ZL50裝載機總體及工作裝置設計
購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。帶三維備注的都有三維源文件,由于部分三維子文件較多,店主做了壓縮打包,都可以保證打開的,三維預覽圖都是店主用電腦打開后截圖的,具體請見文件預覽,有不明白之處,可咨詢QQ:1304139763
桂林電子科技大學畢業(yè)設計(論文)外文翻譯譯文 第19頁 共18頁
編號:
畢業(yè)設計(論文)外文翻譯
(譯文)
學 院: 國防生學院
專 業(yè): 機械設計制造及其自動化
學生姓名: 李卓霖
學 號: 1000110106
指導教師單位: 桂林電子科技大學
姓 名: 曹泰山
職 稱: 講師
2014 年 3 月 09 日
高架起重機橋架的建模與有限元分析
C. Alkin, C. E. Imrak, H. Kocabas
摘 要
該論文以35噸級,13米跨度橋式起重機的兩個箱式梁為研究對象進行設計研究。在該論文中,提出了常規(guī)設計計算f E.M規(guī)則和DIN標準進行了驗證應力和撓度水平。起重機設計同時使用立方體和平面。有限元網(wǎng)格劃分使用四個節(jié)點,用正四面體與四邊形單元組成實體殼模型,再分別通過有限元分析進行比較,在正常計算下,結合已有的起重機性能,二次殼單元有限元分析是最接近實際結果的。研究結果表明,該高架起重機的設計是可行的。
關鍵詞:高架起重機,有限元分析法,建模,箱式梁。
注釋
兩個側(cè)板間的距離
下模版的寬度
導軌的靜負載
裝載后負載
主梁末端高度
側(cè)板高度
滾輪間距
起重梁跨度
相鄰支撐結構間距
平臺重量
維護平臺重量
均勻分布的橋架單元質(zhì)量
上下夾板的厚度
側(cè)板厚度
左側(cè)板中心到起重機重心距離
導軌中心到起重機重心距離
導軌中心到中軸距離
上板到起重機重心距離
上板到中軸距離
X軸上的主要阻力
Y軸上的主要阻力
放大系數(shù)
Ψ 動態(tài)系數(shù)
1 引言
起重機是讓超重貨物在建筑里輕松移動的最好方式之一。高架起重機是物料運輸系統(tǒng)中運送重物最重要的部分。起重機的主要任務就是載重后從一個位置移動到另一個位置。因此經(jīng)常被用與汽車工廠和船塢[1,2]。根據(jù)它們的主要用途有許多設計特征上的變化,例如:起重機的運動部件結構,工作載荷,起重機的位置,幾何特征和環(huán)境條件。這些部分使起重機的設計規(guī)程高度標準化,大部分的時間花費在對現(xiàn)有的設計標準的執(zhí)行和說明[3]。
有很多關于結構和受力組成的研究,在靜態(tài)和動態(tài)負載的起重機上安全進行[5-16]。Demirsoy已經(jīng)進行了的關于橋的結構建模和有限元分析,研究其位移和應力測試值[17]。建模技術來源于公路橋結構,同時提供研究分析的有限元模型[18]。在該研究中,力和位移用F.E.M90軟件分析。橋式起重機模型不同點的加載和有限元分析方法的應用由Celiktas完成[19]。她為高架起重機提供了有限元分析的結果。
DIN標準和F.E.M(歐洲聯(lián)合會)算法提供了被廣泛接受的設計與驗證方法和公式。DIN標準第44和185條收集了關于起重機設計的標準。DIN標準廣泛規(guī)定了設計參數(shù)的標準值。F.E.M算法主要收集了起重機設計的規(guī)則指引。它包含了關于如何選擇不同載荷方式下的起重機元件。
在這項研究中,計算部分套用F.E.M算法和DIN標準,用于橋式起重機的箱梁。箱梁的計算使用CESAN有限公司的標準橋接器。橋式起重機的模型產(chǎn)生了同等規(guī)模的計算結果。使用有限元分析法執(zhí)行靜態(tài)分析。在開始解決方案之前,臨界情況已經(jīng)應用到實踐。
2 雙箱式梁高架起重機
雙箱式梁高架起重機不僅僅只是提升重物,還要攜帶重物在其范圍內(nèi)移動。在雙重梁高架起重機橋架上建造有可移動吊運車,橋架在導軌上運動,吊運車在橋架上升高或降低貨物,橋架在導軌上運送貨物。因此,執(zhí)行了三個垂直正交的運動。如圖一,貨物用鋼索固定在橋架上[21,22]。
雙箱梁同時受到水平和垂直方向的吊車重量,工作負載(吊鉤)和動力載荷。關于雙箱梁的制造,吊運車需要在梁之間或上面運行。圖2說明了合適的建造要求和梁的結構標準。
圖1:高架起重機的總視圖
圖2:箱形主梁的制造要求。
3 高架起重機的有限元分析及應用
在數(shù)字技術之中,有限元分析法被廣泛使用得益與有很多實用和易于操作的商業(yè)軟件。有限元分析法可以分析任何幾何學,解決力學和位移問題[23]。有限元分析法幾乎解決了研究中的全部或部分的有限元節(jié)點問題。該近似解明確表達了每個基礎元素和之后整體裝配獲得的剛性矩陣,位移量和力矢量問題。在該論文中的有限元模型是用Cosmos Works和MSC商業(yè)版完成的。用Patran(有限元分析軟件)和四面體單元與四邊形殼單元為該高架起重機橋架建模。
四面體單元是最簡單的三維空間單元,應用于固體應力問題分析如支架的應力分析。該單元有四個節(jié)點,每個節(jié)點都有三個移動副和能在x,y,z軸上旋轉(zhuǎn)的自由度。關于殼單元的定義,是指允許在平面和曲面上都能擁有長度的單元。它的寬度只能用于3D仿真。四面體殼單元因為裝配彎曲元件而獲得了一定的自由度。這充分表明殼單元的偏差必須在預先定義的殼厚度內(nèi),否則整個系統(tǒng)會在一個過大的偏差內(nèi)運行。
典型的四面體單元和四邊形殼單元與它們的坐標系在圖3中說明[24]。選擇的四面體單元每個節(jié)點有六個自由度:x,y,z方向上的平移和繞x,y,z軸自由旋轉(zhuǎn)。用正四面體殼單元為高架起重機梁建模,r 和s表示固有坐標系,δ是單元體的厚度。
該體系沒有任何水平力。軸向位移和總體的旋轉(zhuǎn)整體來看都近似為零。此外節(jié)點的橫向唯一整體來看也為零。
對系統(tǒng)起作用的外力大部分來自于起重機的主梁質(zhì)量(分布載荷)和作用在吊車滑輪沿起重機的力(有效載荷)。吊車滑輪上的力是因為吊車的質(zhì)量,來自提升負載物和在起重機上移動。
四節(jié)點四面體單元
四節(jié)點二次殼單元
圖3:為高架起重機梁建模的單元體
4 高架橋起重機立體有限元模型
有限元分析法是一種可以用于為工程學內(nèi)各種問題提供解決辦法的計算方案。穩(wěn)定的,瞬時的,線性的,非線性的應力分析問題,熱傳遞,流量問題也可以用有限元方法解決。有限元分析法的基本步驟如下:預處理,解決方案,后處理。
真實的起重機數(shù)據(jù)從CESAN有限公司收集來,一個土耳其公司引進了該高架起重機的大量生產(chǎn)。首先,起重機橋架是模擬成面。橋架幾何體是適合于此方法的,長和薄的部分也同樣被模擬成面。隨后,一個網(wǎng)格建立成功。在研究中,使用二次單元模式。立體建模是為了計算起重機橋架,該立體模型展示在圖4中[20]。
起重機橋架立體模型 起重機橋架的框架視圖
圖4:起重機橋架模型
5 高架起重機的數(shù)值算例
研究對象為13T級高架起重機其總長13米總重22.5噸。該起重機結構見圖1。該高架起重機組成部分包括兩個大梁和兩個連接它們的底座,一個可在軸向移動的起重機空中吊運車和滑輪驅(qū)動裝置安裝在其中一個大梁上。起重機支撐在兩條軌道上,軌道梁安裝在建筑中。
為了計算結構的受力,使用有限元分析法1.001。橋架分析的設計理念來自F.E.M和DIN標準被列在表1中。
表1:橋架屬性值
裝卸量
: =35 ton
吊車重量
: =3 ton
橋長度
: =13 m
吊車兩輪間距
: =2m
吊車速率
: =20 m/min.
起重機速率
: =15 m/min.
起吊速率
: =2.7 m/min
總使用壽命
: U4
工作級別
: Q3
設備組
: A5
裝載型號
: H (main load)
動態(tài)系數(shù)
:ψ=1.15
放大系數(shù)
:= 1.11
用有限元分析法先計算最大和最小應力然后計算剪切應力。使用有限元分析法考慮主梁,我們得到了壓力值。我們由于固有重量而得到了靜態(tài)負載,負載來自于工作載荷乘以動態(tài)系數(shù),是水平方向上最不利的兩個因素,不包括緩沖力。
最大的應力來自于橋身固有重量的壓力和吊車的固有重量,提升載荷的力,慣力和吊車收縮力。最小應力包括橋身固有重量和吊車固有重量的力。最大和最小應力的標準來自F.E.M規(guī)則[20]如下
和
動態(tài)系數(shù)ψ的意義是來自于工作負載的載荷。放大系數(shù)的意義依賴應用級別組,其中維護臺的重量為零。[25]。
假設主負載(372780 N)作用于導軌的中點,而且每個主梁平均分擔總負載。這個負載通過系統(tǒng)中兩個吊車輪的接觸點求得,因此每個點的作用力是93195 N。系統(tǒng)總負載的求解,最大應力值等于(1)143.90 N/mm2 精確到兩位小數(shù)點,最小應力值等于(2)47.33 N/mm2 精確到兩位小數(shù)點。
根據(jù)圖5,切變的許用應力包括剪應力和車輪力,定義如下:[20]
最大剪應力值等于24.82 N/mm2 精確到兩位小數(shù)點(5)。帶入等式(1)-(3)可得到等效應力。等效應力值為150.18 N/mm2 精確到兩位小數(shù)點。
圖5:箱形梁中的慣力和阻力
6 四面體單元的梁模型結果
為高架橋起重機梁用四面體單元建模,用Cosmoswork 軟件進行有限元分析,用SolidWork 2003為梁生成立體模型。彈性模量(E)為2.1x105 N/mm2 ,泊松比()為0.3進行有限元分析。側(cè)板的最大應力值為12.07 N/mm2 精確到兩位小數(shù)點,底板的最大應力值為15.08 N/mm2 精確到兩位小數(shù)點,如圖6[20]。
高架橋起重機模型的位移量來自于CosmosWorks,在圖7中說明。梁的最大位移值大概為2.2 mm。
圖6:高架起重機梁的四面體單元受力情況
圖7:高架起重機梁的四面體單元位移量
7 四節(jié)點二次殼單元的梁模型結果
為高架橋起重機梁用四節(jié)點二次殼單元建模,用MSC Patran 軟件進行有限元分析,早期系數(shù)(E)為2.1x10 N/mm2 ,泊松比()為0.3進行有限元分析。側(cè)板的最大應力值為35.40 N/mm2 精確到兩位小數(shù)點,底板的最大應力值為49.30 N/mm2 精確到兩位小數(shù)點如圖8[20]。
高架橋起重機梁模型的位移量獲得自MSC Patran如圖9。梁的最大位移量約為3.89mm。
根據(jù)式(1)最大應力值計算得143.90 N/mm2 精確到兩位小數(shù)點。起重機的安全系數(shù)設計為2到3。考慮到四面體單元的安全系數(shù),側(cè)板的最大應力在24.14到36.21 N/mm2之間精確到兩位小數(shù)點。底板的最大應力值在30.16到45.24 N/mm2 之間精確到兩位小數(shù)點。
考慮到四節(jié)點二次殼單元的安全系數(shù),其側(cè)板的最大應力在70.8到106.2 N/mm2 之間精確到兩位小數(shù)點。底板的最大應力值在98.60到147.90 N/mm2 之間精確到兩位小數(shù)點。
根據(jù)F.E.M規(guī)則梁的允許位移為13mm。通過四面體單元有限元模型獲得的值在4.40到6.60之間,安全系數(shù)已考慮。通過四節(jié)點二次殼單元有限元模型獲得的值在7.78到11.67mm之間,安全系數(shù)已考慮。
圖8:高架起重機梁二次殼單元的受力值
圖9:高架起重機四節(jié)點二次殼單元的位移量
8 結論
在該研究中,不像其他論文照搬原有理論,高架箱型梁的殼單元有限元模型已被驗證。為了展示出殼單元的用處,給出了一個高架起重機橋架的實例。根據(jù)F.E.M算法和有限元分析法計算得,四面體單元的最大應力值是143.90 N/mm2 和45.24 N/mm2,四節(jié)點二次殼單元的最大應力值為147.9 N/mm2。等效應力為150.18 N/mm2 精確到兩位小數(shù)點。通過MSC Patran考慮到安全系數(shù),應力值應該在97-145.5N/mm2之間變化。
高架起重機箱式梁的長厚比高于20.因此,為了展示高架起重機橋架分析的精確度,用四節(jié)點二次殼單元代替四面體單元進行有限元分析。
數(shù)控機床的改造
1 數(shù)控系統(tǒng)發(fā)展簡史及趨勢
1946年誕生了世界上第一臺電子計算機,這表明人類創(chuàng)造了可增強和部分代替腦力勞動的工具。它與人類在農(nóng)業(yè)、工業(yè)社會中創(chuàng)造的那些只是增強體力勞動的工具相比,起了質(zhì)的飛躍,為人類進入信息社會奠定了基礎。6年后,即在1952年,計算機技術應用到了機床上,在美國誕生了第一臺數(shù)控機床。從此,傳統(tǒng)機床產(chǎn)生了質(zhì)的變化。近半個世紀以來,數(shù)控系統(tǒng)經(jīng)歷了兩個階段和六代的發(fā)展。
1.1 數(shù)控(NC)階段(1952~1970年)
早期計算機的運算速度低,對當時的科學計算和數(shù)據(jù)處理影響還不大,但不能適應機床實時控制的要求。人們不得不采用數(shù)字邏輯電路"搭"成一臺機床專用計算機作為數(shù)控系統(tǒng),被稱為硬件連接數(shù)控(HARD-WIRED NC),簡稱為數(shù)控(NC)。隨著元器件的發(fā)展,這個階段歷經(jīng)了三代,即1952年的第一代--電子管;1959年的第二代--晶體管;1965年的第三代--小規(guī)模集成電路。
1.2 計算機數(shù)控(CNC)階段(1970年~現(xiàn)在)
到1970年,通用小型計算機業(yè)已出現(xiàn)并成批生產(chǎn)。于是將它移植過來作為數(shù)控系統(tǒng)的核心部件,從此進入了計算機數(shù)控(CNC)階段(把計算機前面應有的"通用"兩個字省略了)。到1971年,美國INTEL公司在世界上第一次將計算機的兩個最核心的部件--運算器和控制器,采用大規(guī)模集成電路技術集成在一塊芯片上,稱之為微處理器(MICROPROCESSOR),又可稱為中央處理單元(簡稱CPU)。
到1974年微處理器被應用于數(shù)控系統(tǒng)。這是因為小型計算機功能太強,控制一臺機床能力有富裕(故當時曾用于控制多臺機床,稱之為群控),不如采用微處理器經(jīng)濟合理。而且當時的小型機可靠性也不理想。早期的微處理器速度和功能雖還不夠高,但可以通過多處理器結構來解決。由于微處理器是通用計算機的核心部件,故仍稱為計算機數(shù)控。
到了1990年,PC機(個人計算機,國內(nèi)習慣稱微機)的性能已發(fā)展到很高的階段,可以滿足作為數(shù)控系統(tǒng)核心部件的要求。數(shù)控系統(tǒng)從此進入了基于PC的階段。
總之,計算機數(shù)控階段也經(jīng)歷了三代。即1970年的第四代--小型計算機;1974年的第五代--微處理器和1990年的第六代--基于PC(國外稱為PC-BASED)。
還要指出的是,雖然國外早已改稱為計算機數(shù)控(即CNC)了,而我國仍習慣稱數(shù)控(NC)。所以我們?nèi)粘Vv的"數(shù)控",實質(zhì)上已是指"計算機數(shù)控"了。
1.3 數(shù)控未來發(fā)展的趨勢
1.3.1繼續(xù)向開放式、基于PC的第六代方向發(fā)展
基于PC所具有的開放性、低成本、高可靠性、軟硬件資源豐富等特點,更多的數(shù)控系統(tǒng)生產(chǎn)廠家會走上這條道路。至少采用PC機作為它的前端機,來處理人機界面、編程、聯(lián)網(wǎng)通信等問題,由原有的系統(tǒng)承擔數(shù)控的任務。PC機所具有的友好的人機界面,將普及到所有的數(shù)控系統(tǒng)。遠程通訊,遠程診斷和維修將更加普遍。
1.3.2向高速化和高精度化發(fā)展
這是適應機床向高速和高精度方向發(fā)展的需要。
1.3.3向智能化方向發(fā)展
隨著人工智能在計算機領域的不斷滲透和發(fā)展,數(shù)控系統(tǒng)的智能化程度將不斷提高。
(1)應用自適應控制技術
數(shù)控系統(tǒng)能檢測過程中一些重要信息,并自動調(diào)整系統(tǒng)的有關參數(shù),達到改進系統(tǒng)運行狀態(tài)的目的。
(2)引入專家系統(tǒng)指導加工
將熟練工人和專家的經(jīng)驗,加工的一般規(guī)律和特殊規(guī)律存入系統(tǒng)中,以工藝參數(shù)數(shù)據(jù)庫為支撐,建立具有人工智能的專家系統(tǒng)。
(3)引入故障診斷專家系統(tǒng)
(4)智能化數(shù)字伺服驅(qū)動裝置
可以通過自動識別負載,而自動調(diào)整參數(shù),使驅(qū)動系統(tǒng)獲得最佳的運行。
2 機床數(shù)控化改造的必要性
2.1 微觀看改造的必要性
從微觀上看,數(shù)控機床比傳統(tǒng)機床有以下突出的優(yōu)越性,而且這些優(yōu)越性均來自數(shù)控系統(tǒng)所包含的計算機的威力。
2.1.1 可以加工出傳統(tǒng)機床加工不出來的曲線、曲面等復雜的零件。
由于計算機有高超的運算能力,可以瞬時準確地計算出每個坐標軸瞬時應該運動的運動量,因此可以復合成復雜的曲線或曲面。
2.1.2可以實現(xiàn)加工的自動化,而且是柔性自動化,從而效率可比傳統(tǒng)機床提高3~7倍。
由于計算機有記憶和存儲能力,可以將輸入的程序記住和存儲下來,然后按程序規(guī)定的順序自動去執(zhí)行,從而實現(xiàn)自動化。數(shù)控機床只要更換一個程序,就可實現(xiàn)另一工件加工的自動化,從而使單件和小批生產(chǎn)得以自動化,故被稱為實現(xiàn)了"柔性自動化"。
2.1.3加工零件的精度高,尺寸分散度小,使裝配容易,不再需要"修配"。
2.1.4可實現(xiàn)多工序的集中,減少零件 在機床間的頻繁搬運。
2.1.5擁有自動報警、自動監(jiān)控、自動補償?shù)榷喾N自律功能,因而可實現(xiàn)長時間無人看管加工。
2.1.6由以上五條派生的好處。
如:降低了工人的勞動強度,節(jié)省了勞動力(一個人可以看管多臺機床),減少了工裝,縮短了新產(chǎn)品試制周期和生產(chǎn)周期,可對市場需求作出快速反應等等。
以上這些優(yōu)越性是前人想象不到的,是一個極為重大的突破。此外,機床數(shù)控化還是推行FMC(柔性制造單元)、FMS(柔性制造系統(tǒng))以及CIMS(計算機集成制造系統(tǒng))等企業(yè)信息化改造的基礎。數(shù)控技術已經(jīng)成為制造業(yè)自動化的核心技術和基礎技術。
2.2 宏觀看改造的必要性
從宏觀上看,工業(yè)發(fā)達國家的軍、民機械工業(yè),在70年代末、80年代初已開始大規(guī)模應用數(shù)控機床。其本質(zhì)是,采用信息技術對傳統(tǒng)產(chǎn)業(yè)(包括軍、民機械工業(yè))進行技術改造。除在制造過程中采用數(shù)控機床、FMC、FMS外,還包括在產(chǎn)品開發(fā)中推行CAD、CAE、CAM、虛擬制造以及在生產(chǎn)管理中推行MIS(管理信息系統(tǒng))、CIMS等等。以及在其生產(chǎn)的產(chǎn)品中增加信息技術,包括人工智能等的含量。由于采用信息技術對國外軍、民機械工業(yè)進行深入改造(稱之為信息化),最終使得他們的產(chǎn)品在國際軍品和民品的市場上競爭力大為增強。而我們在信息技術改造傳統(tǒng)產(chǎn)業(yè)方面比發(fā)達國家約落后20年。如我國機床擁有量中,數(shù)控機床的比重(數(shù)控化率)到1995年只有1.9%,而日本在1994年已達20.8%,因此每年都有大量機電產(chǎn)品進口。這也就從宏觀上說明了機床數(shù)控化改造的必要性。
3 機床與生產(chǎn)線數(shù)控化改造的市場
3.1 機床數(shù)控化改造的市場
我國目前機床總量380余萬臺,而其中數(shù)控機床總數(shù)只有11.34萬臺,即我國機床數(shù)控化率不到3%。近10年來,我國數(shù)控機床年產(chǎn)量約為0.6~0.8萬臺,年產(chǎn)值約為18億元。機床的年產(chǎn)量數(shù)控化率為6%。我國機床役齡10年以上的占60%以上;10年以下的機床中,自動/半自動機床不到20%,F(xiàn)MC/FMS等自動化生產(chǎn)線更屈指可數(shù)(美國和日本自動和半自動機床占60%以上)??梢娢覀兊拇蠖鄶?shù)制造行業(yè)和企業(yè)的生產(chǎn)、加工裝備絕大數(shù)是傳統(tǒng)的機床,而且半數(shù)以上是役齡在10年以上的舊機床。用這種裝備加工出來的產(chǎn)品普遍存在質(zhì)量差、品種少、檔次低、成本高、供貨期長,從而在國際、國內(nèi)市場上缺乏競爭力,直接影響一個企業(yè)的產(chǎn)品、市場、效益,影響企業(yè)的生存和發(fā)展。所以必須大力提高機床的數(shù)控化率。
3.2 進口設備和生產(chǎn)線的數(shù)控化改造市場
我國自改革開放以來,很多企業(yè)從國外引進技術、設備和生產(chǎn)線進行技術改造。據(jù)不完全統(tǒng)計,從1979~1988年10年間,全國引進技術改造項目就有18446項,大約165.8億美元。
這些項目中,大部分項目為我國的經(jīng)濟建設發(fā)揮了應有的作用。但是有的引進項目由于種種原因,設備或生產(chǎn)線不能正常運轉(zhuǎn),甚至癱瘓,使企業(yè)的效益受到影響,嚴重的使企業(yè)陷入困境。一些設備、生產(chǎn)線從國外引進以后,有的消化吸收不好,備件不全,維護不當,結果運轉(zhuǎn)不良;有的引進時只注意引進設備、儀器、生產(chǎn)線,忽視軟件、工藝、管理等,造成項目不完整,設備潛力不能發(fā)揮;有的甚至不能啟動運行,沒有發(fā)揮應有的作用;有的生產(chǎn)線的產(chǎn)品銷路很好,但是因為設備故障不能達產(chǎn)達標;有的因為能耗高、產(chǎn)品合格率低而造成虧損;有的已引進較長時間,需要進行技術更新。種種原因使有的設備不僅沒有創(chuàng)造財富,反而消耗著財富。
這些不能使用的設備、生產(chǎn)線是個包袱,也是一批很大的存量資產(chǎn),修好了就是財富。只要找出主要的技術難點,解決關鍵技術問題,就可以最小的投資盤活最大的存量資產(chǎn),爭取到最大的經(jīng)濟效益和社會效益。這也是一個極大的改造市場。
4 數(shù)控化改造的內(nèi)容及優(yōu)缺
4.1 國外改造業(yè)的興起
在美國、日本和德國等發(fā)達國家,它們的機床改造作為新的經(jīng)濟增長行業(yè),生意盎然,正處在黃金時代。由于機床以及技術的不斷進步,機床改造是個"永恒"的課題。我國的機床改造業(yè),也從老的行業(yè)進入到以數(shù)控技術為主的新的行業(yè)。在美國、日本、德國,用數(shù)控技術改造機床和生產(chǎn)線具有廣闊的市場,已形成了機床和生產(chǎn)線數(shù)控改造的新的行業(yè)。在美國,機床改造業(yè)稱為機床再生(Remanufacturing)業(yè)。從事再生業(yè)的著名公司有:Bertsche工程公司、ayton機床公司、Devlieg-Bullavd(得寶)服務集團、US設備公司等。美國得寶公司已在中國開辦公司。在日本,機床改造業(yè)稱為機床改裝(Retrofitting)業(yè)。從事改裝業(yè)的著名公司有:大隈工程集團、崗三機械公司、千代田工機公司、野崎工程公司、濱田工程公司、山本工程公司等。
4.2 數(shù)控化改造的內(nèi)容
機床與生產(chǎn)線的數(shù)控化改造主要內(nèi)容有以下幾點:
其一是恢復原功能,對機床、生產(chǎn)線存在的故障部分進行診斷并恢復;其二是NC化,在普通機床上加數(shù)顯裝置,或加數(shù)控系統(tǒng),改造成NC機床、CNC機床;其三是翻新,為提高精度、效率和自動化程度,對機械、電氣部分進行翻新,對機械部分重新裝配加工,恢復原精度;對其不滿足生產(chǎn)要求的CNC系統(tǒng)以最新CNC進行更新;其四是技術更新或技術創(chuàng)新,為提高性能或檔次,或為了使用新工藝、新技術,在原有基礎上進行較大規(guī)模的技術更新或技術創(chuàng)新,較大幅度地提高水平和檔次的更新改造。
4.3 數(shù)控化改造的優(yōu)缺
4.3.1 減少投資額、交貨期短
同購置新機床相比,一般可以節(jié)省60%~80%的費用,改造費用低。特別是大型、特殊機床尤其明顯。一般大型機床改造,只花新機床購置費用的1/3,交貨期短。但有些特殊情況,如高速主軸、托盤自動交換裝置的制作與安裝過于費工、費錢,往往改造成本提高2~3倍,與購置新機床相比,只能節(jié)省投資50%左右。
4.3.2 機械性能穩(wěn)定可靠,結構受限
所利用的床身、立柱等基礎件都是重而堅固的鑄造構件,而不是那種焊接構件,改造后的機床性能高、質(zhì)量好,可以作為新設備繼續(xù)使用多年。但是受到原來機械結構的限制,不宜做突破性的改造。
4.3.3 熟悉了解設備、便于操作維修
購買新設備時,不了解新設備是否能滿足其加工要求。改造則不然,可以精確地計算出機床的加工能力;另外,由于多年使用,操作者對機床的特性早已了解,在操作使用和維修方面培訓時間短,見效快。改造的機床一安裝好,就可以實現(xiàn)全負荷運轉(zhuǎn)。
4.3.4 可充分利用現(xiàn)有的條件
可以充分利用現(xiàn)有地基,不必像購入新設備時那樣需重新構筑地基。
4.3.5 可以采用最新的控制技術
可根據(jù)技術革新的發(fā)展速度,及時地提高生產(chǎn)設備的自動化水平和效率,提高設備質(zhì)量和檔次,將舊機床改成當今水平的機床。
5 數(shù)控系統(tǒng)的選擇
數(shù)控系統(tǒng)主要有三種類型,改造時,應根據(jù)具體情況進行選擇。
5.1 步進電機拖動的開環(huán)系統(tǒng)
該系統(tǒng)的伺服驅(qū)動裝置主要是步進電機、功率步進電機、電液脈沖馬達等。由數(shù)控系統(tǒng)送出的進給指令脈沖,經(jīng)驅(qū)動電路控制和功率放大后,使步進電機轉(zhuǎn)動,通過齒輪副與滾珠絲杠副驅(qū)動執(zhí)行部件。只要控制指令脈沖的數(shù)量、頻率以及通電順序,便可控制執(zhí)行部件運動的位移量、速度和運動方向。這種系統(tǒng)不需要將所測得的實際位置和速度反饋到輸入端,故稱之為開環(huán)系統(tǒng),該系統(tǒng)的位移精度主要決定于步進電機的角位移精度,齒輪絲杠等傳動元件的節(jié)距精度,所以系統(tǒng)的位移精度較低。
該系統(tǒng)結構簡單,調(diào)試維修方便,工作可靠,成本低,易改裝成功。
5.2 異步電動機或直流電機拖動,光柵測量反饋的閉環(huán)數(shù)控系統(tǒng)
該系統(tǒng)與開環(huán)系統(tǒng)的區(qū)別是:由光柵、感應同步器等位置檢測裝置測得的實際位置反饋信號,隨時與給定值進行比較,將兩者的差值放大和變換,驅(qū)動執(zhí)行機構,以給定的速度向著消除偏差的方向運動,直到給定位置與反饋的實際位置的差值等于零為止。閉環(huán)進給系統(tǒng)在結構上比開環(huán)進給系統(tǒng)復雜,成本也高,對環(huán)境室溫要求嚴。設計和調(diào)試都比開環(huán)系統(tǒng)難。但是可以獲得比開環(huán)進給系統(tǒng)更高的精度,更快的速度,驅(qū)動功率更大的特性指標??筛鶕?jù)產(chǎn)品技術要求,決定是否采用這種系統(tǒng)。
5.3 交/直流伺服電機拖動,編碼器反饋的半閉環(huán)數(shù)控系統(tǒng)
半閉環(huán)系統(tǒng)檢測元件安裝在中間傳動件上,間接測量執(zhí)行部件的位置。它只能補償系統(tǒng)環(huán)路內(nèi)部部分元件的誤差,因此,它的精度比閉環(huán)系統(tǒng)的精度低,但是它的結構與調(diào)試都較閉環(huán)系統(tǒng)簡單。在將角位移檢測元件與速度檢測元件和伺服電機作成一個整體時則無需考慮位置檢測裝置的安裝問題。
當前生產(chǎn)數(shù)控系統(tǒng)的公司廠家比較多,國外著名公司的如德國SIEMENS公司、日本FANUC公司;國內(nèi)公司如中國珠峰公司、北京航天機床數(shù)控系統(tǒng)集團公司、華中數(shù)控公司和沈陽高檔數(shù)控國家工程研究中心。
選擇數(shù)控系統(tǒng)時主要是根據(jù)數(shù)控改造后機床要達到的各種精度、驅(qū)動電機的功率和用戶的要求。
6 數(shù)控改造中主要機械部件改裝探討
一臺新的數(shù)控機床,在設計上要達到:有高的靜動態(tài)剛度;運動副之間的摩擦系數(shù)小,傳動無間隙;功率大;便于操作和維修。機床數(shù)控改造時應盡量達到上述要求。不能認為將數(shù)控裝置與普通機床連接在一起就達到了數(shù)控機床的要求,還應對主要部件進行相應的改造使其達到一定的設計要求,才能獲得預期的改造目的。
6.1 滑動導軌副
對數(shù)控車床來說,導軌除應具有普通車床導向精度和工藝性外,還要有良好的耐摩擦、磨損特性,并減少因摩擦阻力而致死區(qū)。同時要有足夠的剛度,以減少導軌變形對加工精度的影響,要有合理的導軌防護和潤滑。
6.2 齒輪副
一般機床的齒輪主要集中在主軸箱和變速箱中。為了保證傳動精度,數(shù)控機床上使用的齒輪精度等級都比普通機床高。在結構上要能達到無間隙傳動,因而改造時,機床主要齒輪必須滿足數(shù)控機床的要求,以保證機床加工精度。
6.3 滑動絲杠與滾珠絲杠
絲杠傳動直接關系到傳動鏈精度。絲杠的選用主要取決于加工件的精度要求和拖動扭矩要求。被加工件精度要求不高時可采用滑動絲杠,但應檢查原絲杠磨損情況,如螺距誤差及螺距累計誤差以及相配螺母間隙。一般情況滑動絲杠應不低于6級,螺母間隙過大則更換螺母。采用滑動絲杠相對滾珠絲杠價格較低,但難以滿足精度較高的零件加工。
滾珠絲杠摩擦損失小,效率高,其傳動效率可在90%以上;精度高,壽命長;啟動力矩和運動時力矩相接近,可以降低電機啟動力矩。因此可滿足較高精度零件加工要求。
6.4 安全防護
效率必須以安全為前提。在機床改造中要根據(jù)實際情況采取相應的措施,切不可忽視。滾珠絲杠副是精密元件,工作時要嚴防灰塵特別是切屑及硬砂粒進入滾道。在縱向絲杠上也可加整體鐵板防護罩。大拖板與滑動導軌接觸的兩端面要密封好,絕對防止硬質(zhì)顆粒狀的異物進入滑動面損傷導軌。
7 機床數(shù)控改造主要步驟
7.1 改造方案的確定
改造的可行性分析通過以后,就可以針對某臺或某幾臺機床的現(xiàn)況確定改造方案,一般包括:
7.1.1機械修理與電氣改造相結合
一般來說,需進行電氣改造的機床,都需進行機械修理。要確定修理的要求、范圍、內(nèi)容;也要確定因電氣改造而需進行機械結構改造的要求、內(nèi)容;還要確定電氣改造與機械修理、改造之間的交錯時間要求。機械性能的完好是電氣改造成功的基礎。
7.1.2先易后難、先局部后全局
原系統(tǒng)的拆除必須對照原圖紙,仔細進行,及時在圖紙上作出標記,防止遺漏或過拆(局部改造情況下)。在拆的過程中也會發(fā)現(xiàn)一些新系統(tǒng)設計中的欠缺之處,應及時補充與修正,拆下的系統(tǒng)及零件應分門別類,妥善保管,以備萬一改造不成功或局部失敗時恢復使用。還有一定使用價值的,可作其他機床備件用。切忌大手大腳,亂扔亂放。
7.2 合理安排新系統(tǒng)位置及布線
根據(jù)新系統(tǒng)設計圖紙,合理進行新系統(tǒng)配置,包括箱體固定、面板安放、線路走向和固定、調(diào)整元器件位置、密封及必要裝飾等。連線工作必須分工明確,有人復查檢驗,以確保連線工藝規(guī)范、線徑合適、正確無誤、可靠美觀。
7.3 調(diào)試
調(diào)試必須按事先確定的步驟和要求進行。調(diào)試人員應頭腦冷靜,隨時記錄,以便發(fā)現(xiàn)和解決問題。調(diào)試中首先試安全保護系統(tǒng)靈敏度,防止人身、設備事故發(fā)生。調(diào)試現(xiàn)場必須清理干凈,無多余物品;各運動坐標拖板處于全行程中心位置;能空載試驗的,先空載后加載;能模擬試驗的,先模擬后實動;能手動的,先手動后自動。
7.4 驗收及后期工作
驗收工作應聘請有關的人員共同參加,并按已制定的驗收標準進行。改造的后期工作也很重要,它有利于項目技術水平的提高和使設備盡早投產(chǎn)。驗收及后期工作包括:
7.4.1機床機械性能驗收
經(jīng)過機械修理和改造以及全面保養(yǎng),機床的各項機械性能應達到要求,幾何精度應在規(guī)定的范圍內(nèi)。
7.4.2電氣控制功能和控制精度驗收
電氣控制的各項功能必須達到動作正常,靈敏可靠。控制精度應用系統(tǒng)本身的功能(如步進尺寸等)與標準計量器具(如激光干涉儀、坐標測量儀等)對照檢查,達到精度范圍之內(nèi)。同時還應與改造前機床的各項功能和精度作出對比,獲得量化的指標差。
7.4.3試件切削驗收
可以參照國內(nèi)外有關數(shù)控機床切削試件標準,在有資格的操作工、編程人員配合下進行試切削。試件切削可驗收機床剛度、切削力、噪聲、運動軌跡、關聯(lián)動作等,一般不宜采用產(chǎn)品零件作試件使用。
7.4.4圖紙、資料驗收
機床改造完后,應及時將圖紙(包括原理圖、配置圖、接線圖、梯形圖等)、資料(包括各類說明書)、改造檔案(包括改造前、后的各種記錄)匯總、整理、移交入檔。保持資料的完整、有效、連續(xù),這對該設備的今后穩(wěn)定運行是十分重要的。
7.4.5總結、提高
每次改造結束后應及時總結,既有利于提高技術人員的業(yè)務水平,也有利于整個企業(yè)的技術進步。
編號:
畢業(yè)設計(論文)外文翻譯
(原文)
學 院: 國防生學院
專 業(yè): 機械設計制造及其自動化
學生姓名: 李卓霖
學 號: 1000110106
指導教師單位: 桂林電子科技大學
姓 名: 曹泰山
職 稱: 講師
2014 年 3 月 09 日
24
Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge
C. Alkin, C. E. Imrak, H. Kocabas
Abstract
The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E.M Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed.
Keywords: overhead crane, finite element method, solid modeling, box girder.
Notation
b distance between two side plates
bk width of lower plate
FAA static load due to the trolley
FY load due to the working load
h0 height of the girder end
h2 height of the side plates
LA distance between trolley wheels
LK span of crane girder
LP distance between two adjacent supports
q weight of one meter platform
qK weight of one meter maintenance platform
qP uniformly distributed mass units of bridge
t1 thickness of the upper and lower plates
t2 thickness of the side plates
x2 distance between center of gravity and the midpoint of the left side plate
x4 distance between center of gravity and the midpoint of the rail
y1 distance between neutral axis and the midpoint of the rail
y3 distance between center of gravity and the midpoint of the top plate
y5 distance between neutral axis and the midpoint of the top plate
WX1 moment of resistance on x-axis
WY1 moment of resistance on y-axis
amplifying coefficient
dynamic coefficient
1 Introduction
Cranes are the best way of providing a heavy lifting facility covering virtually the whole area of a building. An overhead crane is the most important materials handling system for heavy goods. The primary task of the overhead crane is to handle and transfer heavy payloads from one position to another. Thus they are used in areas such as automobile plants and shipyards [1, 2]. Their design features vary widely according to their major operational specifications, such as: type of motion of the crane structure, weight and type of the load, location of the crane, geometric features and environmental conditions. Since the crane design procedures are highly standardized with these components, most effort and time are spent on interpreting and implementing the available design standards [3].
There are many published studies on structural and component stresses, safety under static loading and dynamic behavior of cranes [5–16]. Solid modeling of bridge structures and finite element analysis to find the displacements and stress values has been investigated by Demirsoy [17].Solid modeling techniques applied for road bridge structures, and an analysis of these structures using the finite element method are provided in [18]. In this study, stress and displacements were found using FEM90 software. Solid modeling of a crane bridge, the loading at different points on the bridge and then application of the finite element method have been studied by Celiktas [19]. She presented the results of finite element methods for an overhead crane.
DIN-Taschenbuch and F. E. M. (Federation Européenne de la Manutention) Rules offer design methods and empirical approaches and equations that are based on previous design experience and widely accepted design procedures. DIN--Taschenbuch 44 and 185 are a collection of standards related to crane design. DIN norms generally state standard values of design parameters. F. E. M Rules are mainly an accepted collection of rules to guide crane designers. It includes criteria for deciding on the external loads to select crane components [3, 20].
In this study, the calculations apply the F. E. M. rules and DIN standards, which are used for box girder crane bridges. The calculation of the box girder uses the CESAN Inc. standard bridge tables. Then a solid model of the crane bridge is generated with the same dimensions as in the calculation results. Then static analysis is performed, using the Finite Element Method. Before starting the solution, the boundary conditions are applied as in practice.
2 Overhead cranes with a double box girder
Overhead travelling cranes with a double box girder not only hoist loads but also carry them horizontally. A double beam overhead crane is built of a trolley travelling on bridges, and bridges travelling on rails. The trolley hoists or lowers the loads and carries them on the bridge structure. The bridges carry the loads on a rail. As a result, three perpendicular movements are performed. The system is depicted in Fig. 1, where the payload of the mass is attached to the bridge with wire ropes [21, 22].
The double box girders are subjected to vertical and horizontal loads by the weight of the crane, the working (hook) load and the dynamic loads. With a double box girder construction, the trolley runs above or between the girders. The acceptable construction requirements and values for a box girder bridge structure are shown in Fig.2.
Fig. 1: Overall view of an overhead crane
Fig. 2: Construction requirements for a box girder bridge
3 Application of FEM to an overhead crane
Among numerical techniques, the finite element method is widely used due to the availability of many user-friendly commercial softwares. The finite element method can analyse any geometry, and solves both stresses and displacements [23]. FEM approximates the solution of the entire domain under study as an assemblage of discrete finite elements interconnected at nodal points on the element boundaries. The approximate solution is formulated over each element matrix and thereafter assembled to obtain the stiffness matrix, and displacement and force vectors of the entire domain. In this study finite element modeling is carried out by means of the Cosmos Works and MSC commercial package. Patran and 4-node tetrahedral elements and 4-node quadrilateral shell elements have been used for modeling the overhead crane bridge.
The four-node tetrahedral element is the simplest three--dimensional element used in the analysis of solid mechanics problems such as bracket stress analysis. This element has four nodes, with each node having three translational and three rotational degrees of freedom on the x, y, and z-axes. A shell element may be defined, which allows in the plane or curved surface of the element and posses both length. It
width and may only be used in 3-D simulations. The four--node shell element is obtained by assembling the bending element to the appropriate degrees of freedom. This is sufficient as long as the shell element deflection is within the predefined ratio of shell thickness, otherwise the system works as a large deflection.
A typical four-node tetrahedral element and four-node quadratic shell element, and their coordinate systems are illustrated in Fig. 3 [24]. The four-node tetrahedral element chosen has six degrees of freedom at each node: translation in the nodal x, y, and z directions and rotations about the nodal x, y, and z directions. For the four-node quadratic shell element used to model the overhead crane girder, r and s denote the natural coordinates and δ is the thickness of the element.
This system does not have any horizontal force. The axial displacements and rotations of the first and last faces are equal to zero. In addition, the transverse displacement is zero at the first and last face nodes.
The external forces acting on the system are the mass of the main girder of the crane (distributed load) and the forces acting on the wheels of the trolley along the crane (active load). The forces acting on the trolley wheels are caused by the mass of the trolley, an the lifting load which will be moved on the crane.
4-node tetrahedral element
4-node quadratic shell element
Fig. 3: Elements used to model an overhead crane girder
4 Solid and finite element modeling of an overhead crane bridge
The finite element method is a numerical procedure that can be applied to obtain solutions to a variety of problems in engineering. Steady, transient, linear or nonlinear problems in stress analysis, heat transfer, fluid flow and electrome chanism problems may be analysed with finite element methods. The basic steps in the finite element method are defined as follows: preprocessing phase, solution phase, and post processing phase.
Real crane data was gathered from CESAN Inc., a Turkish company involved in mass production of overhead cranes. First, the crane bridge is modeled as a surface. Bridge geometry is suitable for this, and long and thin parts should also be modeled as a surface. Later, a mesh is created. In this study, a quadratic element type is used. Solid modeling is generated for the calculated crane bridge and the solid model is shown in Fig. 4 [20].
Solid model of a crane bridge Wireframe view of a crane bridge
Fig. 4: Models of an overhead crane bridge
5 Numerical example of an overhead crane
A 35-ton-capacity overhead crane of overall length 13 m and total weight 22.5 tons was selected as a study object. The configuration of the overhead crane is shown in Fig. 1.The overhead crane consists of two girders, two saddles to connect them, and a trolley moving in the longitudinal direction of the overhead crane and wheels. The driving unit is installed in one of the two girders. The overhead crane is supported by two rails and the runway girders installed in building.
In order to calculate the stress in the structure, the rules of F. E. M 1.001 are applied. The design values used in the bridge analysis from the F. E.M and DIN standards are given in Table 1.
Table 1: Bridge property values
Handling Capacity
: =35 ton
Trolley Weight
: =3 ton
Bridge Length
: =13 m
Distance between wheels of trolley
: =2m
Trolley Velocity
: =20 m/min.
Crane Velocity
: =15 m/min.
Hoisting Velocit
: =2.7 m/min
Total duration of use
: U4
Load spectrum class
: Q3
Appliance group
: A5
Loading type
: H (main load)
Dynamic coefficient
:ψ=1.15
Amplifying coefficient
:= 1.11
First the maximum and minimum stresses and then the shear stress are calculated using the F. E. M. rules. Using the finite element method for the considered girder, we obtain the stress valnes. We obtain the static loads due to the dead weight, the loads due to the working load multiplied by the dynamic coefficient, and the two most unfavourable horizontal effects, excluding the buffer forces.
The maximum stress consists of the stress on the bridge dead weights, the stress on the trolley dead weight, the stress from the hoisting load, stress from the inertia forces and the stress of the trolley contraction. The minimum stress includes the stress on the bridge dead weights and the stress on the trolley dead weight. The maximum and minimum stresses for the given values according to the F. E.M. rules [20] are written in standard form as
and,
,
The value of the dynamic coefficient ψ is applied to the loading arising from the working load. The value of the amplifying coefficient depends the group classification of the application, and the weight of one meter maintenance platform is zero in this work. [25].
It is assumed that the total load (372780 N) is effected on the midpoint of the rail and each girder shares this total load equally. This load is applied via the contact points of the two trolley wheels in this system. Therefore the value of the acting force on each point is 93195 N. Applying the total load in the system, the value of the maximum stress according to Eq. (1) is 143.90 N/mm2 to two decimal places, and the value of the minimum stress according to Eq. (2) is 47.33 N/mm2 to two decimal places.
According to Fig. 5, the permissible stress in shear consists of the shear stresses of the wheel forces, and is defined as [20]
The value of the maximum shear stress is 24.82 N/mm2 to two decimal places from Eq. (5). Substituting Eq. (1)–(3) the equivalent stress is given by. The value of the equivalent stress is 150.18 N/mm2 to two decimal places.
Fig. 5: Inertia and moment of resistance in a box girder
6 Results from a girder model with a four-node tetrahedral element
To model the overhead crane girder with a four-node tethrahedral element, Cosmosworks software was used for finite element analysis using the girder solid model generated by means of SolidWorks 2003. Young’s Modulus (E) is 2.1×105 N/mm2 and the Poisson Ratio () is 0.3 for finite element analysis. The value of the maximum stress of the side plate is 12.07 N/mm2 to two decimal places and the value of the maximum stress of the bottom plate is 15.08N/mm2 to two decimal places from Fig. 6 [20].
The displacement of the modelled overhead crane girder was obtained from CosmosWorks, and is illustrated in Fig. 7. The value of maximum displacement of the girder is about 2.2 mm.
Fig. 6: Stress values of an overhead crane girder with a four-node tetrahedral element
Fig. 7: Displacements of an overhead crane girder with a four-node tetrahedral element
7 Results from a girder model with a four-node quadratic shell element
To model the overhead crane girder with a four-node quadratic shell element, MSC Patran software was used for the finite element analysis. Young’s Modulus (E) is 2.1×10 N/mm2 and the Poisson Ratio (_St) is 0.3 for finite element analysis. The value of the maximum stress of the side plate is 35.40 N/mm2 to two decimal places, and the value of the maximum stress of the bottom plate is 49.30 N/mm2 to two decimal places, from Fig. 8 [20].
The displacement of the modelled overhead crane girder was obtained from MSC Patran, and is illustrated in Fig. 9.The value of maximum displacement of the girder is about 3.89 mm.
The value of the maximum stress according to Eq. (1) is calculated as 143.90 N/mm2 to two decimal places. The safety factor should be considered between 2 and 3 for overhead crane girder design. The maximum stress value of the side plate is between 24.14 and 36.21 N/mm2 to two decimal places, and the maximum stress value of the bottom plate is between 30.16 and 45.24 N/mm2 to two decimal places for a four-node tetrahedral element, taking into account the safety factor.
The maximum stress value of the side plate is between 70.8 and 106.2 N/mm2 to two decimal places and the maximum stress value of the bottom plate is between 98.6 and 147.9 N/mm2 to two decimal places for a four-node quadratic shell element, taking into account the safety factor.
The permissible displacement of the girder is 13 mm according to F. E.M. rules. The maximum displacement obtained from the finite element model with a four-node tetrahedral element is between 4.40 and 6.60 mm, taking into account the safety factor. The maximum displacement obtained from the finite element model with a four-node quadratic shell element is between 7.78 and 11.67 mm, taking into account the safety factor.
Fig. 8: Stress values of an overhead crane girder with a quadratic shell element
Fig. 9: Displacements of an overhead crane girder with a four-node quadratic shell element
8 Conclusion
In this study, unlike the other studies carried out previously, shell elements in finite element modeling of an overhead box girder have been examined. In order to show the use of shell elements, one illustrative overhead crane bridge example is given. The maximum stress value is 143.90 N/mm2 and 45.24 N/mm2 for a four-node tetrahedral element and 147.9 N/mm2 for a four-node quadratic shell element using both calculations according to the F. E. M. Rules and finite element analysis. The value of the equivalent stress is 150.18 N/mm2 to two decimal places. Taking into account the safety factor, the stress value varies between 97–145.5N/mm2, which is obtained from MSC Patran.
The ratio of length to thickness of the element used in modelling the overhead crane box girder is higher than 20. Therefore, in order to show the accuracy of the analysis of the overhead crane bridges, a four-node quadratic shell element is used instead of the four-node tetrahedral element for finite element analysis.
Acknowledgment
It is pleasure to acknowledge much stimulating correspondence with Dr. Haydar Livatyali and gratefully to acknowledge the support of CESAN Inc., which provided the design data.
Machine tool numerical control reforms
1 CNC systems and the development trend of history
1946 birth of the world's first electronic computer, which shows that human beings created to enhance and replace some of the mental work tools. It and human agriculture, industrial society in the creation of those who merely increase compared to manual tools, from a qualitative leap for mankind's entry into the information society laid the foundation. Six years later, in 1952, computer technology applied to the machine in the United States was born first CNC machine tools. Since then, the traditional machine produced a qualitative change. Nearly half a century since the CNC system has experienced two phases and six generations of development.
1.1 Numerical Control (NC) phase (1952 to 1970)
Early computer's computational speed low and the prevailing scientific computing and data processing is not affected, but can not meet the requirements of real-time control machine. People have to use digital logic circuit "tied" into a single machine as a dedicated computer numerical control system, known as the hardware connection NC (HARD-WIRED NC), called the Numerical Control (NC). With the development of components of this phase after three generations, that is, in 1952 the first generation - tube; 1959 of the second generation - transistor; 1965 of the third generation - small-scale integrated circuits.
1.2 Computer Numerical Control (CNC) phase (1970 to present)
To 1970, GM has been a small computer and mass-produced. So it transplant system as the core component of NC, have entered a Computer Numerical Control (CNC) stage(in front of the computer should be "universal" word omitted). To 1971, the United States INTEL company in the world will be the first time the two most core computer components - computing and controller, a large-scale integrated circuit technology integration in a chip, called the microprocessor (MICROPROCESSOR) , also known as the central processing unit (CPU).
1974 microprocessor to be used in CNC system. This is because the function of the computer is too small to control a machine tool capacity affluent (the time has been used to control more than one machine, called Group Control), as a reasonable economic use of the microprocessor. Minicomputer reliability and then not ideal. Early microprocessor speed and functionality while still not high enough, but can be adopted to solve the multi-processor architecture. As microprocessor core is a general computer components, it is still known as the CNC.
By 1990, PC machines (personal computers, domestic habits that computer) performance has been developed to a high stage, as a CNC system to meet the requirements of the core