
查設(shè)計(jì)手冊(cè)知e=0.31
查課本表13-5得徑向載荷系數(shù)和軸向載荷系數(shù)
軸承1
軸承2
因軸承運(yùn)轉(zhuǎn)中有輕微沖擊,查課本表13-6得 則
⑤ 驗(yàn)算軸承壽命
因?yàn)?所以按軸承1的受力大小驗(yàn)算
選擇軸承滿(mǎn)足壽命要求.
兩班制,每班按照8小時(shí)計(jì)算,壽命10年。
=2810365=58400小時(shí)。
7.3 計(jì)算輸入軸軸承
初選兩軸承30208型單列圓錐滾子軸承查參考文獻(xiàn)【3】可知蝸桿承軸Ⅰ30208兩個(gè),蝸輪軸承30213兩個(gè),(GB/T297-1994)表7-1:
表7-1 輸入軸軸承計(jì)算表
軸承代號(hào)
基本尺寸/mm
計(jì)算系數(shù)
基本額定/kN
d
D
T
a
受力點(diǎn)
e
Y
動(dòng)載荷Cr
靜載荷Cor
30208
40
80
19.75
16.9
0.37
1.6
63.0
74.0
30212
60
110
23.75
22.4
0.4
1.5
103
130
圖7-3
圖7-3 輸入軸軸承受力圖
(1)求兩軸承受到的徑向載荷和
將軸系部件受到的空間力系分解為鉛垂面圖(2)和水平面圖(3)兩個(gè)平面力系。其中圖(3)中的為通過(guò)另加轉(zhuǎn)矩而平移到指定軸線;圖(1)中的亦通過(guò)另加彎矩而平移到作用于軸線上。由力分析知:
N
(2)求兩軸承的計(jì)算軸向力
對(duì)于30208型軸承,按教材P322表13-7,其中,e為教材P321表13-5中的判斷系數(shù)e=0.37,因此估算
按教材P322式(13-11a)
=284N
(3)求軸承當(dāng)量動(dòng)載荷和
因?yàn)?
46720h故所選軸承滿(mǎn)足壽命要求。
7.4 計(jì)算輸出軸軸承
圖7-3 輸出軸軸承受力圖
初選兩軸承為30212型圓錐滾子軸承查圓錐滾子軸承手冊(cè)可知其基本額定動(dòng)載荷=103KN基本額定靜載荷=130KN
(1)求兩軸承受到的徑向載荷和
將軸系部件受到的空間力系分解為鉛垂面圖(2)和水平面圖(3)兩個(gè)平面力系。其中圖(3)中的為通過(guò)另加轉(zhuǎn)矩而平移到指定軸線;圖(1)中的亦通過(guò)另加彎矩而平移到作用于軸線上。由力分析知: N
(2)求兩軸承的計(jì)算軸向力
對(duì)于30213型軸承,按教材P322表13-7,其中,e為教材P321表13-5中的判斷系數(shù)e=0.4,因此估算
按教材P322式(13-11a)
=415N
(3) 求軸承當(dāng)量動(dòng)載荷和
46720h
收藏