購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
附表六
湖南工學院畢業(yè)設計(論文)工作中期檢查表
題目
DVD遙控器前蓋注塑模設計
學生姓名
羅正芳
班級學號
212070327
專業(yè)
材料成型及控制工程
指
導
教
師
填
寫
學生開題情況
已開題
學生調(diào)研及查閱文獻情況
已進行
畢業(yè)設計(論文)原計劃有無調(diào)整
無
學生是否按計劃執(zhí)行工作進度
是
學生是否能獨立完成工作任務
能
學生的英文翻譯情況
較好
學生每周接受指導的次數(shù)及時間
3次,6小時
畢業(yè)設計(論文)過程檢查記錄情況
較好
學生的工作態(tài)度在相應選項劃“√”
□認真
□一般
□較差
尚存在的問題及采取的措施:
因?qū)θ绾伟阉鶎W注塑模設計方法運用到實際的能力還有所欠缺,所以在部分設計中有對細節(jié)把握不好的地方。經(jīng)過查閱部分資料以及與指導老師的共同研究,已有較大的改善與提高。
指導教師簽字: 年 月 日
系部意見:
負責人簽字:
年 月 日
2011屆畢業(yè)設計(論文)課題任務書
系:機械工程系 專業(yè):材料成型與控制工程
指導教師
李天生
學生姓名
羅正芳
課題名稱
DVD遙控器前蓋注塑模設計
內(nèi)容及任務
根據(jù)所給定的注塑零件產(chǎn)品,設計出注塑模具。主要內(nèi)容如下:
1、繪制產(chǎn)品零件圖。
2、繪制模具裝配圖。
3、繪制整套模具零件圖,標準件除外。
4、編寫設計說明書。
5、自選一個重要模具零件編制加工工藝路線,進行相關的計算,并編制加工工藝卡和工序卡。
擬達到的要求或技術指標
按照“湖南工學院畢業(yè)設計(論文)工作管理規(guī)定”,本課題設計要求及技術指標如下:
(一)模具
1、保證規(guī)定的生產(chǎn)率和高質(zhì)量產(chǎn)品的同時,力求成本低、壽命長。
2、模具結構設計合理,工藝性好,具有一定的創(chuàng)新性。
3、操作安全、方便,易于維修,便于管理。
4、在保證模具強度前提下,注意外形美觀,各部分比例協(xié)調(diào)。
(二)設計圖紙
1、模具繪圖布局合理,視圖完整、清晰,各項內(nèi)容符合標準要求。
2、設計圖紙應符合學校的要求,不少于3張零號圖紙的結構設計圖、裝配圖和零件圖,其中應包含一張以上用計算機繪制的具有中等難度的1號圖紙,同時至少有折合1號圖幅以上的圖紙用手工繪制。
(三)設計說明書
1、資料數(shù)據(jù)充分,并標明數(shù)據(jù)出處。
2、計算過程詳細、完全。
3、公式的字母含義應標明,有時還應標注公式的出處。
4、內(nèi)容條理清楚,按步驟書寫。
5、說明書按照學校的有關規(guī)定,編寫不少于12000字的設計說明書,同時上交電子文檔。
(四)其他要求
1、查閱到10篇以上與題目相關的文獻
2、翻譯一篇本專業(yè)外文文獻(10000個以上印刷符號),并附譯文。
進度安排
起止日期
工作內(nèi)容
備注
2011年2月~ 5月
1周(2、21—2、28)
4周(2、28—3、25)
2周(3、28—4、10)
2周(4、11—4、24)
1周(4、25—5、1)
5周(5、2—6、3)
1周(6、6—6、10)
完成畢業(yè)設計的選題和開題報告;
進行畢業(yè)實習及調(diào)研;
進行工藝及結構設計;
繪制裝配圖和零件圖;
對整個設計進行合理性檢查;
撰寫設計說明書及畢業(yè)答辯的準備;
畢業(yè)設計答辯。
主要參考資料
[1]伍先明.塑料模具設計指導[M] .國防工業(yè)出版社,2006
[2]許發(fā)樾.實用模具設計與制造手冊[M] .北京:機械工業(yè)出版社,2001
[3]劉彩英.塑料模具設計手冊[M] .機械工業(yè)出版社,2002
[4]徐佩弦.塑料制品與模具設計[M] .中國輕工業(yè)出版社,2001
[5]機械工業(yè)職業(yè)鑒定指導中心[M] .機械制圖.機械工業(yè)出版社,2000
[6]高佩福.實用模具制造技術[M] .輕工業(yè)出版社,1999
[7]孟少農(nóng).機械加工工藝手冊[M] .機械工業(yè)出版社,1991
[8]林清安.Pro/Engineer Wildfire 2.0 模具設計[M] .北京大學出版社,2004.
[9]葉久新.塑料制品成型及模具設計[M] .湖南科學技術出版社,2005
[10]中國機械工程學會.中國模具設計大典(第二卷)[M] .江西科學技術出版社,2003
[11]張建鋼等.數(shù)控技術[M] .華中科技大學出版社,2000
[12]胡蓉,PRO/E在模具中的應用[J] .機械工程與自動化2005
[13]梅紅吹,余拔龍,淺談塑料模具CAD/CAM設計與制造工藝[J] .中國科技信息,2005
[14]朱福順,王鵬程,郭勝利,模具材料及其發(fā)展概況[J] .內(nèi)蒙古石油化工,2005
[15]楊俊秋,淺談塑料模具畢業(yè)設計[J].模具制造,2005,(7)
教研室
意見
年 月 日
系主管領導意見
年 月 日
實習日記
2011年3月22日
今天是實習參觀的第一天,帶著一點小小的興奮和新奇早早從被窩爬了起來,感受到天氣還是挺冷的。比原定時間早了一刻鐘來到了集合地點,不時感受到陣陣寒風。車子晚到了半小時,實習的第一項也就變成了寒風中的等待。隨后我們來到的地方是位于江寧經(jīng)濟技術開發(fā)區(qū)中電電氣集團,這是一家集高品質(zhì)太陽能單晶硅棒研發(fā)、生產(chǎn)、銷售為一體的新型高新技術企業(yè),擁有先進的單晶硅棒制造技術和生產(chǎn)、檢測設備,匯集了國內(nèi)外半導體硅材料科技領域的頂尖人才。我們參觀了一下其中的一間廠房,了解了一些相關的生產(chǎn)工序和其中的一些相關細節(jié)。半個小時的參觀之后第一天的內(nèi)容就結束了,我們隨車返回學校。
2011年3月23日
今天的實習參觀我們來到了位于南京市大明路的南京電力自動化設備三廠有限公司,前身是南京電力自動化設備總廠三廠,這是一家致力于通訊設備研發(fā)、生產(chǎn)、銷售和服務為一體的高新技術企業(yè)。我們主要參觀了一些電能表裝置的生產(chǎn)制作,在參觀的過程中也聽取了一些講解,不過都沒怎么聽明白,但也算是增長了一些相關的見識??粗ぷ魅藛T忙碌的身影想到不久之后自己也要投入自己的工作崗位,覺得自己是要真正進入社會了,以后不知道能不能闖出一番自己的天地。
2011年3月24日
今天參觀的是位于南京市中心莫愁路上的南京工藝裝備制造有限公司,是中國機械工業(yè)企業(yè)核心競爭力100強企業(yè),是國內(nèi)規(guī)模最大、規(guī)格最全、質(zhì)量最優(yōu)的精密滾動功能部件產(chǎn)業(yè)化基地,也是參觀以來講解最詳細收獲最多的一次。兩位師傅帶我們參觀了除去一切保密房間以外的幾乎所有廠房,并且都進行了認真細致的講解,使我們對于一切滾動功能部件的生產(chǎn)制造有了一定深入的了解。是參觀時間最長的一次,直到后來駕駛員需要我們快一點,剩下的一些廠房就只好匆忙看完了,也算是有些遺憾。
2011年3月25日
今天參觀的是位于南京市棲霞區(qū)萬壽村的南京依維柯旅行車分公司,南京依維柯汽車有限公司成立于1996年3月1日,是中國南京汽車集團與意大利菲亞特集團依維柯公司共同成立的合資公司。旅行車分公司整個廠區(qū)并不算大,主要是生產(chǎn)躍進6m~9m多用途、公交、公路客運各系列客車底盤。參觀了底盤的生產(chǎn)工序,最后還了解幾種底盤的各部分介紹。邊聽講解邊自己思考,不懂的地方還可以提問。雖然說那些低盤都是一些低配置的底盤,但也能令大家了解到一切原來所不知道的知識。
2011年3月26日
今天參觀的是南京申華汽車電子有限公司,為上海汽車工業(yè)(集團)總公司三級下屬企業(yè),由上海實業(yè)交通電器有限公司和南京東華汽車實業(yè)有限公司合資組建,前身為南京集團獨資子公司——南京汽車儀表有限公司。依靠雄厚技術實力,搭建起車用儀表、傳感器、電子控制器、車用塑料件系列研發(fā)、產(chǎn)銷平臺,并引入了上實交通的搖窗機和電喇叭等系列產(chǎn)品。我們參觀了一些簡單的裝配和測試工作室,大部分都是女工人,不知道不是這些工作都十分要求認真細致的緣故。
-
實習總結
轉眼間實習的三個星期就這樣過去了,實習的那些天除了最后是下午的一次,剩下的每天都是需要8點之前起床,這三個星期早起的生活使之前睡到自然醒的清閑狀態(tài)也有所改變。這次的實習毫無疑問學到了很多知識,擴展了知識面,尤其是書本上的知識,本來很多被我們用來應付考試的,但是到企業(yè)、工廠里看到這些一塊一塊的本以為不相干的內(nèi)容組成一個完備的系統(tǒng),完成一系列的功能,讓我內(nèi)心很有感觸。這讓我對未來的學習和工作方向有了深刻的思考。
隨著自動控制系統(tǒng)的發(fā)展,控制系統(tǒng)集成度越來越高,越來越趨向于集成智能化,而拋棄笨拙的人工手動控制,通過實習,使我們更加深刻認識到這一點。平時的學習一直沒能形成一個明了的對自動化發(fā)展方向的認識,在實習中解決了這個疑惑,初步了解了自動控制在實際生產(chǎn)中的應用,以及自動控制涉及到的生產(chǎn)工藝流程,電氣控制系統(tǒng),儀表系統(tǒng)等。生產(chǎn)中要求穩(wěn)定性高,抗干擾性強,效率高,質(zhì)量高等設備,這些單單靠手工操作已經(jīng)很難達到要求,傳統(tǒng)的過渡設備也越來越難滿足抗干擾、穩(wěn)定性的要求,現(xiàn)在很多都是軟硬件結合的設備,將編寫好的程序命令輸入系統(tǒng)后,系統(tǒng)將自動執(zhí)行,而操作人員的重要性就是保證程序的嚴格和設備調(diào)試精準。這大大解放了勞動力,提高了生產(chǎn)效率。
當然實習中還有著更多的感觸。作為應屆畢業(yè)生的我們要想適合自己的工作,在實際中實現(xiàn)自己的理想,必需不斷的增加自己的能力,做事情更加專注。這次實習展示給我們看各個不同的行業(yè)的人們的生活,不同行業(yè)的人們將自己的行業(yè)融入自己的生活,這樣大的人群的生活展示給我們未來的生活遠景,選擇什么樣的生活也是我們現(xiàn)在的最重要的抉擇。一旦下定決心,也就要開始為自己的生活做準備,勝利是屬于有準備的人的?,F(xiàn)在的我就要為自己的生活做準備,不斷的充實自己。本次的實習,展示給我們了多種職業(yè)的工作狀態(tài),而作為應屆畢業(yè)生,擇業(yè)的選擇是大多數(shù)人所面對的問題。就我們專業(yè)而言,面試時常遇見的問題就是“材料成型及控制工程專業(yè)是干什么的?”或許大多數(shù)的學生跟我一樣對材料成型及控制工程專業(yè)并沒有清晰的概念,所以也并不能很好的回答這樣的問題。不管怎樣,勤勞的人是讓人欽敬的。
實習過程中,講解老師的介紹,完全沖破了課堂教學的格式,在現(xiàn)場有針對性的介紹,使我們對知識的認識更加深刻。這些天的實習,促使我調(diào)整自己的學習態(tài)度,重新定位自己的學習方向。因為學校內(nèi)的學習,只能盡最大努力的培養(yǎng)一個優(yōu)秀的學生。但是生產(chǎn)中不再只是簡單的理論背誦與計算,將實踐應用發(fā)揮到最大化,盡管學校的實驗已經(jīng)在努力模擬真實的環(huán)境,但是還是與實際有差距的。在真正的生產(chǎn)過程中,任何故障或事故都是很嚴重的,而在學校的仿真實驗里,盡管也有模擬故障等功能,但是卻始終不能深入人心,有的甚至是理想的條件,而這卻是在實際生產(chǎn)中不可能實現(xiàn)的。這樣就又削弱了學生實際應對問題和解決問題的能力。總的來說,這一次實習是比較成功的,學習到了很多在校園、在課堂上、課本上學不到的東西,也了解很多和懂得了做人的道理,特別是體會到生活中的艱辛和找工作的不容易。
這次實習開始之前我總以為根據(jù)自己從書上、從課堂上所學到的知識應該對企業(yè)的生產(chǎn)情況有了比較深刻的了解,但去了之后才知道自己的想法有多么幼稚,才體會到書上所說的“紙上得來終覺淺,絕知此事需躬行”的真正含義,也明白了學校安排生產(chǎn)實習良苦用心。真的,有許多東西看似已經(jīng)懂了,但真正到了實際卻又是另一種情況。有時自己認為自己已掌握的東西可能僅是一些膚淺的表面或總體的一個方面,甚至有時是錯誤的認識,而如果沒有實地考察實踐,你是無法發(fā)現(xiàn)這些問題的。這次實習給我們每個人一個很好的機會學習那些書本上不能學到的知識,增長了我們的見識,對生產(chǎn)操作有了一定的直觀認識,對工人也有了一中全新的認識?,F(xiàn)將這次生產(chǎn)實習的心得體會歸納如下:1、擴展了我的知識面,對書本理論知識給予了一個很好的補充;2、真正腳踏實地進入到工廠生產(chǎn)重點地帶支了解生產(chǎn)過程,支認識工廠,了解設備; 3、對專業(yè)知識的學習打下有力的基礎,為日后的專業(yè)課學習埋下了伏筆; 4、深入全面了解本專業(yè)職業(yè)定位,為將來工作有了一定的導向作用; 5、對生產(chǎn)設備有了由感性到理性的認知,有種實實在在的深刻印象; 6、對工廠或企業(yè)的各個車間間的聯(lián)系,資源配置,生產(chǎn)流水線,企業(yè)文化在企業(yè)發(fā)展中的作用有更為全面的理解。
感謝這次實習,感謝這次實習的各位帶隊教師,感謝為我們爭取了這實習機會的領導。這次實習,一定會令我的人生走向新一頁!
附表五
湖南工學院畢業(yè)設計(論文)開題報告
題 目
DVD遙控器前蓋注塑模設計
學生姓名
羅正芳
班級學號
212070327
專業(yè)
材料成型及控制工程
一、 選題的目的和意義:
塑料制品在日常社會中得到廣泛利用,模具技術己成為衡量一個國家產(chǎn)品制造水平的重要標志之一。國內(nèi)注塑模在質(zhì)與量上都有了較快的發(fā)展。但是與國外的先進技術相比,我國還有大部分企業(yè)仍然處于需要技術改造、技術創(chuàng)新、提高產(chǎn)品質(zhì)量、加強現(xiàn)代化管理以及體制轉軌的關鍵時期。
關于全國塑料加工業(yè)區(qū)域分布,珠三角、長三角的塑料制品加工業(yè)位居前列,浙江、江蘇和廣東塑料模具產(chǎn)值在全國模具總產(chǎn)值中的比例也占到70%。現(xiàn)在,這3個省份的不少企業(yè)已意識到塑模業(yè)的無限商機,正積極組織模具產(chǎn)品的開發(fā)制造。
塑料制品在汽車、機電、儀表、航天航空等國家支柱產(chǎn)業(yè)及與人民日常生活相關的各個領域中得到了廣泛的應用。塑料制品成形的方法雖然很多,但最主要的方法是注塑成形,世界塑料模具市場中塑料成形模具產(chǎn)量中約半數(shù)是注塑模具。
目前,我國模具生產(chǎn)廠點約有3萬多家,從業(yè)人數(shù)80多萬人。2005年模具出口7.4億美元,比2004年的4.9億美元增長約50%,均居世界前列。2006年,我國塑料模具總產(chǎn)值約300多億元人民幣,其中出口額約58億元人民幣。除自產(chǎn)自用外,市場銷售方面,2006年中國塑料模具總需求約為313億元人民幣,國產(chǎn)模具總供給約為230億元人民幣,市場滿足率為73.5%。在我國,廣東、上海、浙江、江蘇、安徽是主要生產(chǎn)中心。廣東占我國模具總產(chǎn)量的四成,注塑模具比例進一步上升,熱流道模具和氣輔模具水平進一步提高。
注塑模具在量和質(zhì)方面都有較快的發(fā)展,我國最大的注塑模具單套重量己超過50噸,最精密的注塑模具精度己達到2微米。制件精度很高的小模數(shù)齒輪模具及達到高光學要求的車燈模具等也已能生產(chǎn),多腔塑料模具已能生產(chǎn)一模7800腔的塑封模,高速模具方面已能生產(chǎn)擠出速度達6m/min以上的高速塑料異型材擠出模具及主型材雙腔共擠、雙色共擠、軟硬共擠、后共擠、再生料共擠出和低發(fā)泡鋼塑共擠等各種模具。在CAD/CAM技術得到普及的同時, CAE技術應用越來越廣,以 CAD/CAM/CAE一體化得到發(fā)展,模具新結構、新品種、新工藝、新材料的創(chuàng)新成果不斷涌現(xiàn),特別是汽車、家電等工業(yè)快速發(fā)展,使得注塑模的發(fā)展迅猛。
基于現(xiàn)狀并結合本學校教學特色,選用固體膠底座注塑模設計作為我這次畢業(yè)設計的題目。
二、國內(nèi)外研究綜述?
注塑模具在量和質(zhì)方面都有較快的?嘔,我國最大的注塑模具單套重醏己超過5 噸,最精密的注塑模具精度己達到2微米。制件精度很高的小模數(shù)齒輪模具及達到高光學要求的車燈模具等也已能生產(chǎn),多腔塑料模具已能生產(chǎn)一模7800腔的塑封模,高速模具方面已能生產(chǎn)擠出速度達6m/min以上的高?塑料異型材擠?模具及主型材雙腔共擠、叄色共擠、?硬共擠、后共擠、?生料共擠出和低發(fā)泡鋼塑共擠等各種模具。在CAD/CAM技術得到普半的同時, CAE技術應用越敥越廣,以 CA/CAM/CAE一體化得?發(fā)展,模具斠結構?新品種、新工藝、新??的?新成果不攭?,F(xiàn),爹別是汽車、家電等工業(yè)快速發(fā)展,?伖泈塑模的發(fā)展迅猛。
整體來看我國塑料模具?論昏在?量上,蟘是在質(zhì)量、技昭和能力等方面都有?很大誅?,但?國搑經(jīng)濟發(fā)屑的需求、世?先?水帳相比,差趝僅很大。一些大型、精?、復雜、長壽命的?高檔??模具每年仍需大量進叡。在總量??應摂?同時,一些低?偑料模具卻供迃于求?市圚獰爭激烈,還有一些?術含量不夢高嚄嚴檔塑斉?具也有供迅于桂的趨?。
分析:未敥我國注塑模行業(yè)的發(fā)展趨勢
據(jù)業(yè)內(nèi)人士分??未來?內(nèi)外棈塑樁發(fā)展?勢包?4丟方面:
1、大力提高注塑模開發(fā)能力。
將開發(fā)工作盡量往前推,直至介入到模具用戶的產(chǎn)品開發(fā)中去,甚至在尚無明確用戶對象之前進行開發(fā),變被動為主動。
目前,電視機和顯示器外殼、空調(diào)器外殼、摩托車塑件等已采用這種方法,手機和電話機模具開發(fā)也已開始嘗試。這種做法打破了長期以來模具廠只能等有了合同,才能根據(jù)用戶要求進行模具設計的被動局面。???
2、注塑模具從依靠鉗工技藝轉變?yōu)橐揽楷F(xiàn)代技術。
隨著模具企業(yè)設計和加工水平的提高,注塑模具的制造正在從過去主要依靠鉗工的技藝轉變?yōu)橹饕揽考夹g。這不僅是生產(chǎn)手段的轉變,也是生產(chǎn)方式的轉變和觀念的上升。這一趨勢使得模具的標準化程帶不斷捐高緦模偷精庢趈來越高,生產(chǎn)周期越來越短,鉗工比例越來越低,最終促進了模具工丒整體水平不斷提鋘。
目前我國已?10多個國家級高新技術企業(yè),約200個省市級高新技術企業(yè)。與此趨勢相適應,生產(chǎn)模具的主要骨干力量從技藝型人才逐昐轉變?yōu)榧夹g型人才是必然要求。3、模具生產(chǎn)正在向信息化迅速發(fā)嘔。
在?息社會中,作為一?高水平的現(xiàn)代模具企業(yè),單單只是CAD.CAM的應用已遠遠不夠。目前許多企業(yè)已經(jīng)采用了CAE、CAT、PDM、CAPP、KBE、KBS、RE、CIMS、ERP等技術及其它先進制造技術和虛擬網(wǎng)絡技術等,這些都是信息化的表現(xiàn)。向信息化方向發(fā)展這一趨向已成為行業(yè)共識。
4、注塑模向更廣的范圍發(fā)展。
隨著人類社會的不斷進步,模具必然會向更廣泛的領域和更高水平發(fā)展?,F(xiàn)在,能把握機遇、開拓市場,不斷發(fā)現(xiàn)新的增長點的模具企業(yè)和能生產(chǎn)高技術含量模具企業(yè)的業(yè)務很是紅火,利潤水平和職工收入都很好。因此,模具企業(yè)應把握這個趨向,不斷提高綜合素質(zhì)和國際競爭力。
隨著市場的發(fā)展,塑料新材料及多樣化成型方式今后必然會不斷發(fā)展,因此對模具的要求也越來越高。為了滿足市場需要,未來的塑料模具無論是品種、結構、性能還是加工都必將有較快發(fā)展。超大型、超精密、長壽命、高效模具;多種材質(zhì)、多種顏色、多層多腔、多種成型方法一體化的模具將得到發(fā)展。更高性能及滿足特殊用途的模具新材料將會不斷發(fā)展,隨之將產(chǎn)生一些特殊的、更為先進的加工方法。各種模具型腔表面處理技術,如涂覆、修補、研磨和拋光等新工藝也會不斷得到發(fā)展。
三、 畢業(yè)設計(論文)所用的主要技術與方法:
隨著計算機技術的發(fā)展,注塑模的設計方法已經(jīng)由傳統(tǒng)的手工繪圖設計逐步向計算機輔助設計(CAD)方向發(fā)展,給注塑模生產(chǎn)帶來了深刻的變革。
此次畢業(yè)設計題目主要是基于AutoCAD的技術與方法進行設計。
1、調(diào)研DVD遙控器前蓋注塑模的造型結構特征及對注塑零件的工藝性分析。
2、注塑工藝的總體方案的分析和確定,然后進行排樣設計和工藝計算。
3、進行模具關鍵結構的方案設計,制定初步模具關鍵結構設計方案,繪制產(chǎn)品草圖。
4、進行DVD遙控器前蓋注塑模結構設計,繪制正規(guī)DVD遙控器前蓋注塑模零件設計圖紙。
5、選擇合理的注塑設備,并對設備進行校核。
6、編制模具中主要零件的制造工藝方案和加工方法。
7、撰寫設計說明書,所有設計文檔、資料的整理、收尾、答辯。
四、 主要參考文獻及資料獲得情況
[1]伍先明.塑料模具設計指導[M] .國防工業(yè)出版社,2006
[2]許發(fā)樾.實用模具設計與制造手冊[M] .北京:機械工業(yè)出版社,2001
[3]劉彩英.塑料模具設計手冊[M] .機械工業(yè)出版社,2002
[4]徐佩弦.塑料制品與模具設計[M] .中國輕工業(yè)出版社,2001
[5]機械工業(yè)職業(yè)鑒定指導中心[M] .機械制圖.機械工業(yè)出版社,2000
[6]高佩福.實用模具制造技術[M] .輕工業(yè)出版社,1999
[7]孟少農(nóng).機械加工工藝手冊[M] .機械工業(yè)出版社,1991
[8]林清安.Pro/Engineer Wildfire 2.0 模具設計[M] .北京大學出版社,2004.
[9]葉久新.塑料制品成型及模具設計[M] .湖南科學技術出版社,2005
[10]中國機械工程學會.中國模具設計大典(第二卷)[M] .江西科學技術出版社,2003
[11]張建鋼等.數(shù)控技術[M] .華中科技大學出版社,2000
[12]胡蓉,PRO/E在模具中的應用[J] .機械工程與自動化2005
[13]梅紅吹,余拔龍,淺談塑料模具CAD/CAM設計與制造工藝[J] .中國科技信息,2005
[14]朱福順,王鵬程,郭勝利,模具材料及其發(fā)展概況[J] .內(nèi)蒙古石油化工,2005
[15]楊俊秋,淺談塑料模具畢業(yè)設計[J].模具制造,2005,(7)
五、畢業(yè)設計(論文)進度安排(按周說明)
第5-6周 收集并整理相關資料
第7-8周 研究資料、編寫開題報告
第9-10周 完成畢業(yè)設計論文的初稿
第11-12周 根據(jù)指導教師意見,修改和完善論文
第13-14周 進一步完善論文,定稿并裝訂成冊
第15-17周 準備畢業(yè)答辯,提交論文
指導教師批閱意見
指導教師(簽名): 年 月 日
注:可另附A4紙
摘要
隨著現(xiàn)代工業(yè)的迅猛發(fā)展, 注塑成型在機械、電子、航空航天工業(yè)、生物領域及日用品生產(chǎn)中所占的比例越來越大。本次設計的是DVD遙控器前蓋塑料模具,制件的結構決定了該模具必須同時使用側抽芯。設計過程整體采用現(xiàn)代先進的模具加工制造方法和強大的Pro/Engineer Wildfire 2.0模具設計軟件相結合,在保證設計質(zhì)量的同時設計速度也有提高,設計思路及要求符合現(xiàn)代模具設計的潮流和未來的發(fā)展方向。
關鍵詞: 注塑成型;塑料模具;遙控器;側抽芯
ABSTRACT
With the rapid development of industry, the mould plastics shapings covers more and more in mechanical industry, electronics industry, spaceflight industry,biological field and production of daily necessities. This remote controler front cover of DVD molding die must include special slide pull structure because the structure of the product. This design is the integration of modern advanced mould process manufacturing approach and powerfull Pro/Engineer Wildfire 2.0 mold design,not only the design quality is assured but also heightened the design speed. The thought and requirement of this design accord to the trend of contemporary mold design and its future of development direction.
Keywords: Mould plastics shaping;Injiectiong mold die;Remote controller;Slide pull structure
Minimizing manufacturing costs for thin injection molded plastic components
1. Introduction
In most industrial applications, the manufacturing cost of a plastic part is mainly governed by the amount of material used in the molding process.
Thus, current approaches for plastic part design and manufacturing focus primarily on establishing the minimum part thickness to reduce material usage.
The assumption is that designing the mold and molding processes to the minimum thickness requirement should lead to the minimum manufacturing cost.
Nowadays, electronic products such as mobile phones and medical devices are becoming ever more complex and their sizes are continually being reduced.
The demand for small and thin plastic components for miniaturization assembly has considerably increased in recent years.
Other factors besides minimal material usage may also become important when manufacturing thin plastic components.
In particular, for thin parts, the injection molding pressure may become significant and has to be considered in the first phase of manufacturing.
Employing current design approaches for plastic parts will fail to produce the true minimum manufacturing cost in these cases.
Thus, tackling thin plastic parts requires a new approach, alongside existing mold design principles and molding techniques.
1.1 Current research
Today, computer-aided simulation software is essential for the design of plastic parts and molds. Such software increases the efficiency of the design process by reducing the design cost and lead time [1].
Major systems, such as Mold Flow and C-Flow, use finite element analysis to simulate the filling phenomena, including flow patterns and filling sequences. Thus, the molding conditions can be predicted and validated, so that early design modifications can be achieved. Although available software is capable of analyzing the flow conditions, and the stress and the temperature distribution conditions of the component under various molding scenarios, they do not yield design parameters with minimum manufacturing cost [2,3].
The output data of the software only give parameter value ranges for reference and leaves the decision making to the component designer. Several attempts have also been made to optimize the parameters in feeding [4–7], cooling [2,8,9], and ejection These attempts were based on maximizing the flow ability of molten material during the molding process by using empirical relation ships between the product and mold design parameters.
Some researchers have made efforts to improve plastic part quality by Reducing the sink mark [11] and the part deformation after molding [12], analyzing the effects of wall thickness and the flow length of the part [13], and analyzing the internal structure of the plastic part design and filling materials flows of the mold design [14]. Reifschneider [15] has compared three types of mold filling simulation programs, including Part Adviser, Fusion, and Insight, with actual experimental testing. All these approaches have established methods that can save a lot of time and cost. However, they just tackled the design parameters of the plastic part and mold individually during the design stage. In addition, they did not provide the design parameters with minimum manufacturing cost.
Studies applying various artificial intelligence methods and techniques have been found that mainly focus on optimization analysis of injection molding parameters [16,17]. For in-stance He et al. [3] introduced a fuzzy- neuro approach for automatic resetting of molding process parameters. By contrast , Helps et al. [18,19] adopted artificial neural networks to predict the setting of molding conditions and plastic part quality control in molding. Clearly, the development of comprehensive molding process models and computer-aided manufacturing provides a basis for realizing molding parameter optimization [3 , 16,17]. Mok et al. [20] propose a hybrid neural network and genetic algorithm approach incorporating Case-Based Reasoning (CBR) to derive initial settings for molding parameters for parts with similar design features quickly and with acceptable accuracy. Mok’s approach was based on past product processing data, and was limited to designs that are similar to previous product data. However, no real R&D effort has been found that considers minimizing manufacturing costs for thin plastic components.
Generally, the current practical approach for minimizing the manufacturing cost of plastic components is to minimize the thickness and the dimensions of the part at the product design stage, and then to calculate the costs of the mold design and molding process for the part accordingly, as shown in Fig. 1.
The current approach may not be able to obtain the real minimum manufacturing cost when handling thin plastic components.
1.2Manufacturing requirements for a typical thin plastic component As a test example, the typical manufacturing requirements for a thin square plastic part with a center hole, as shown in Fig. 2, are given in Table 1.
Fig.1. The current practical approach
Fig.2. Test example of a small
plastic component
Table1. Customer requirements for the example component
2. The current practical approach
As shown in Fig.1, the current approach consists of three phases: product design, mold design and molding process parameter setting. A main objective in the product design is to establish the physical dimensions of the part such as its thickness, width and length. The phases of molded sign and molding subsequently treat the established physical dimensions as given inputs to calculate the required details for mold making and molding operations.
When applying the current practical approach for tackling the given example, the key variables are handled by the three phases as follows:
Product design
* Establish the minimum thickness (height) HP, and then calculate the material cost. HP is then treated as a predetermined input for the calculation of the costs of mold
design and molding operations. HP
Mold design
* Calculate the cooling time for the determined minimum
thickness HP in order to obtain the number of mold cavities required. The mold making cost is then the sum of the costs to machine the:
–Depth of cutting (thickness) HP
–Number of cavities
–Runner diameter DR
–Gate thickness HG
Molding process
* Determine the injection pressure Pin, and then the cost of power consumption
l Determine the cooling time t co, and then the cost of machine operations. The overall molding cost is the sum of the power consumption cost and machine operating cost.
The total manufacturing cost is the sum of the costs of plastic material, mold making and molding operations. Note that, in accordance with typical industry practice, all of the following calculations are in terms of unit costs.
2.1 Product design
This is the first manufacturing phase of the current practical approach. The design minimizes the thickness HP of the plastic component to meet the creep loading deflection constraint , Y (<1.47mmafter1yearofusage),and to minimize plastic material usage cost Cm. Minimizing HP requires [21]:
Figure 3 plots changes in HP through Eqs.1 and 2.The graphs show that the smallest thickness that meets the 1.47mm maximum creep deflection constraint is 0 .75mm,with a plastic material cost of $0.000483558/unit and a batch size of 200000 units.
This thickness will be treated as a given input for the subsequent molded sign and molding process analysis phases.
2.2Mold design
2.2.1 Determination of cooling time
The desired mold temperature is 25 C. The determined thickness is 0.75mm. Figure 4 shows the cooling channels layout following standard industry practices. The cooling channel diameter is chosen to be 3mm for this example.
From [22], the cooling time t co:
And the location factor,
BysolvingEqs.3and4, and substituting HP =0.75mm and the given values of the cooling channel design parameters, the cooling time (3.1s) is obtained.
The cycle time t cycle, given by E q. 5, is proportional to the molding machine operating costs, and consists of injection time (t in), ejection time (t e j), dry cycle time (t d c), and cooling time (t c o).
2.2.2 Determination of the number of mold cavities In general, the cost of mold making depends on the amount of machining work to form the required number of cores/cavities, runners, and gates. The given example calls for a two-plate mold
Fig.3.
Deflection and plastic materials costs versus part thickness Fig.4. Cooling channel layout that does not require undercut machining. Therefore, the ma chining work for cutting the runners and gates is proportional to the work involved in forming the cores/cavities and need not be considered. In the example, mold making cost Cmm is governed by (n, HP).
Generally, the minimum number of cavities, Nmin, is chosen to allow for delivery of the batch of plastic parts on time圖3 。
After substitution
which is rounded To n =3,since the mold cannot contain 2.64 cavities. The machine operation capacity and the lead-time of production in the example are given as 21.5h/d and 21d, respectively. Moreover, as mentioned in the previous section, the cycle time is directly proportional to the part thickness HP. A curve of batch size against thickness is plotted in Fig. 5. As shown, at HP =0.75mm, the production capability (batch size) is 242470units.Thus the production capability of n =3 is larger than the required lot size (200000units).
For simplicity, the time taken for machining the depth of a thin component is treated as a given constant and added to the required time t CC for making a cavity insert. The C mm can then be calculated by n as expressed [1]
2.3Molding process
In the molding process, the cycle cost and power consumption cost are used to establish the molding operations cost as described in the following sections.
Fig.5. Mold making cost versus part thickness
2.3.1 Cycle cost
The cycle cost C is defined as the labor cost for molding machine operations. The calculation of cycle cost, given by E q. 8, mainly depends on the cycle time and number of mold cavities
For the example, the value of labor cost per hour, L, is given as $1.19/h. Also, Cp can be calculated, as t cycle =20.1sand n = 3 when HP = 0.75mm, as found earlier. And so Cp =$0.0022147/unit.
2.3.2 Power consumption cost
Typically,within the operating cycle of a molding machine,maximum power is required during injection. Hence, longer injection times and higher injection pressures increase the power consumption cost.
For the purposes of this example, an injection time of tin =0.5sisselectedand applied for the molding process。The required hydraulic power PH, power consumption E i, and cost CPC for injection can be found from the following
expressions [23]
In E q. 9, 0.8 is the mechanical advantage of the hydraulic cylinder for power transmission during molding, and the resulting electric power cost of CE = HK$1.0476/kWh is given in E q. 11. To find CPC, the sum of the required injection pressures Pin in the feeding system and cavity during molding need to be found.
Required injection pressures. Based on the mold layout design, the volume flow rate Q in the sprue is equal to the overall flow rate, and the volume flow rate in each primary and secondary runner will be divided by the separation number, Ni,
according to:
The volume flow rate in a gate and cavity equals to that of the runner connecting to them. Tan [24] derived simplified models
For filling circular and rectangul a r channels that can be employed for the feeding system design in this study
1. Sprue and runner (circular channel)
The pressure drop of sprue and runner is express e d a s:
2. Cavity and gate (rectangular channel)
The pressure drop of cavity and gate is expressed as:
Further, the temperature-dependent power law viscosity model can be defined as:
Based on the values of the volume flow rate and consistency index m (T) for each simple unit, the pressure drop P can be found by using E q s. 12to15. Thus, the required filling pressure is the sum of pressure drops P in the sprue, primary runner, secondary runner, gate, and cavity:
Required power consumption. Given the shape and dimensions of the part and feeding channel, the pressure drops of the sprue , runner, gate , and cavity are obtained through the calculation froE q s. 12 to 15, and are substituted into E q. 16. The required injection pressure Pin is calculated and substituted into the E q. 9.Combining E q s. 10 and 11, the power consumption cost CPC is calculated and depends on the variation of injection pressure, which is indirectly affected by the thickness of product as shown in the following E q .17.
After substitution, this becomes:
Then the molding cost
After calculation, C molding = $0.0022147/unit+$0.003755/unit,when HP =0.75mm, n =3.
2.4Remarks on the current practical approach Based on Esq. 8 to 18 it can be shown that as the part thickness,Hp, increases, the necessary injection pressure Fig.6. Molding process cost versus thickness consumption cost) decreases but the cycle time (and thus labor cost) increases and so there is a minimum total molding process cost, as shown in Fig.6 for the example in this study. As can be seen the minimum molding process cost is Hp =2.45mm.
If the test example part thickness, Hp, were increased from
0.75 to 2.45mm, the plastic material cost is increased by
230.1%; however, the total molding process cost decreases by
20.6% to $0.004741/unit. Moreover, the total manufacturing cost for the part falls by9.54%, a saving of $0.0001174/unit.
Thus, applying the current practical approach does not give the true minimum manufacturing cost. The current practical approach mainly focuses on minimizing the thickness of the part to reduce the plastic material usage and achieve shorter cooling times. When the part is thin, higher injection pressures are needed during the molding process, which substantially increases the molding process costs and consequently shifts the true minimum manufacturing cost for the part away from the minimum thickness solution.
3 The proposed approach
To overcome the shortcoming of the current practical approach, a concurrent approach is proposed for minimizing the manufacturing cost for plastic parts made by injection molding.
3.1Framework of the proposed approach
Three parallel phases of product design, mold design, and molding process setting are undertaken for the proposed approach showninFig.7. The parallel phases handle individual cost functions for material cost, molding cost, and mold making cost,
Which add to yield the total manufacturing cost . The product shape and dimensions (the possible range of thicknesses) are considered as the main design inputs at the beginning of design phase, as shown in Fig. 7.
The proposed approach will provide a possible solution by considering the three phases simultaneously. The outputs are options for combinations of the thickness of the part , the number of mold cavities , and the minimum manufacturing cost that meet all the given requirements.
Fig.8. Creep deflection and plastic material cost versus thickness
Fig.9. Mold making cost versus part thickness (n =1–8)
3.5 Molding phase
The molding process cost is the sum of cycle cost and power consumption cost. Each number of mold cavities has its own curve of molding cost as shown in Fig. 10. Each curve is inversely proportion to the thickness of the plastic component. The lowest point of the curve is the minimum cost. Usually, when the curve has no sharp turning point and asymptotes, it means that enlarging the thickness cannot reduce molding cost very much.
If the thickness of product is increased, lower injection pressure is required during molding, thus the power consumption cost is reduced, but the cycle time is lengthened and the cycle cost is increased.
As in Fig. 10, assuming an eight cavity mold, the thickness of the plastic part should be less than 2.81mm, with minimum molding cost lessthan$0.00475676/unit.mold
3.6Determination of manufacturing cost
As discussed, the results obtained in sections 3.3, 3.4, and 3.5 can be combined to yield a total manufacturing cost that is the summation of the part design, mold making, and molding process costs. Eight different curves have beendrawninFig.11, for the different numbers of mold cavities. The minimum manufacturing cost is obtained from the lowest point among the eight curves in this study. From Fig.11, the thickness of the plastic
Fig.10. Molding process cost versus part thickness (n =1–8):
Fig.11. Manufacturing cost versus part thickness (n =1–8)
component is 1.44mm, with minimum manufacturing cost of $0.00843177/unit and n =3.
The lowest manufacturing cost is obtained after inputting all values of thickness and numbers of cavities with in the allowable range, 0.01mm to 6mm and 1 to 8, respectively.
Table2. Comparison of results for the different approaches
3.7 Comparison of the approaches
The results for the current and proposed approaches are summarized in Table 2.
When the thickness is increased from 0.75 to 1.44mm, the plastic material cost increases by 92%, but reduces total manufacturing cost by 72.4%. An improvement of 85.9% for the creep deflection is also obtained in the functional design. Further, with the 1.44mm papt thickness, 4.5% less elecpric power is splt.
4 Conchusions
The problems o& the cu2rent apprkaCh to optimize the design