0063-電控電動(dòng)式齒輪齒條四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【全套12張CAD圖+說明書】
0063-電控電動(dòng)式齒輪齒條四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【全套12張CAD圖+說明書】,全套12張CAD圖+說明書,電動(dòng),齒輪,齒條,輪轉(zhuǎn),系統(tǒng),設(shè)計(jì),全套,12,十二,cad,說明書,仿單
電控電動(dòng)式齒輪齒條四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì),四輪轉(zhuǎn)向系統(tǒng)利用行駛中的某些信息來控制后輪的轉(zhuǎn)角輸入,主要目
的是增強(qiáng)汽車高速行駛時(shí)的操縱穩(wěn)定性,提高汽車低速行駛時(shí)的操縱靈活性。文中介紹了四種類型的四輪轉(zhuǎn)向
系統(tǒng),為控制前后輪的協(xié)調(diào)偏轉(zhuǎn),提供了七種控制策略。根據(jù)已有的研究,設(shè)計(jì)了一種電控電動(dòng)式的四輪轉(zhuǎn)向
系統(tǒng),對(duì)其主要結(jié)構(gòu)進(jìn)行了介紹?;诘幕緟?shù),設(shè)計(jì)了齒輪齒條式的前輪轉(zhuǎn)向機(jī)構(gòu)和后輪轉(zhuǎn)向機(jī)構(gòu)?;?
阿克曼轉(zhuǎn)向原理,運(yùn)用Matlab優(yōu)化工具箱對(duì)所設(shè)計(jì)的轉(zhuǎn)向梯形機(jī)構(gòu)進(jìn)行尺寸優(yōu)化。
電控電動(dòng)式齒輪齒條四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)
摘 要
四輪轉(zhuǎn)向系統(tǒng)利用行駛中的某些信息來控制后輪的轉(zhuǎn)角輸入,主要目的是增強(qiáng)汽車高速行駛時(shí)的操縱穩(wěn)定性,提高汽車低速行駛時(shí)的操縱靈活性。
文中介紹了四種類型的四輪轉(zhuǎn)向系統(tǒng),為控制前后輪的協(xié)調(diào)偏轉(zhuǎn),提供了七種控制策略。根據(jù)已有的研究,設(shè)計(jì)了一種電控電動(dòng)式的四輪轉(zhuǎn)向系統(tǒng),對(duì)其主要結(jié)構(gòu)進(jìn)行了介紹。
基于的基本參數(shù),設(shè)計(jì)了齒輪齒條式的前輪轉(zhuǎn)向機(jī)構(gòu)和后輪轉(zhuǎn)向機(jī)構(gòu)?;诎⒖寺D(zhuǎn)向原理,運(yùn)用Matlab優(yōu)化工具箱對(duì)所設(shè)計(jì)的轉(zhuǎn)向梯形機(jī)構(gòu)進(jìn)行尺寸優(yōu)化。
本文建立了線型二自由度四輪轉(zhuǎn)向汽車模型,推導(dǎo)出其運(yùn)動(dòng)微分方程。基于前后轉(zhuǎn)角比例轉(zhuǎn)向的控制策略,借助Matlab/Simulink對(duì)四輪轉(zhuǎn)向和前輪轉(zhuǎn)向汽車進(jìn)行了運(yùn)動(dòng)仿真。
關(guān)鍵詞:四輪轉(zhuǎn)向;轉(zhuǎn)向系設(shè)計(jì);轉(zhuǎn)向梯形優(yōu)化;運(yùn)動(dòng)仿真目 錄
摘 要 I
Abstract II
第 1 章 緒論 1
1.1 本課題研究的目的和意義 1
1.1.1 四輪轉(zhuǎn)向技術(shù)原理簡(jiǎn)介 1
1.1.2 研究的目的和意義 1
1.2 國(guó)內(nèi)外研究現(xiàn)狀概述 2
1.2.1 國(guó)外研究現(xiàn)狀 2
1.2.2 國(guó)內(nèi)研究現(xiàn)狀 4
1.3 本文主要研究?jī)?nèi)容 4
第 2 章 轉(zhuǎn)向系統(tǒng)的整體設(shè)計(jì) 6
2.1 四輪轉(zhuǎn)向系統(tǒng)的類型 6
2.2 四輪轉(zhuǎn)向系統(tǒng)的控制類型 7
2.3 整車布置的設(shè)計(jì) 8
2.4 本章小結(jié) 9
第 3 章 轉(zhuǎn)向器的設(shè)計(jì) 10
3.1 設(shè)計(jì)目標(biāo)車輛主要參數(shù) 10
3.2 前輪轉(zhuǎn)向器的設(shè)計(jì) 10
3.2.1 轉(zhuǎn)向系計(jì)算載荷的確定 10
3.2.2 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì) 11
3.2.3 間隙調(diào)整機(jī)構(gòu)的設(shè)計(jì) 14
3.3 后輪轉(zhuǎn)向機(jī)構(gòu)的設(shè)計(jì) 15
3.3.1 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì) 15
3.3.2 直流電動(dòng)機(jī)的選擇 16
3.3.3 減速器的設(shè)計(jì) 17
3.3.4 聯(lián)軸器的選擇 22
3.3.5 傳感器的選擇 22
3.4 裝配圖的繪制 24
3.5 本章小結(jié) 25
第 4 章 轉(zhuǎn)向梯形的優(yōu)化設(shè)計(jì) 26
4.1 轉(zhuǎn)向梯形機(jī)構(gòu)方案選擇 26
4.2 轉(zhuǎn)向梯形機(jī)構(gòu)的優(yōu)化設(shè)計(jì) 27
4.2.1 建立轉(zhuǎn)向梯形的數(shù)學(xué)模型 27
4.2.2 優(yōu)化轉(zhuǎn)向梯形的數(shù)學(xué)模型 29
4.3 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)強(qiáng)度計(jì)算 32
4.3.1 球頭銷的設(shè)計(jì) 32
4.3.2 轉(zhuǎn)向橫拉桿的設(shè)計(jì) 32
4.4 電機(jī)的控制 34
4.5 本章小結(jié) 34
第 5 章 四輪運(yùn)動(dòng)模型的建立及仿真 35
5.1 四輪轉(zhuǎn)向汽車模型的建立 35
5.2 四輪轉(zhuǎn)向汽車運(yùn)動(dòng)關(guān)系的推導(dǎo) 37
5.2.1 汽車橫擺角速度與前輪轉(zhuǎn)角的關(guān)系 37
5.2.2 汽車質(zhì)心側(cè)偏角與前輪轉(zhuǎn)角的關(guān)系 38
5.2.3 汽車側(cè)向加速度與前輪轉(zhuǎn)角的關(guān)系 39
5.3 四輪轉(zhuǎn)向汽車的運(yùn)動(dòng)仿真 40
5.3.1 時(shí)域響應(yīng)特性 40
5.3.2 頻域響應(yīng)特性 43
5.4 本章小結(jié) 45
結(jié)論 46
致 謝 47
參考文獻(xiàn) 48
- 25 -
第 1 章 緒論
1.1 本課題研究的目的和意義
1.1.1 四輪轉(zhuǎn)向技術(shù)原理簡(jiǎn)介
伴隨著社會(huì)的進(jìn)步、先進(jìn)科技的發(fā)展,道路安全問題引起了人們更高的關(guān)注,為了確保汽車的行駛安全,操縱穩(wěn)定性獲得越來越高的重視。汽車四輪轉(zhuǎn)向技術(shù)是一種可以使前后輪同時(shí)改變方向的技術(shù),后輪可以獨(dú)立進(jìn)行轉(zhuǎn)向。這種轉(zhuǎn)向方式的作用示意圖如圖1-1所示。
圖1-1 前輪轉(zhuǎn)向與四輪轉(zhuǎn)向技術(shù)的示意圖
與前輪轉(zhuǎn)向汽車相比,四輪轉(zhuǎn)向汽車有如下優(yōu)點(diǎn)[1]:
(1)汽車在低速行駛轉(zhuǎn)向并且方向盤轉(zhuǎn)向角度很大時(shí),后輪相對(duì)于前輪反向轉(zhuǎn)向,可以減小汽車的轉(zhuǎn)彎半徑,提高汽車的機(jī)動(dòng)性。
(2)汽車高速行駛轉(zhuǎn)彎時(shí),后輪與前輪同向轉(zhuǎn)向,能按照駕駛者的意圖迅速改變汽車行駛軌跡,而車身又不致產(chǎn)生過大的擺動(dòng),減少了擺尾產(chǎn)生的可能性,使駕駛者更容易控制汽車的姿態(tài)。
(3)減輕了汽車行駛時(shí)的輪胎磨損。
1.1.2 研究的目的和意義
汽車的操縱穩(wěn)定性是評(píng)價(jià)汽車主動(dòng)安全性能的重要標(biāo)準(zhǔn)之一,是汽車行駛安全的重要保障,在高速行駛時(shí)汽車安全行駛受操縱穩(wěn)定性的重要影響。因此,轉(zhuǎn)向系的設(shè)計(jì)在整車設(shè)計(jì)中顯得非常重要。另外,如何選擇轉(zhuǎn)向機(jī)構(gòu)形式及優(yōu)化轉(zhuǎn)向梯形的尺寸,使其滿足阿克曼轉(zhuǎn)向原理,是一項(xiàng)非常重要的任務(wù)。
通過查詢資料與設(shè)計(jì)的過程,掌握產(chǎn)品的基本設(shè)計(jì)思路及設(shè)計(jì)過程,可以鞏固所學(xué)的專業(yè)理論知識(shí),加深對(duì)汽車安全性、操縱穩(wěn)定性的理解,提高通過理論知識(shí)解決實(shí)際問題的能力。
1.2 國(guó)內(nèi)外研究現(xiàn)狀概述
4WS作為汽車新技術(shù),目前在各國(guó)的應(yīng)用都不是很廣泛。日本雖然在4WS的研究上做了很多的工作,也取得了很大的成果,但是就日本每年生產(chǎn)的千萬輛汽車而言,安裝4WS的只是很小一部分,仍然不能大規(guī)模地使用。其一是4WS在很多方面尚不是很成熟,其二是成本較高。盡管如此,4WS技術(shù)在改善汽車操縱穩(wěn)定性和增強(qiáng)汽車的安全性能上具有很明顯的效果。
現(xiàn)階段,國(guó)內(nèi)外學(xué)者對(duì)于四輪轉(zhuǎn)向系統(tǒng)的研究,主要是針對(duì)以下性能目標(biāo):
(1)保持汽車質(zhì)心側(cè)偏角基本為零。
(2)改善橫擺角速度和側(cè)向加速度的動(dòng)力學(xué)響應(yīng)性能。
(3)實(shí)現(xiàn)所希望的轉(zhuǎn)向特性。
(4)增加對(duì)工況變化的抗干擾能力。
(5)提高汽車的轉(zhuǎn)向操縱穩(wěn)定性和主動(dòng)安全性。
1.2.1 國(guó)外研究現(xiàn)狀
四輪轉(zhuǎn)向技術(shù)可以追溯到20 世紀(jì)60 年代,在1962 年日本汽車工程協(xié)會(huì)技術(shù)會(huì)議上,一名工程師研究發(fā)現(xiàn): 通過使用四輪轉(zhuǎn)向的方法,汽車的操縱穩(wěn)定性可以獲得很大的提高。在70 年代末,本田和馬自達(dá)汽車公司開始研究和開發(fā)四輪轉(zhuǎn)向技術(shù)。到80 年代末,四輪轉(zhuǎn)向系統(tǒng)開始進(jìn)入應(yīng)用階段。1990 年,日產(chǎn)、馬自達(dá)、本田三家汽車公司推出了幾款采用四輪轉(zhuǎn)向系統(tǒng)的轎車。1991年,日本三菱和美國(guó)克萊斯勒也推出了四輪轉(zhuǎn)向車型[2]。
隨著先進(jìn)汽車動(dòng)力學(xué)控制技術(shù)的發(fā)展,四輪轉(zhuǎn)向技術(shù)源于對(duì)工況下的汽車操縱穩(wěn)定性和主動(dòng)安全性的研究。相對(duì)于傳統(tǒng)前輪轉(zhuǎn)向汽車,四輪轉(zhuǎn)向系統(tǒng)還將根據(jù)汽車當(dāng)前的運(yùn)動(dòng)狀態(tài)信息對(duì)后輪轉(zhuǎn)向進(jìn)行控制,以提高汽車的操縱穩(wěn)定性和主動(dòng)安全性。
四輪轉(zhuǎn)向技術(shù)按照其發(fā)展可以大致歸納為下面三個(gè)階段[3]:
(1)20世紀(jì)初至20世紀(jì)60年代
這一階段主要是四輪轉(zhuǎn)向技術(shù)的萌芽和初步應(yīng)用。1907年,日本政府頒發(fā)了第一個(gè)關(guān)于四輪轉(zhuǎn)向的專利證書[4],它是利用一根軸將前輪轉(zhuǎn)向機(jī)構(gòu)和后輪轉(zhuǎn)向機(jī)構(gòu)直接連接,從而實(shí)現(xiàn)后輪轉(zhuǎn)向。當(dāng)車輛低速行駛時(shí),通過后輪相對(duì)于前輪的反向轉(zhuǎn)向,能夠減小低速時(shí)車輛的轉(zhuǎn)彎半徑,使其具有更好的機(jī)動(dòng)性。這可以算是四輪轉(zhuǎn)向技術(shù)最初的應(yīng)用實(shí)例了。
(2)20世紀(jì)60年代后期至20世紀(jì)90年代初
直到1962年,在日本汽車工程協(xié)會(huì)的技術(shù)會(huì)議上提出后輪主動(dòng)轉(zhuǎn)向的概念,才開始了四輪轉(zhuǎn)向系統(tǒng)的汽車動(dòng)力學(xué)研究。這一階段,研究人員開始認(rèn)識(shí)到四輪轉(zhuǎn)向技術(shù)對(duì)于提高汽車高速時(shí)的操縱穩(wěn)定性具有重要意義。
日本學(xué)者Furukawa通過一系列研究得出重要結(jié)論:在高車速范圍內(nèi),應(yīng)用后輪與前輪的同向轉(zhuǎn)向可以減小汽車質(zhì)心側(cè)偏角,從而減小側(cè)向加速度響應(yīng)的相位滯后,表明主動(dòng)控制后輪轉(zhuǎn)向可以在很大程度上改善汽車的操縱穩(wěn)定性[5]。
1985年,Nissan公司在實(shí)車上應(yīng)用了世界上第一套四輪轉(zhuǎn)向系統(tǒng),應(yīng)用在該公司開發(fā)的一種高性能主動(dòng)控制懸架上,并于1987年和1989年相繼開發(fā)出HICAS II 和 SUPER HICAS,其后輪轉(zhuǎn)向作用機(jī)理都是采用一套液壓泵和液壓系統(tǒng)來主動(dòng)控制后輪的轉(zhuǎn)向角度,比較明顯地改善了汽車在高車速范圍內(nèi)的操縱穩(wěn)定性[4]。
(3)20世紀(jì)90年代至今
這一階段,隨著電子技術(shù)的廣泛應(yīng)用,以及現(xiàn)代控制理論的融入,主要是汽車底盤的綜合集成控制的研究。研究人員開始從“行駛工況—駕駛員—車輛”的閉環(huán)系統(tǒng)出發(fā),綜合研究汽車的縱向、側(cè)向和垂向的動(dòng)力學(xué)控制,使得四輪四輪轉(zhuǎn)向技術(shù)更加成熟。
美國(guó)GM公司在其很多車型上應(yīng)用了Delphi公司研發(fā)的QuadraSteerTM的四輪轉(zhuǎn)向技術(shù),其后輪電動(dòng)轉(zhuǎn)向系統(tǒng)包括了車輪定位傳感器、車速傳感器和中央電子控制模塊。系統(tǒng)以電子控制的形式對(duì)后輪轉(zhuǎn)向進(jìn)行實(shí)時(shí)控制,根據(jù)車速的不同對(duì)后輪轉(zhuǎn)向進(jìn)行控制以達(dá)到低速時(shí)反向轉(zhuǎn)向和高速時(shí)同向轉(zhuǎn)向,并與汽車的底盤控制系統(tǒng)一體化,可以在控制面板上選擇開啟或者關(guān)閉四輪轉(zhuǎn)向系統(tǒng)。
隨著汽車動(dòng)力學(xué)和控制理論的發(fā)展,各種現(xiàn)代控制理論開始被逐漸應(yīng)用于四輪轉(zhuǎn)向系統(tǒng)的研究中,國(guó)外具有代表性的一些研究進(jìn)展如下:
Inoue和Sugasawa [5]提出了一種綜合前饋和反饋控制的四輪轉(zhuǎn)向系統(tǒng),選擇最優(yōu)的控制系統(tǒng)常量,把對(duì)轉(zhuǎn)向輸入響應(yīng)的控制和對(duì)抗外部干擾的穩(wěn)定性控制分開,實(shí)現(xiàn)了兩者的相互獨(dú)立。
Lee [6]對(duì)四輪轉(zhuǎn)向汽車在高速時(shí)的換道行駛進(jìn)行了分析,對(duì)比了在換道行駛過程中,有經(jīng)驗(yàn)駕駛員的操縱轉(zhuǎn)向和四輪轉(zhuǎn)向汽車的最優(yōu)化控制轉(zhuǎn)向,研究了駕駛員操縱四輪轉(zhuǎn)向汽車的主觀感受。
Cho和Kim [7]文章中討論了四輪轉(zhuǎn)向系統(tǒng)的最優(yōu)化設(shè)計(jì),提出了兩種新的反饋控制系統(tǒng)的設(shè)計(jì)方案。所設(shè)計(jì)的第一個(gè)系統(tǒng)以最大穩(wěn)定性為目的,第二個(gè)系統(tǒng)用來仿效最優(yōu)的四輪轉(zhuǎn)向系統(tǒng)的響應(yīng)。
Higuchi和Saitoh [8]應(yīng)用最優(yōu)控制理論提出了一種以減小質(zhì)心側(cè)偏角為目標(biāo)的方向盤前饋加狀態(tài)反饋的四輪主動(dòng)轉(zhuǎn)向控制律。
1.2.2 國(guó)內(nèi)研究現(xiàn)狀
國(guó)內(nèi)對(duì)汽車四輪轉(zhuǎn)向技術(shù)的研究起步較晚,涉及到的相關(guān)論文如下:
吉林大學(xué)的郭孔輝[9]基于二自由度模型對(duì)四輪轉(zhuǎn)向系統(tǒng)的控制方法進(jìn)行了探討,研究了輪胎側(cè)偏特性對(duì)于四輪轉(zhuǎn)向系統(tǒng)的影響。
武漢大學(xué)的巫世晶[10]對(duì)四輪轉(zhuǎn)向系統(tǒng)的非線性控制進(jìn)行了研究,基于遺傳算法,設(shè)計(jì)了汽車四輪轉(zhuǎn)向的模糊神經(jīng)網(wǎng)絡(luò)控制器,得到比較理想的控制效果。
天津大學(xué)[11]對(duì)四輪轉(zhuǎn)向系統(tǒng)的非線性控制進(jìn)行了研究,探討了四輪轉(zhuǎn)向系統(tǒng)發(fā)生隨機(jī)時(shí)滯的參數(shù)區(qū)域。。
1.3 本文主要研究?jī)?nèi)容
本文選取為主體設(shè)計(jì)對(duì)象,設(shè)計(jì)一種汽車四輪轉(zhuǎn)向系統(tǒng),并對(duì)汽車的運(yùn)動(dòng)進(jìn)行仿真,其中關(guān)于轉(zhuǎn)向系統(tǒng)的設(shè)計(jì),偏重于轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)。所謂轉(zhuǎn)向傳動(dòng)機(jī)構(gòu),就是將轉(zhuǎn)向器輸出的力和運(yùn)動(dòng)傳給轉(zhuǎn)向節(jié),使左右轉(zhuǎn)向輪按一定關(guān)系偏轉(zhuǎn)的機(jī)構(gòu)。電機(jī)的控制策略等不在研究范圍內(nèi)。
整車的四輪轉(zhuǎn)向系統(tǒng)采用電控電動(dòng)式四輪轉(zhuǎn)向系統(tǒng),本論文研究的主要內(nèi)容如下:
(1)設(shè)計(jì)前轉(zhuǎn)向橋的轉(zhuǎn)向機(jī)構(gòu),選擇合適的轉(zhuǎn)向器類型,進(jìn)行轉(zhuǎn)向器的設(shè)計(jì)計(jì)算,確定主要零件的規(guī)格等。
(2)設(shè)計(jì)后轉(zhuǎn)向橋的轉(zhuǎn)向機(jī)構(gòu),選擇合適的轉(zhuǎn)向器類型,合理選擇驅(qū)動(dòng)電機(jī),設(shè)計(jì)減速機(jī)構(gòu)。
(3)基于阿克曼轉(zhuǎn)向原理,對(duì)與獨(dú)立懸架配用的雙梯形轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的尺寸進(jìn)行優(yōu)化計(jì)算。
(4)利用Pro/E實(shí)現(xiàn)零件三維建模,畫出轉(zhuǎn)向系統(tǒng)的裝配圖。
(5)利用Ansys Workbench對(duì)部分零件進(jìn)行強(qiáng)度分析。
(6)建立線型二自由度的四輪轉(zhuǎn)向汽車運(yùn)動(dòng)模型,基于前后輪比例轉(zhuǎn)向的控制策略,用Matlab/Simulink進(jìn)行運(yùn)動(dòng)仿真。
第 2 章 轉(zhuǎn)向系統(tǒng)的整體設(shè)計(jì)
轉(zhuǎn)向系是用來保持或者改變汽車行駛方向的機(jī)構(gòu),在汽車轉(zhuǎn)向行駛時(shí),保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。在乘用車上,駕駛員必須按照保持汽車行駛路線不至偏離過多的標(biāo)準(zhǔn)來不斷地調(diào)整方向盤轉(zhuǎn)動(dòng)。因此,轉(zhuǎn)向系統(tǒng)的任務(wù)是以盡可能明確的關(guān)系將轉(zhuǎn)向盤角度轉(zhuǎn)換為車輪轉(zhuǎn)向角,并將有關(guān)車輛運(yùn)動(dòng)狀態(tài)的反饋回傳給方向盤。
2.1 四輪轉(zhuǎn)向系統(tǒng)的類型
實(shí)現(xiàn)四輪轉(zhuǎn)向的重點(diǎn)在于如何將轉(zhuǎn)向盤的轉(zhuǎn)動(dòng)量傳遞到前后轉(zhuǎn)向輪,并為轉(zhuǎn)向輪提供驅(qū)動(dòng)力使其發(fā)生協(xié)調(diào)的偏轉(zhuǎn)。根據(jù)轉(zhuǎn)向盤轉(zhuǎn)動(dòng)量傳遞路徑以及轉(zhuǎn)向輪驅(qū)動(dòng)力來源的不同,將四輪轉(zhuǎn)向系統(tǒng)分為以下四類:
(1)機(jī)械式四輪轉(zhuǎn)向系統(tǒng)
機(jī)械式四輪轉(zhuǎn)向系統(tǒng)[2]由前輪轉(zhuǎn)向器、中央傳動(dòng)軸和后輪轉(zhuǎn)向器三部分組成。前輪使用齒輪齒條式的液壓動(dòng)力轉(zhuǎn)向器,后輪采用機(jī)械式轉(zhuǎn)向器,通過中心傳動(dòng)軸驅(qū)動(dòng)后輪轉(zhuǎn)向器。同時(shí),后輪橫拉桿形成轉(zhuǎn)向聯(lián)動(dòng)裝置。當(dāng)方向盤小角度轉(zhuǎn)動(dòng)時(shí),前后輪同向偏轉(zhuǎn),隨著方向盤轉(zhuǎn)角的增大,后輪轉(zhuǎn)角逐漸減小、回正,然后反向偏轉(zhuǎn)。
(2)液壓式四輪轉(zhuǎn)向系統(tǒng)
機(jī)電組合控制液壓驅(qū)動(dòng)四輪轉(zhuǎn)向系統(tǒng)[2]主要由前輪轉(zhuǎn)向器、轉(zhuǎn)向角度傳輸軸、電子傳感器和控制單元、轉(zhuǎn)向油泵、后輪轉(zhuǎn)向器等組成。后輪的偏轉(zhuǎn)方向由車速傳感器控制,偏轉(zhuǎn)角度則由機(jī)械式轉(zhuǎn)向角度傳輸軸控制,因此稱為機(jī)電組合控制系統(tǒng)。前輪轉(zhuǎn)向器和后輪轉(zhuǎn)向器分別由獨(dú)立的液壓系統(tǒng)驅(qū)動(dòng),轉(zhuǎn)向油泵需要進(jìn)行改裝,以便為前后液壓系統(tǒng)提供液壓動(dòng)力。后輪轉(zhuǎn)向器通過兩根橫拉桿與后輪連接,并且組成轉(zhuǎn)向聯(lián)動(dòng)裝置。
(3)電控-液壓驅(qū)動(dòng)四輪轉(zhuǎn)向系統(tǒng)
電控-液壓驅(qū)動(dòng)四輪轉(zhuǎn)向系統(tǒng)與機(jī)電組合液壓驅(qū)動(dòng)方式相似, 區(qū)別在于后輪的偏轉(zhuǎn)方向和偏轉(zhuǎn)角度由傳感器和控制單元控制,前輪轉(zhuǎn)向器和后輪轉(zhuǎn)向器之間沒有任何機(jī)械傳動(dòng)裝置,后輪液壓驅(qū)動(dòng)裝置用油管與轉(zhuǎn)向油泵連接。
(4)電控-電動(dòng)四輪轉(zhuǎn)向系統(tǒng)
電控-電動(dòng)四輪轉(zhuǎn)向系統(tǒng)[2]的特點(diǎn)是后輪轉(zhuǎn)向采用電動(dòng)機(jī)驅(qū)動(dòng),電動(dòng)機(jī)通過傳感器由四輪轉(zhuǎn)向控制單元操縱。前輪轉(zhuǎn)向器和后輪轉(zhuǎn)向器之間既沒有機(jī)械傳動(dòng)裝置,也沒有機(jī)械連接裝置,結(jié)構(gòu)簡(jiǎn)單、裝車重量更輕、制造成本更低、整體布置更加方便靈活。同時(shí),后輪轉(zhuǎn)向的控制更加方便,能夠獲得更加精確和復(fù)雜的轉(zhuǎn)向特性。
2.2 四輪轉(zhuǎn)向系統(tǒng)的控制類型
按照控制方式的不同,郭孔輝將汽車四輪轉(zhuǎn)向系統(tǒng)分為以下七種類型[12]:
(1)定前后輪轉(zhuǎn)向比四輪轉(zhuǎn)向系統(tǒng)
1985 年 Sano[13]等用線性模型研究四輪轉(zhuǎn)向系統(tǒng)。該系統(tǒng)通過選擇前、后輪轉(zhuǎn)向角之比使穩(wěn)態(tài)轉(zhuǎn)向時(shí)側(cè)偏角λ等于零。λ值為正時(shí),表明前、后轉(zhuǎn)動(dòng)方向相同;λ值為負(fù)時(shí),表明前、后轉(zhuǎn)動(dòng)方向相反。低速時(shí),λ應(yīng)為負(fù)值,這可以減小轉(zhuǎn)彎半徑,以提高汽車的操縱穩(wěn)定性;高速時(shí),λ應(yīng)為正值,可縮短側(cè)向加速度響應(yīng)時(shí)間,但其增益大幅度減小。
(2)前后輪轉(zhuǎn)向比是前輪轉(zhuǎn)角函數(shù)的四輪轉(zhuǎn)向系統(tǒng)
這種系統(tǒng)結(jié)構(gòu)簡(jiǎn)單且效果良好,同時(shí)具有同相位及反相位轉(zhuǎn)向功能[14]。缺陷是在高速行駛且前輪轉(zhuǎn)角較大時(shí),將會(huì)使操縱穩(wěn)定性惡化。這是它沒有得到廣泛應(yīng)用的原因。
(3)前后輪轉(zhuǎn)向比是車速函數(shù)的四輪轉(zhuǎn)向系統(tǒng)
1986 年 Shibahata、Takiguch[15]等人也先后設(shè)計(jì)了前后輪轉(zhuǎn)向比是車速函數(shù)的四輪轉(zhuǎn)向系統(tǒng)。這類系統(tǒng)采用微機(jī)控制,前后輪轉(zhuǎn)向比為車速和前輪轉(zhuǎn)角的函數(shù)。其計(jì)算前后輪轉(zhuǎn)向比的基本著眼點(diǎn)同定前后輪轉(zhuǎn)向比四輪轉(zhuǎn)向系統(tǒng)是一致的,都是使汽車穩(wěn)態(tài)轉(zhuǎn)向時(shí)的側(cè)偏角為零。
(4)具有一階滯后的四輪轉(zhuǎn)向系統(tǒng)
前幾類四輪轉(zhuǎn)向系統(tǒng)可以有效地改善汽車轉(zhuǎn)向的穩(wěn)態(tài)特性,但卻使橫擺角速度和側(cè)向加速度到達(dá)穩(wěn)態(tài)值的時(shí)間有所延長(zhǎng)。具有一階滯后的四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)的著眼點(diǎn)是,既改善汽車的穩(wěn)態(tài)特性,又不犧牲瞬態(tài)響應(yīng)的時(shí)間特性。當(dāng)汽車高速轉(zhuǎn)向時(shí),后輪的轉(zhuǎn)動(dòng)比前輪轉(zhuǎn)動(dòng)遲延一定的時(shí)間,當(dāng)橫擺角速度或側(cè)向加速度到達(dá)穩(wěn)態(tài)值時(shí)后輪才開始轉(zhuǎn)動(dòng),后輪轉(zhuǎn)動(dòng)時(shí)汽車的穩(wěn)態(tài)側(cè)偏角減小,并對(duì)其超調(diào)量等瞬態(tài)特性也有一定程度的改善。
(5)具有反相特性的四輪轉(zhuǎn)向系統(tǒng)
Nissan 公司的Takaaki Eguchi 等在設(shè)計(jì)超HICAS 系統(tǒng)[16]時(shí)對(duì)具有反相特性的四輪轉(zhuǎn)向系統(tǒng)進(jìn)行了研究。其設(shè)計(jì)的著眼點(diǎn)在于同時(shí)改善汽車轉(zhuǎn)向的穩(wěn)態(tài)特性和瞬態(tài)特性。當(dāng)汽車高速轉(zhuǎn)向時(shí),后輪先向與前輪轉(zhuǎn)向方向相反的方向轉(zhuǎn)動(dòng), 這樣橫擺角速度和側(cè)向加速度動(dòng)態(tài)響應(yīng)加快,二者很快到達(dá)穩(wěn)態(tài)值,這時(shí)后輪再向相反方向轉(zhuǎn)動(dòng),以改善車輛的穩(wěn)態(tài)響應(yīng)特性,改善汽車的方向特性。
(6)具有最優(yōu)控制特性的四輪轉(zhuǎn)向系統(tǒng)
當(dāng)附加了后輪轉(zhuǎn)角之后,車輛本身的橫擺角速度穩(wěn)態(tài)增益和側(cè)向加速度增益,隨車速和前輪轉(zhuǎn)角發(fā)生了較大幅度的變化,這就增加了駕駛的難度,同時(shí)在高速時(shí)也增加了駕駛員的疲勞程度。于是研究人員開始著眼于橫擺角速度穩(wěn)態(tài)增益和側(cè)向加速度穩(wěn)態(tài)增益與2WS 系統(tǒng)相同的4WS 系統(tǒng)的研究。
(7)具有自學(xué)習(xí)、自適應(yīng)能力的四輪轉(zhuǎn)向系統(tǒng)
汽車運(yùn)動(dòng)特性是非線性或隨機(jī)性變化的,要在這樣的條件下實(shí)現(xiàn)更為有效的控制,控制系統(tǒng)應(yīng)具有自學(xué)習(xí)和自適應(yīng)的能力,即隨著被控對(duì)象的變化而改變控制器的結(jié)構(gòu)或參數(shù),改變控制規(guī)律。通常采用的控制方法有自適應(yīng)控制、魯棒控制[17][18]、H∞控制[19]和基于神經(jīng)網(wǎng)絡(luò)的控制[20]等幾種控制方法。
2.3 整車布置的設(shè)計(jì)
電控電動(dòng)式4WS系統(tǒng)結(jié)構(gòu)簡(jiǎn)單、布置容易、控制效果好。隨著電子技術(shù)的飛速發(fā)展,計(jì)算機(jī)技術(shù)在汽車中的廣泛應(yīng)用,電控電動(dòng)式4WS系統(tǒng)將是四輪轉(zhuǎn)向汽車的發(fā)展趨勢(shì)。因此,本設(shè)計(jì)選擇電控電動(dòng)式四輪轉(zhuǎn)向系統(tǒng),其總體布置示意圖如圖2-1所示。
1.前輪2.前輪轉(zhuǎn)向機(jī)構(gòu)3.前輪轉(zhuǎn)角傳感器4.方向盤5.車速傳感器6.橫擺角速度傳感器
7.電控單元8.直流電動(dòng)機(jī)9.減速器10.后輪轉(zhuǎn)角傳感器11.后輪轉(zhuǎn)向機(jī)構(gòu)12.后輪
圖2-1 四輪轉(zhuǎn)向汽車整體布置示意圖
傳感器的功用是在汽車行駛時(shí)檢測(cè)運(yùn)動(dòng)物理量,并將物理量轉(zhuǎn)換成電信號(hào),輸入到ECU中,供ECU按照控制策略進(jìn)行分析、計(jì)算。轉(zhuǎn)角傳感器裝在前、后輪轉(zhuǎn)向齒輪軸的靠近齒輪的一側(cè),可以檢測(cè)前、后齒輪軸的瞬時(shí)轉(zhuǎn)角,通過角傳動(dòng)比求得前后輪的瞬時(shí)轉(zhuǎn)角。車速傳感器安裝在變速箱上,檢測(cè)汽車的前進(jìn)速度,轉(zhuǎn)換成脈沖信號(hào)然后輸出到ECU。車輛橫擺角速度傳感器安裝在汽車質(zhì)心處的車身上,檢測(cè)汽車轉(zhuǎn)向行駛時(shí)的橫擺角速度,以電信號(hào)的形式輸入ECU,ECU輸出控制指令,實(shí)時(shí)控制汽車的轉(zhuǎn)向運(yùn)動(dòng),保證汽車轉(zhuǎn)向行駛時(shí)的操縱穩(wěn)定性[21]。
ECU是4WS系統(tǒng)的核心,其功用是根據(jù)制定的控制方案,按照編制的程序?qū)Ω鞣N傳感器輸入信號(hào)進(jìn)行分析、計(jì)算、處理,輸出一定的控制信號(hào)指令,驅(qū)動(dòng)電動(dòng)機(jī)動(dòng)作。
電動(dòng)機(jī)采用直流電動(dòng)機(jī),其功用是根據(jù)ECU的指令輸出合適的扭矩和轉(zhuǎn)角,驅(qū)動(dòng)后輪轉(zhuǎn)向器,控制后輪的轉(zhuǎn)向,是后輪轉(zhuǎn)向機(jī)構(gòu)的驅(qū)動(dòng)、執(zhí)行元件。
減速機(jī)構(gòu)的功用是降低直流電動(dòng)機(jī)轉(zhuǎn)速,增大電動(dòng)機(jī)傳遞給轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的轉(zhuǎn)矩,常見的類型有行星齒輪機(jī)構(gòu)、蝸輪蝸桿機(jī)構(gòu)。此處選擇蝸輪蝸桿減速器。
后輪轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)可以選擇傳統(tǒng)的轉(zhuǎn)向機(jī)構(gòu)形式,也可根據(jù)汽車后懸結(jié)構(gòu)和行駛轉(zhuǎn)向要求,設(shè)計(jì)特定結(jié)構(gòu)形式的后輪轉(zhuǎn)向機(jī)構(gòu)。此處選擇傳統(tǒng)的齒輪齒條式轉(zhuǎn)向機(jī)構(gòu)。
2.4 本章小結(jié)
本章對(duì)當(dāng)前提出的多種典型四輪轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的進(jìn)行了分析,將其分為四大類,并分別介紹了各自的特點(diǎn)。四輪轉(zhuǎn)向汽車的控制策略是今后的研究重點(diǎn),文中將四輪轉(zhuǎn)向系統(tǒng)按照控制方式分為七類,并分別做了介紹。在分類的基礎(chǔ)上,設(shè)計(jì)了一種四輪轉(zhuǎn)向系統(tǒng),繪制其整體布置示意圖,對(duì)其重要組成部分進(jìn)行了說明。
第 3 章 轉(zhuǎn)向器的設(shè)計(jì)
轉(zhuǎn)向器是保證能夠汽車按駕駛員的意志進(jìn)行轉(zhuǎn)向行駛的重要部件,可以增大轉(zhuǎn)向盤傳到轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的力和改變力的傳遞方向,同時(shí)可以在汽車轉(zhuǎn)向行駛時(shí)實(shí)現(xiàn)路面情況對(duì)駕駛員的反饋,有助于駕駛員及時(shí)調(diào)整方向盤。
3.1 設(shè)計(jì)目標(biāo)車輛主要參數(shù)
在設(shè)計(jì)轉(zhuǎn)向器之前,首先要整理出目標(biāo)車輛的整車參數(shù),如表2-1所示。
表3-1 整車主要參數(shù)
參數(shù)名稱
數(shù)值
參數(shù)名稱
數(shù)值
長(zhǎng)(mm)
4629
軸距(mm)
2807
寬(mm)
1880
空車質(zhì)量(kg)
1865
高(mm)
1653
滿載質(zhì)量(kg)
2305
前輪距(mm)
1617
前軸負(fù)荷率
45%
后輪距(mm)
1613
輪胎規(guī)格
235/65 R17
3.2 前輪轉(zhuǎn)向器的設(shè)計(jì)
機(jī)械式轉(zhuǎn)向器有四種類型,分別是齒輪齒條式、循環(huán)球式轉(zhuǎn)、蝸桿滾輪式、蝸桿指銷式。齒輪齒條式轉(zhuǎn)向器廣泛應(yīng)用于乘用車,具有結(jié)構(gòu)簡(jiǎn)單緊湊、質(zhì)量較小、傳動(dòng)效率高、能夠自動(dòng)消除齒間間隙、制造成本低等優(yōu)點(diǎn)[22]。因此,本章選擇設(shè)計(jì)齒輪齒條式轉(zhuǎn)向器。
3.2.1 轉(zhuǎn)向系計(jì)算載荷的確定
為了保證行駛安全,組成轉(zhuǎn)向系的各零件應(yīng)有足夠的強(qiáng)度。欲驗(yàn)算轉(zhuǎn)向系零件的強(qiáng)度,需首先確定作用在各零件上的力。利用半經(jīng)驗(yàn)公式來計(jì)算汽
車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩MR1(N·mm),即
(3-1)
式中 f ——前輪輪胎和地面間的滑動(dòng)摩擦因數(shù),f=0.7;
G1 ——前輪轉(zhuǎn)向軸負(fù)荷(N),根據(jù)前軸負(fù)荷率可以求得G1=10120N;
p ——前輪輪胎氣壓(MPa),由輪胎壓力表可以可知,前輪胎壓為2.5bar,即0.25MPa。
將數(shù)據(jù)代入,得MR1=475091.82 N·mm。
作用在方向盤上的手力為
(3-2)
式中 Dsw——轉(zhuǎn)向盤直徑,在380~550mm系列內(nèi)選取,此處Dsw=400mm;
iw ——轉(zhuǎn)向器角傳動(dòng)比,對(duì)于乘用車,iw在17~25內(nèi)選取,此處iw=18;
η+ ——轉(zhuǎn)向器正效率,此處η+=90%。
代入數(shù)據(jù),得Fh=146.63N,滿足規(guī)定要求。
轉(zhuǎn)向盤的轉(zhuǎn)向力矩TZ1為
3.2.2 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì)
齒輪齒條式轉(zhuǎn)向器的齒輪大多采用斜齒圓柱齒輪。主動(dòng)小齒輪選用16MnCr5材料制造,齒條采用20Cr制造,為減輕質(zhì)量,殼體用鋁合金壓鑄[23]。
1.主動(dòng)齒輪軸的計(jì)算
(3-3)
式中 TZ1 ——轉(zhuǎn)向盤上的轉(zhuǎn)向力矩(N·mm);
[τ] ——材料的許用切應(yīng)力,此處[τ]=55MPa。
代入數(shù)據(jù),求得,取。
2.齒輪的設(shè)計(jì)
齒輪模數(shù)取值范圍躲在2~3mm之間。主動(dòng)小齒輪齒數(shù)多數(shù)在5~7個(gè)齒范圍變化,壓力角取20°,齒輪螺旋角取值范圍多為9°~15°。齒條齒數(shù)應(yīng)根據(jù)轉(zhuǎn)向輪達(dá)到最到偏轉(zhuǎn)角時(shí),相應(yīng)的齒條移動(dòng)行程應(yīng)達(dá)到的值來確定。
取齒輪模數(shù)mn1=3,齒輪齒數(shù)z1=7,齒輪壓力角α1=20°,齒輪螺旋角β1取為14°、左旋。為了防止齒輪根切,對(duì)進(jìn)行變位處理,選擇變位系數(shù)x1=0.46。
故斜齒圓柱齒輪直徑根據(jù)公式
取齒寬系數(shù)φd=1.2,則齒條寬度b2=φdd1=25.97mm,圓整取b2=30mm,則齒輪齒寬b1=b2+10=40mm。
利用Pro/E,做出齒輪軸的三維零件圖,如圖3-1所示。
圖3-1 前輪轉(zhuǎn)向器齒輪軸
3.齒條的設(shè)計(jì)
齒條是金屬殼體內(nèi)來回滑動(dòng)的、加工有齒形的金屬條。轉(zhuǎn)向器殼體安裝在前橫梁或者前圍板的固定位置上。齒條代替梯形轉(zhuǎn)向桿系的搖桿和轉(zhuǎn)向搖臂,并保證轉(zhuǎn)向橫拉桿在適當(dāng)?shù)母叨?,以使它們與懸架的下擺臂平行。齒條可以相當(dāng)于直拉桿。導(dǎo)向座將齒條固定支持的轉(zhuǎn)向器殼體上,齒條的橫向運(yùn)動(dòng)拉動(dòng)或推動(dòng)轉(zhuǎn)向橫拉桿,使轉(zhuǎn)向輪發(fā)生轉(zhuǎn)動(dòng)。相互嚙合的齒輪齒距p1=πmn1cosα1齒條齒距p2=πmn2cosα2必須相等,則齒條上帶齒的部分mn2=3mm,α2=20°,變位系數(shù)x2=-0.46。齒條的螺旋角β2=24°。
乘用車轉(zhuǎn)向盤從中間位置轉(zhuǎn)到每一端的圈數(shù)不得超過2.0圈,結(jié)合目標(biāo)車型的參數(shù),確定轉(zhuǎn)向盤從一端轉(zhuǎn)到另一端的總?cè)?shù)為3圈,則齒條的行程為
取齒條的行程為L(zhǎng)1=240mm。
齒條直徑可根據(jù)齒條的受力以及齒條的寬度進(jìn)行初步估算,選取齒條的直徑d2=34mm。
目標(biāo)車型的前輪輪距是1617mm,則根據(jù)整車的布置情況及轉(zhuǎn)向系的結(jié)構(gòu),設(shè)計(jì)齒條的長(zhǎng)度L2=770mm。
利用Pro/E,做出齒條的三維零件圖,如圖3-2所示。
圖3-2 前輪轉(zhuǎn)向器齒條
4.強(qiáng)度校核
根據(jù)《機(jī)械設(shè)計(jì)》[23]可知,齒輪齒條的許用接觸應(yīng)力為
(3-4)
式中 σHmin1、σHmin2 ——齒輪齒條的接觸疲勞強(qiáng)度極限,σHmin1=1500MPa,σHmin2=1500MPa;
ZN1、ZN2 ——齒輪、齒條的壽命系數(shù),ZN1=1.4、ZN2=1.5;
SH1、SH2 ——接觸強(qiáng)度計(jì)算的安全系數(shù),SH1=1.3,SH2=1.3。
代入數(shù)據(jù),求得[σ]H1=1615.38MPa,[σ]H2=1730.7MPa,因此齒輪齒條的許用接觸應(yīng)力[σ]H=min{[σ]H1,[σ]H2}=1615.38MPa。
由機(jī)械工程手冊(cè)查得,齒輪的使用系數(shù)KA=1.35,齒輪的動(dòng)載系數(shù)KV=1.05,齒輪齒向載荷分布系數(shù)Kβ=1.35,齒輪齒間載荷分配系數(shù)Kα=1.0,因此動(dòng)載荷系數(shù)
齒輪齒條的接觸應(yīng)力
(3-5)
式中 ZE ——材料的彈性系數(shù),取ZE=189;
ZH ——節(jié)點(diǎn)區(qū)域系數(shù),取ZH=2.4;
Zε ——重合度系數(shù),取Zε=0.94;
Zβ ——螺旋角系數(shù),取Zβ=0.98;
u ——傳動(dòng)比,齒輪齒條傳動(dòng)的傳動(dòng)比u→∞,所以(u+1)/u≈1。
代入數(shù)據(jù),求得σH=1082.34MPa<[σ]H,所以齒輪齒條的接觸疲勞強(qiáng)度符合要求。
根據(jù)《機(jī)械設(shè)計(jì)》可得,齒輪齒條的許用彎曲疲勞應(yīng)力為
(3-6)
式中 σFlim1、σFlim2 ——齒根彎曲疲勞應(yīng)力,σFlim1=520MPa,σFlim2=520MPa;
YN1、YN2——彎曲強(qiáng)度計(jì)算的壽命系數(shù),YN1=1,YN2=1.1;
SF1、SF2 ——齒根彎曲強(qiáng)度計(jì)算的安全系數(shù),SF1=1.5,SF2=1.5。
代入數(shù)據(jù),求得[σ]F1=346.67MPa,[σ]H2=381.33MPa。
齒輪齒條的彎曲疲勞應(yīng)力為
(3-7)
式中 b ——齒輪齒條的嚙合寬度,此處b=b2=30mm;
m ——齒輪齒條的法面模數(shù),mn1=3mm,mn2=3mm;
YF ——齒形系數(shù),YF1=2.8,YF2=2.08;
YS ——外齒輪齒根應(yīng)力修正系數(shù),YS1=1.55,YS2=1.96;
Yβ ——螺旋角系數(shù),Yβ1=0.88,Yβ2=0.86;
Yε ——重合度系數(shù),Yε1=0.86,Yε2=0.86。
代入數(shù)據(jù),求得σF1=157.33MPa<[σ]F1,[σ]F2=142.75MPa<[σ]F2,所以齒輪齒條的彎曲疲勞強(qiáng)度符合要求。
3.2.3 間隙調(diào)整機(jī)構(gòu)的設(shè)計(jì)
齒條的斷面形狀有圓形、V形和Y形三種。圓形斷面齒條的制作工藝比較簡(jiǎn)單。在齒條與托座之間通常有減磨材料(如聚四氟乙烯)做的墊片,以減小滑動(dòng)摩擦。齒輪與齒條之間因磨損出現(xiàn)間隙以后,利用裝在齒條背部、靠近主動(dòng)小齒輪處的壓緊力可以調(diào)節(jié)的彈簧,能自動(dòng)消除齒間間隙。設(shè)計(jì)的前輪轉(zhuǎn)向器的間隙調(diào)整裝置如圖3-3所示。
圖3-3 自動(dòng)消除間隙裝置
3.3 后輪轉(zhuǎn)向機(jī)構(gòu)的設(shè)計(jì)
后輪轉(zhuǎn)向機(jī)構(gòu)由電動(dòng)機(jī)驅(qū)動(dòng),這是四輪轉(zhuǎn)向汽車的與前輪轉(zhuǎn)向汽車不同的地方。本章采用與前輪轉(zhuǎn)向機(jī)構(gòu)相同形式的轉(zhuǎn)向機(jī)構(gòu),選擇齒輪齒條式轉(zhuǎn)向器。由于電動(dòng)機(jī)的轉(zhuǎn)速高、扭矩低,所以在電動(dòng)機(jī)以轉(zhuǎn)向器之間需要增加減速器,達(dá)到減速增扭的效果。
3.3.1 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì)
由于后輪轉(zhuǎn)向器的機(jī)構(gòu)形式與前輪轉(zhuǎn)向機(jī)構(gòu)的形式相似,因此其設(shè)計(jì)計(jì)算過程也相似。
利用半經(jīng)驗(yàn)公式來計(jì)算汽車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩MR2(N·mm),即
(3-8)
式中 f ——后輪輪胎和地面間的滑動(dòng)摩擦因數(shù),f=0.7;
G2 ——后輪轉(zhuǎn)向軸負(fù)荷(N),G2=12423.95N;
p ——后輪輪胎氣壓(MPa),后輪胎壓為2.5bar,即0.25MPa
將數(shù)據(jù)代入,得MR2=646243.7 N·mm。
作用在轉(zhuǎn)向器齒輪軸上的扭矩為
(3-9)
式中 iw ——轉(zhuǎn)向器角傳動(dòng)比,此處iw=18;
η+ ——轉(zhuǎn)向器正效率,此處η+=90%。
將數(shù)據(jù)代入,得TZ2=39891.6 N·mm。
主動(dòng)小齒輪選用16MnCr5材料制造,而齒條采用20Cr制造,為減輕質(zhì)量,殼體用鋁合金壓鑄[22]。
主動(dòng)齒輪軸的直徑設(shè)計(jì)計(jì)算
(3-10)
式中 [τ]——材料的許用切應(yīng)力,此處[τ]=55MPa。
代入數(shù)據(jù),求得,取。
取齒輪模數(shù)mn3=3,齒輪齒數(shù)z3=7,齒輪壓力角α3=20°,直齒。為了防止齒輪根切,對(duì)進(jìn)行變位處理,選擇變位系數(shù)x1=0.38。
故斜齒圓柱齒輪直徑根據(jù)公式得d3=mn3z3=21mm。
取齒寬系數(shù)φd=1.2,則齒條寬度b4=φdd3=25.3mm,圓整取b4=26mm,則齒輪齒寬b3=b4+10=36mm。
利用Pro/E,做出齒輪軸的三維零件圖,如圖3-4所示。
圖3-4 后輪轉(zhuǎn)向器齒輪軸
根據(jù)嚙合關(guān)系可得,齒條上帶齒的部分mn4=3mm,α4=20°,變位系數(shù)x4=-0.38。
由于四輪轉(zhuǎn)向汽車的后輪最大轉(zhuǎn)角約為5°,設(shè)計(jì)小齒輪軸的旋轉(zhuǎn)圈數(shù)為
1圈,齒條的齒數(shù)Z4=10,則齒條的行程為
取齒條的行程為L(zhǎng)3=100mm。
根據(jù)齒條的受力以及寬度進(jìn)行對(duì)齒條的直徑估算,選取d4=34mm。
目標(biāo)車型的后輪輪距是1617mm,則根據(jù)整車的布置情況及轉(zhuǎn)向系的結(jié)構(gòu),設(shè)計(jì)齒條的長(zhǎng)度L4=770mm。
利用Pro/E,做出齒條的三維零件圖,如圖3-5所示。
圖3-5 后輪轉(zhuǎn)向器齒條
3.3.2 直流電動(dòng)機(jī)的選擇
后輪發(fā)生轉(zhuǎn)向的動(dòng)力由電動(dòng)機(jī)提供,采用無刷永磁式直流電動(dòng)機(jī),其功能是根據(jù)ECU的指令產(chǎn)生相應(yīng)的輸出扭矩。電動(dòng)機(jī)是影響四輪轉(zhuǎn)向汽車性能的主要因素之一,不僅要求低轉(zhuǎn)速大扭矩、波動(dòng)小、轉(zhuǎn)動(dòng)慣量小、尺寸小、質(zhì)量輕,而且要求可靠性高、控制性能好。
目標(biāo)車型的電源電壓為12V,選擇合適的直流電動(dòng)機(jī),主要技術(shù)參數(shù)如表3-2所示[24]。
表3-2 直流電機(jī)主要技術(shù)參數(shù)
項(xiàng)目
規(guī)格
項(xiàng)目
規(guī)格
激磁方式
永磁鐵激磁式
旋轉(zhuǎn)方向
雙向
額定電壓V
DC12
外殼類型
全封閉
額定扭矩(N·m)
1.2
表面處理
鍍鋅及壓鑄鋁外殼
額定電流A
30
最大電流
35A
額定轉(zhuǎn)速(r/min)
1200
連接方式
平鍵
3.3.3 減速器的設(shè)計(jì)
蝸桿傳動(dòng)是用來傳遞空間相互垂直的兩相錯(cuò)軸之間的運(yùn)動(dòng)和動(dòng)力的一種機(jī)械傳遞行駛。根據(jù)蝸桿形狀不同,蝸桿傳動(dòng)分為圓柱蝸桿傳動(dòng)、環(huán)面蝸桿傳動(dòng)、錐蝸桿傳動(dòng),其中應(yīng)用最早、最廣泛的是圓柱蝸桿傳動(dòng)。根據(jù)齒面形狀的不同,圓柱蝸桿傳動(dòng)又分為普通圓柱蝸桿傳動(dòng)和圓弧圓柱蝸桿傳動(dòng)兩類。普通圓柱蝸桿傳動(dòng)又分為阿基米德蝸桿(ZA蝸桿)、漸開線蝸桿(ZI蝸桿)、法向直廓蝸桿(ZN蝸桿)、錐面包絡(luò)圓柱蝸桿(ZK蝸桿)。此處選擇用直線刀刃或圓盤刀具加工的普通圓柱蝸桿傳動(dòng)減速器。
蝸桿一般用碳素鋼或合金鋼制造,要求齒面光潔并具有較高的硬度,此處采用45號(hào)優(yōu)質(zhì)碳素鋼。常用的蝸輪材料有鑄造錫青銅、鑄造鋁青銅及灰鑄鐵。由于后輪轉(zhuǎn)向的不連續(xù)性,選擇鑄造鋁青銅,有足夠的強(qiáng)度,同時(shí)價(jià)格便宜。
1.蝸輪蝸桿傳動(dòng)的主要參數(shù)設(shè)計(jì)
由于蝸桿主要受扭矩作用,所以根據(jù)電動(dòng)機(jī)的額定扭矩初選蝸桿的分度圓直徑d1
(3-11)
式中 TN——電動(dòng)機(jī)的額定扭矩,TN=1000N·mm;
[τ]——45號(hào)鋼的許用切應(yīng)力,[τ]=25MPa。
代入數(shù)據(jù),計(jì)算得d1≥5.88mm。
蝸桿傳動(dòng)的正確嚙合條件與齒條和齒輪傳動(dòng)相同。因此,在中間平面上,蝸桿的軸面模數(shù)ma1、軸面壓力角αa1分別和蝸輪的端面模數(shù)mt2、端面壓力角αt2相等,并均為標(biāo)準(zhǔn)值。
由《機(jī)械設(shè)計(jì)手冊(cè)》查表得蝸桿軸面模數(shù)ma1與分度圓直徑d1的搭配值,蝸桿的軸面模數(shù)ma1=2.5mm,分度圓直徑d1=28mm,ma12 d1=175mm,蝸桿的軸面壓力角αa1=20°。蝸輪的端面模數(shù)mt2=2.5mm,端面壓力角αt2=20°。
由于電動(dòng)機(jī)的額定轉(zhuǎn)矩TN=1200N·mm,轉(zhuǎn)向器齒輪軸上的扭矩TZ2=39891.6N·mm,因此,減速器的傳動(dòng)比
(3-12)
考慮到可能出現(xiàn)的過載情況,選擇i=42。此種情況下,轉(zhuǎn)向器齒輪軸上的最大扭矩可以達(dá)到50000。根據(jù)傳動(dòng)比,經(jīng)查詢推薦表確定蝸桿的頭數(shù)和蝸輪的齒數(shù),蝸桿頭數(shù)z1=1,蝸輪的齒數(shù)z2=42。
當(dāng)蝸桿的分度圓直徑d1和頭數(shù)z1確定之后,蝸桿分度圓柱上的導(dǎo)程角γ 就確定了,則
(3-13)
為了保證蝸桿傳動(dòng)的正確嚙合,蝸輪輪齒與蝸桿的螺旋線方向相同,并且蝸輪分度圓柱上的螺旋角β2等于蝸桿分度圓柱上的導(dǎo)程角γ。
蝸桿傳動(dòng)的標(biāo)準(zhǔn)中心距為
(3-14)
式中 d1 ——蝸桿的分度圓直徑(mm);
d2 ——蝸輪的分度圓直徑,d2=mt2z2=105mm。
為了擴(kuò)大中心距,采用變位蝸桿傳動(dòng),只對(duì)蝸輪進(jìn)行變位,而蝸桿不變位。變位之后蝸桿的參數(shù)和尺寸保持不變,只是節(jié)圓不再與分度圓重合,而變位后的蝸輪,其節(jié)圓和分度圓卻仍然重合,只是其齒頂圓和齒根圓改變了。中心矩a'為
(3-14)
式中 a ——標(biāo)準(zhǔn)中心距(mm);
x ——變位系數(shù),此處x=0.6;
m ——蝸輪蝸桿的模數(shù)(mm)。
代入數(shù)據(jù)得,變位后的中心距a'=68mm,蝸輪的分度圓直徑dt2=108mm。
利用Pro/E,做出蝸輪和蝸桿的三維零件圖,如圖3-6所示。
圖3-6 蝸輪、蝸桿的三維圖
2. 蝸桿傳動(dòng)的受力分析和計(jì)算載荷
根據(jù)蝸桿傳動(dòng)的運(yùn)動(dòng)狀態(tài)分析其受力情況,將蝸輪蝸桿之間的相互作用
力分解成三個(gè)相互垂直的分力:圓周力Ft、軸向力Fa、和徑向力Fr,如圖3-7所示。由于蝸桿軸和蝸輪軸空間交錯(cuò)成90°,所以在蝸桿和蝸輪的齒面間相互作用著Ft1與Fa2 、Fa1與Ft2 、Fr1與Fr2 這樣三對(duì)大小相等方向相反的分力。即
(3-15)
式中 T1、T2 ——蝸桿和蝸輪軸的轉(zhuǎn)矩,T1=1200N·mm,T2=39891.6N·mm;
d1、d2 ——蝸桿和蝸輪的分度圓直徑,d1=28mm,d2=108mm;
α ——壓力角,α=20°;
γ ——蝸桿分度圓柱上的導(dǎo)程角,γ=5.1°。
代入數(shù)據(jù),得Ft1=-Fa2=85.7N,F(xiàn)t2=-Fa1=759.84N,F(xiàn)r1=-Fr2=275.56N。
圖3-7 蝸桿傳動(dòng)的受力分析
蝸輪傳動(dòng)的計(jì)算載荷是名義載荷與載荷系數(shù)K的乘積。
(3-16)
式中 KA——使用系數(shù),取KA=1.2;
KV——?jiǎng)虞d荷系數(shù),取KV=1.0;
Kβ——齒向載荷分布系數(shù),取Kβ=1.2。
代入數(shù)據(jù),得K=1.44。
蝸輪齒面接觸疲勞強(qiáng)度校核公式
(3-17)
式中 ZE——材料的彈性系數(shù),對(duì)于青銅與鋼制蝸桿配對(duì)時(shí),?。?
[σ]H——蝸輪材料的許用接觸應(yīng)力,[σ]H=250MPa。
代入數(shù)據(jù),得σH=207MPa<250MPa,所以蝸輪的齒面接觸疲勞強(qiáng)度符合設(shè)計(jì)要求。
3.蝸桿傳動(dòng)的效率
閉式蝸桿傳動(dòng)的功率損耗包括三部分:齒面間嚙合摩擦損耗η1、蝸桿軸上軸承的摩擦損耗η2和攪動(dòng)箱體中潤(rùn)滑油的濺油損耗η3。因此蝸桿傳動(dòng)的總效率
式中 η1 ——嚙合效率,是影響蝸桿傳動(dòng)效率的主要因素,當(dāng)蝸桿主動(dòng)時(shí),,式中為蝸桿分度圓柱上的導(dǎo)程角,為當(dāng)量摩擦角, 經(jīng)查表??;
η2、 η3——軸承效率和濺油效率,一般取η2·η3=0.95~0.96。
故蝸桿傳動(dòng)的總效率η為
(3-18)
代入數(shù)據(jù),得。
設(shè)計(jì)蝸輪軸,采用45號(hào)鋼制造,調(diào)制處理,其許用應(yīng)力為[σ]=650MPa。利用Ansys Workbench對(duì)蝸輪軸進(jìn)行強(qiáng)度分析,分析結(jié)果如圖3-8所示。
(a)等效應(yīng)力圖
(b)等效應(yīng)變圖
(c)整體變形圖
圖3-8 強(qiáng)度分析圖
根據(jù)強(qiáng)度分析圖可以看出,蝸輪軸的最大等效應(yīng)力σ=593MPa,最大等效應(yīng)變?chǔ)?0.0004,最大整體變形δ=0.018mm,符合設(shè)計(jì)要求,可以達(dá)到較理想的設(shè)計(jì)目的。
3.3.4 聯(lián)軸器的選擇
聯(lián)軸器可以實(shí)現(xiàn)軸與軸之間的連接,進(jìn)行運(yùn)動(dòng)和動(dòng)力的傳遞。在設(shè)計(jì)時(shí),先根據(jù)工作條件和要求選擇合適的類型,然后按軸的直徑d1、轉(zhuǎn)速n和計(jì)算轉(zhuǎn)矩TC,從標(biāo)準(zhǔn)中選擇所需要的型號(hào)和尺寸。
聯(lián)軸器的類型有多種,根據(jù)其是否包含彈性元件,可以劃分為剛性聯(lián)軸器和撓性聯(lián)軸器。剛性聯(lián)軸器被連接兩軸軸線嚴(yán)格對(duì)中,因?yàn)樗荒苎a(bǔ)償兩軸的相對(duì)位移。由于凸緣聯(lián)軸器結(jié)構(gòu)簡(jiǎn)單、成本低、傳遞轉(zhuǎn)矩大,因此在固定式剛性聯(lián)軸器中應(yīng)用最廣[23]。按照GB/T 5843-2003,此處選擇GY2型剛性凸緣聯(lián)軸器,其零件圖如3-8所示。
圖3-7 凸緣聯(lián)軸器的零件圖
3.3.5 傳感器的選擇
1.轉(zhuǎn)角傳感器
轉(zhuǎn)角傳感器將轉(zhuǎn)向齒輪軸轉(zhuǎn)動(dòng)的角度和轉(zhuǎn)動(dòng)方向轉(zhuǎn)換為響應(yīng)的電信號(hào),電子控制器根據(jù)轉(zhuǎn)角傳感器的輸入信號(hào)判斷汽車的轉(zhuǎn)向情況。光電式傳感器使用最為廣泛[25],其測(cè)量原理如圖3-8所示。
1.轉(zhuǎn)角傳感器2.光耦合元件3.遮光盤4.齒輪軸
圖3-8 光電轉(zhuǎn)角傳感器
傳感器的遮光盤上有尺寸相同且均布的遮光槽,當(dāng)齒輪軸轉(zhuǎn)動(dòng)時(shí),帶動(dòng)遮光盤轉(zhuǎn)動(dòng),光電耦合器便產(chǎn)生脈沖電壓。電子控制器根據(jù)傳感器輸出的脈沖個(gè)數(shù)就可以計(jì)算出軸轉(zhuǎn)過的角度。為了能夠辨別方向,轉(zhuǎn)角傳感器需要同時(shí)產(chǎn)生兩組信號(hào)。電子控制系統(tǒng)根據(jù)傳感器的信號(hào)判斷轉(zhuǎn)動(dòng)的方向。
2.車速傳感器
車速傳感器將變速器輸出軸轉(zhuǎn)速轉(zhuǎn)變?yōu)轫憫?yīng)的電信號(hào),電子控制器根據(jù)此信號(hào)獲得汽車行駛速度參數(shù)。常見的車速傳感器有磁感式、光電式、霍爾效應(yīng)式、舌簧開關(guān)式、磁阻式等。目前汽車車速傳感器多采用霍爾式結(jié)構(gòu),它是一種基于霍爾效應(yīng)的磁電傳感器,具有對(duì)磁場(chǎng)敏感度高、輸出信號(hào)穩(wěn)定、頻率響應(yīng)高、抗電磁干擾能力強(qiáng)、結(jié)構(gòu)簡(jiǎn)單、使用方便等特點(diǎn)。其工作原理如圖3-9所示,當(dāng)傳感器的旋轉(zhuǎn)機(jī)構(gòu)在外驅(qū)動(dòng)作用下旋轉(zhuǎn)時(shí),會(huì)帶動(dòng)永久磁鐵旋轉(zhuǎn),穿過霍爾元件的磁場(chǎng)將產(chǎn)生周期性變化,引起霍爾元件輸出電壓變化,通過后續(xù)電路處理形成穩(wěn)定的脈沖電壓信號(hào),作為車速傳感器的輸出信號(hào)。
圖3-9 霍爾傳感器的原理圖
選擇某公司生產(chǎn)的YY940霍爾轉(zhuǎn)速傳感器,具體參數(shù)如表3-3所示。
表3-3 車速傳感器的參數(shù)
項(xiàng)目
規(guī)格
項(xiàng)目
規(guī)格
頻響特性
0-10kHz
功耗電流
≤35mA
脈沖占空比
50%±25%
工作溫度
-20℃~120℃
負(fù)載能力
±20mA
輸出阻抗
<50Ω
工作電源
+3.5V~30V
絕緣強(qiáng)度
>500MΩ
3.車輛橫擺角速度傳感器
目前一些配有電子穩(wěn)定程序系統(tǒng)的中高檔車輛上已經(jīng)使用了橫擺角速度傳感器(陀螺儀)來測(cè)量橫擺角速度[26],所以可以將此信號(hào)用來進(jìn)行四輪轉(zhuǎn)向的控制。
陀螺儀一種用于測(cè)量物體在相對(duì)慣性空間轉(zhuǎn)角或角速度的裝置,可以用作車輛橫擺角速度傳感器。把均衡陀螺儀的外環(huán)固定在運(yùn)載器上并令內(nèi)環(huán)軸垂直于要測(cè)量角速率的軸。當(dāng)運(yùn)載器連同外環(huán)以角速度繞測(cè)量軸旋進(jìn)時(shí),陀螺力矩將迫使內(nèi)環(huán)連同轉(zhuǎn)子一起相對(duì)運(yùn)載器旋進(jìn)。陀螺儀中有彈簧限制這個(gè)相對(duì)旋進(jìn),而內(nèi)環(huán)的旋進(jìn)角正比于彈簧的變形量。由平衡時(shí)的內(nèi)環(huán)旋進(jìn)角即可求得陀螺力矩和運(yùn)載器的角速率。
選擇某公司生產(chǎn)的數(shù)字陀螺儀SCR1100-D04,具體參數(shù)如表3-4所示。
表3-4 橫擺角速度傳感器的參數(shù)
項(xiàng)目
規(guī)格
項(xiàng)目
規(guī)格
模擬電源電壓
3.0~3.6V
工作電流
26mA
數(shù)字電源電壓
4.75~5.25V
角速度量程
+/-300°/s
角速度軸數(shù)
單軸
工作溫度
-40~+125℃
3.4 裝配圖的繪制
利用Pro/E繪制各個(gè)零件的零件圖,并進(jìn)行裝配。裝配圖如圖3-10所示。
(a) 前輪轉(zhuǎn)向裝配圖
(b) 后輪轉(zhuǎn)向裝配圖
(c) 轉(zhuǎn)向系裝配圖
圖3-10 裝配圖
3.5 本章小結(jié)
本章設(shè)計(jì)了四輪轉(zhuǎn)向汽車的前軸、后軸轉(zhuǎn)向器,均為齒輪齒條式,對(duì)齒輪、齒條的強(qiáng)度進(jìn)行了校核。針對(duì)轉(zhuǎn)向器會(huì)出現(xiàn)的磨損間隙問題設(shè)計(jì)了自動(dòng)消除間隙的裝置。由于后軸是由電機(jī)驅(qū)動(dòng)轉(zhuǎn)向,所以,選擇了合適的直流電機(jī),根據(jù)電機(jī)的參數(shù)及后輪轉(zhuǎn)向所需要的動(dòng)力,設(shè)計(jì)了蝸輪蝸桿式的減速器,并對(duì)關(guān)鍵部件進(jìn)行了強(qiáng)度校核及有限元分析。電機(jī)的控制需要傳感器提供汽車行駛的數(shù)據(jù),所以選擇了轉(zhuǎn)角傳感器、車速傳感器、橫擺角速度傳感器,并分別做了介紹。
第 4 章 轉(zhuǎn)向梯形的優(yōu)化設(shè)計(jì)
轉(zhuǎn)向系統(tǒng)是汽車行駛安全至關(guān)重要的考慮因素。阿克曼轉(zhuǎn)向原理要求[27]:汽車在直線行駛或轉(zhuǎn)向行駛時(shí),輪胎與地面之間不出現(xiàn)滑移現(xiàn)象,而是處于純滾動(dòng)狀態(tài),此時(shí)所有車輪軸線應(yīng)交于同一點(diǎn),車輪都應(yīng)繞同一瞬時(shí)中心點(diǎn)轉(zhuǎn)動(dòng)。
4.1 轉(zhuǎn)向梯形機(jī)構(gòu)方案選擇
齒輪齒條式轉(zhuǎn)向器是目前使用最多的一大類轉(zhuǎn)向器,不但適用于整體式轉(zhuǎn)向軸,而且適用于斷開式轉(zhuǎn)向軸。根據(jù)齒輪齒條式轉(zhuǎn)向器和轉(zhuǎn)向梯形相對(duì)于前軸位置的不同,與齒輪齒條式轉(zhuǎn)向器配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)有四種布置形式[22]:
(1)轉(zhuǎn)向器位于前軸后方,后置梯形,如圖4-1(a)所示。
(2)轉(zhuǎn)向器位于前軸后方,前置梯形,如圖4-1(b)所示。
(3)轉(zhuǎn)向器位于前軸前方,后置梯形,如圖4-1(c)所示。
(4)轉(zhuǎn)向器位于前軸前方,前置梯形,如圖4-1(d)所示。
圖4-1 與齒輪齒條轉(zhuǎn)向器配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)示意圖
本設(shè)計(jì)中,參考目標(biāo)車型的設(shè)計(jì),選擇轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)選擇轉(zhuǎn)向器位于軸的前方、前置梯形的布置形式。
4.2 轉(zhuǎn)向梯形機(jī)構(gòu)的優(yōu)化設(shè)計(jì)
4.2.1 建立轉(zhuǎn)向梯形的數(shù)學(xué)模型
為了優(yōu)化設(shè)計(jì)的方便,可以忽略一些次要因素,作出如下假設(shè)[28]:①全部鉸接點(diǎn)是無間隙配合;②忽略輪胎側(cè)偏特性的影響;③所有桿件均為剛體;④直線行駛時(shí)梯形臂與車架上平面平行。
1.理想的左右轉(zhuǎn)向輪轉(zhuǎn)角關(guān)系
汽車轉(zhuǎn)向時(shí)的理想情況滿足阿克曼轉(zhuǎn)向原理,即如圖4-2所示的理想關(guān)系,同時(shí)可以得到式(4-1)。
圖4-2 理想的四輪轉(zhuǎn)向示意圖
(4-1)
式中 α1、α2 ——前、后轉(zhuǎn)向軸外轉(zhuǎn)向輪的轉(zhuǎn)角(°);
β10、β20 ——前、后轉(zhuǎn)向軸內(nèi)轉(zhuǎn)向輪的理論轉(zhuǎn)角(°);
Kf 、Kr ——前、后轉(zhuǎn)向軸左右兩主銷軸線的延長(zhǎng)線與地面交點(diǎn)之間的距離(mm);
Lf 、Lr ——前、后轉(zhuǎn)向軸到瞬時(shí)轉(zhuǎn)向中心的距離(mm)。
滿足上述兩個(gè)等式時(shí),車輛的四輪轉(zhuǎn)向就滿足阿克曼轉(zhuǎn)向原理。
將上述內(nèi)輪理論轉(zhuǎn)角表示成外輪轉(zhuǎn)角的函數(shù)
(4-2)
2.用解析法求實(shí)際的內(nèi)外輪轉(zhuǎn)角關(guān)系
由轉(zhuǎn)向梯形機(jī)構(gòu)所決定的內(nèi)、外轉(zhuǎn)向輪實(shí)際轉(zhuǎn)角關(guān)系可以根據(jù)平面幾何關(guān)系來求解[29]。當(dāng)駕駛員轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí),齒條便向左或右移動(dòng),使左右兩邊的轉(zhuǎn)向梯形臂產(chǎn)生不同的運(yùn)動(dòng),從而使左右車輪分別獲得一個(gè)轉(zhuǎn)角。
以汽車右轉(zhuǎn)彎為例,此時(shí)左側(cè)車輪為外輪,外輪一側(cè)的桿系運(yùn)動(dòng)如圖4-3所示。其中梯形臂OA0的長(zhǎng)為l1,橫拉桿A0B0的長(zhǎng)為l2,齒條兩端球接頭之間的安裝距離為M,轉(zhuǎn)向軸左右兩主銷軸線延長(zhǎng)線與地面交點(diǎn)之間的距離為K,齒條軸線到梯形底邊的安裝距離為h,轉(zhuǎn)向梯形底角為γ。設(shè)齒條向右移過某一位移S,通過左橫拉桿拉動(dòng)左梯形臂,使之轉(zhuǎn)過α。
圖4-3 汽車轉(zhuǎn)向時(shí)外輪的運(yùn)動(dòng)關(guān)系圖示
取梯形左底角頂點(diǎn)O為坐標(biāo)原點(diǎn),建立x軸、y軸,則可導(dǎo)出齒條位移S與外輪轉(zhuǎn)角α的關(guān)系:
(4-3)
內(nèi)輪一側(cè)的桿系運(yùn)動(dòng)如圖4-4所示。齒條右移了相同的行程S,通過右橫拉桿推動(dòng)右梯形臂,使之轉(zhuǎn)過β。取梯形右底角頂點(diǎn)O為坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn),x軸、y軸如圖所示,則可以求出實(shí)際內(nèi)輪轉(zhuǎn)角β與齒條位移S的關(guān)系,即
(4-4)
圖4-4 汽車轉(zhuǎn)向時(shí)轉(zhuǎn)向系的運(yùn)動(dòng)關(guān)系圖示
由式(4-3)和式(4-4),可求出對(duì)應(yīng)于任一外輪轉(zhuǎn)角α的齒條位移S以及相應(yīng)的實(shí)際內(nèi)輪轉(zhuǎn)角β。
4.2.2 優(yōu)化轉(zhuǎn)向梯形的數(shù)學(xué)模型
1.目標(biāo)函數(shù)
最優(yōu)化轉(zhuǎn)向梯形傳動(dòng)機(jī)構(gòu)應(yīng)該是在整個(gè)轉(zhuǎn)向過程中,內(nèi)外輪圍繞同一個(gè)瞬心滾動(dòng),轉(zhuǎn)向輪不發(fā)生側(cè)滑。因此優(yōu)化的任務(wù)減小轉(zhuǎn)向時(shí)轉(zhuǎn)向輪的側(cè)滑,而目標(biāo)函數(shù)的大小應(yīng)該主要反應(yīng)內(nèi)輪轉(zhuǎn)角的實(shí)際值與理論值的偏差,即運(yùn)動(dòng)不協(xié)調(diào)誤差的大小。偏差在最常使用的中間位置附近小轉(zhuǎn)角范圍內(nèi)應(yīng)盡量小,以減小高速行駛時(shí)的輪胎磨損;而在不經(jīng)常使用且車速較低的最大轉(zhuǎn)角時(shí),可適當(dāng)放寬要求,因此引入加權(quán)因子ω(α)。評(píng)價(jià)設(shè)計(jì)優(yōu)劣的目標(biāo)函數(shù)f(x)為
(4-5)
式中 α ——外輪轉(zhuǎn)角(°);
βα、βα0 ——理論內(nèi)輪轉(zhuǎn)角和實(shí)際內(nèi)輪轉(zhuǎn)角(°)。
ω(α) ——加權(quán)系數(shù)。
考慮到多數(shù)情況下前轉(zhuǎn)向軸外輪轉(zhuǎn)角α小于20°,且10°以內(nèi)的小轉(zhuǎn)角使用得更加頻繁,因此取
(4-6)
對(duì)于后輪而言,由于最大外輪轉(zhuǎn)角約為5°,因此取其加權(quán)系數(shù)為
(4-7)
2.優(yōu)化設(shè)計(jì)變量
根據(jù)轉(zhuǎn)向過程中的實(shí)際要求,確定優(yōu)化變量為梯形臂長(zhǎng)度l1和梯形底角γ。最終的目的就是確定梯形臂和梯形底角的最優(yōu)配合,是轉(zhuǎn)向側(cè)滑降至最低。
3.約束條件
設(shè)計(jì)變量l1和γ過小時(shí),會(huì)使轉(zhuǎn)向橫拉桿上的轉(zhuǎn)向力過大;當(dāng)l1過大時(shí),將使梯形布置困難,故對(duì)l1的上下限及對(duì)γ的下限應(yīng)設(shè)置約束條件。所以,各設(shè)計(jì)變量的取值范圍構(gòu)成的約束條件為
(4-8)
轉(zhuǎn)向節(jié)臂與側(cè)拉桿的夾角在極限轉(zhuǎn)向時(shí)不超過規(guī)定的[28],故
(4-9)
根據(jù)圖4-3可知,轉(zhuǎn)向橫拉桿長(zhǎng)l2滿足的等式約束為
(4-10)
在轉(zhuǎn)向梯形底角大于時(shí),要保證梯形臂與橫拉桿的鉸接點(diǎn)不能與輪胎干涉,需滿足的條件為
(4-11)
式中 D1x ——在圖示坐標(biāo)中D1點(diǎn)的x方向坐標(biāo),D1x= l1cosγ;
[D1x] ——在車輪上可能與梯形臂干涉部位的x坐標(biāo)。
4.轉(zhuǎn)向梯形的優(yōu)化
目標(biāo)車型的前外輪最大轉(zhuǎn)向角,為了簡(jiǎn)化優(yōu)化過程,將其圓整為33°。本設(shè)計(jì)中,圓整轉(zhuǎn)向系的后外輪最大轉(zhuǎn)向角αrmax=5°。由于主銷后傾角較小,在確定計(jì)算軸距時(shí)忽略此角的影響。通過AutoCAD作圖,確定汽車轉(zhuǎn)向時(shí)的瞬時(shí)轉(zhuǎn)向中心,同時(shí)測(cè)量出Lf =4112mm、Lr=1311mm。轉(zhuǎn)向梯形優(yōu)化的有關(guān)參數(shù)如表4-1所示。
表4-1 轉(zhuǎn)向梯形優(yōu)化的有關(guān)參數(shù)
項(xiàng)目
K(mm)
L(mm)
M(mm)
h(mm)
l2(mm)
前輪
1507
4112
817
100
350
后輪
1503
1311
813
100
350
編寫Matlab程序,前輪優(yōu)化過程使用的初始值為l1=176mm、γ=90°,后輪優(yōu)化過程使用的初始值為l1=176mm、γ=90°,運(yùn)用優(yōu)化工具箱對(duì)轉(zhuǎn)向梯形進(jìn)行優(yōu)化,最終的優(yōu)化結(jié)果如表4-2所示。
表4-2 優(yōu)化結(jié)果
項(xiàng)目
梯形臂l1
梯形底角γ
前輪
226mm
85.2160°
后輪
189mm
87.9949°
利用優(yōu)化前后的轉(zhuǎn)向梯形參數(shù),做出前后轉(zhuǎn)向機(jī)構(gòu)內(nèi)輪轉(zhuǎn)向誤差β-β0與外輪轉(zhuǎn)角α的曲線圖,如圖4-3所示。根據(jù)圖示情況可以看出,優(yōu)化后的轉(zhuǎn)向機(jī)構(gòu)可以較好地滿足轉(zhuǎn)向要求。
圖4-3 轉(zhuǎn)向機(jī)構(gòu)的轉(zhuǎn)向偏差
4.3 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)強(qiáng)度計(jì)算
4.3.1 球頭銷的設(shè)計(jì)
球頭銷是保證汽車操縱的穩(wěn)定性,行駛的平順性、舒適性、安全性及使汽車正確、準(zhǔn)確行駛的關(guān)鍵零部件,常由于球面部分磨損而損壞,為此應(yīng)驗(yàn)算接觸應(yīng)力σj,即
(4-12)
式中 F ——作用在球頭上的力(N);
A ——在球心垂直于F方向的平面內(nèi),球面承載部分的投影面積(mm2);
[σj] ——材料許用接觸應(yīng)力,[σ
收藏
編號(hào):1109841
類型:共享資源
大小:5.24MB
格式:RAR
上傳時(shí)間:2019-10-07
35
積分
- 關(guān) 鍵 詞:
-
全套12張CAD圖+說明書
電動(dòng)
齒輪
齒條
輪轉(zhuǎn)
系統(tǒng)
設(shè)計(jì)
全套
12
十二
cad
說明書
仿單
- 資源描述:
-
0063-電控電動(dòng)式齒輪齒條四輪轉(zhuǎn)向系統(tǒng)設(shè)計(jì)【全套12張CAD圖+說明書】,全套12張CAD圖+說明書,電動(dòng),齒輪,齒條,輪轉(zhuǎn),系統(tǒng),設(shè)計(jì),全套,12,十二,cad,說明書,仿單
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。