高考數(shù)學(xué)(四海八荒易錯(cuò)集)專題16 圓錐曲線的綜合問題 文
《高考數(shù)學(xué)(四海八荒易錯(cuò)集)專題16 圓錐曲線的綜合問題 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)(四海八荒易錯(cuò)集)專題16 圓錐曲線的綜合問題 文(19頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題16 圓錐曲線的綜合問題 1.設(shè)O為坐標(biāo)原點(diǎn),P是以F為焦點(diǎn)的拋物線y2=2px(p>0)上任意一點(diǎn),M是線段PF上的點(diǎn),且|PM|=2|MF|,則直線OM的斜率的最大值為( ) A. B. C. D.1 答案 C 解析 如圖, 2.直線3x-4y+4=0與拋物線x2=4y和圓x2+(y-1)2=1從左到右的交點(diǎn)依次為A、B、C、D,則的值為________. 答案 解析 由得x2-3x-4=0, ∴xA=-1,xD=4,∴yA=,yD=4. 直線3x-4y+4=0恰過拋物線的焦點(diǎn)F(0,1), ∴|AF|=y(tǒng)A+1=,|DF|=y(tǒng)D+1=5, ∴==. 3.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(-2,0),點(diǎn)B(2,)在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N. (1)求橢圓C的方程; (2)在x軸上是否存在點(diǎn)P,使得無論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由. 解 (1)設(shè)橢圓C的方程為+=1(a>b>0), 因?yàn)闄E圓的左焦點(diǎn)為F1(-2,0), 所以a2-b2=4.① 因?yàn)辄c(diǎn)B(2,)在橢圓C上, 所以+=1.② 由①②解得,a=2,b=2. 所以橢圓C的方程為+=1. (2)方法一 因?yàn)闄E圓C的左頂點(diǎn)為A, 則點(diǎn)A的坐標(biāo)為(-2,0). 因?yàn)橹本€y=kx(k≠0)與橢圓+=1交于兩點(diǎn)E,F(xiàn),設(shè)點(diǎn)E(x0,y0)(不妨設(shè)x0>0),則點(diǎn)F(-x0,-y0). 假設(shè)在x軸上存在點(diǎn)P(t,0),使得∠MPN為直角,則=0. 即t2+=0, 即t2-4=0,解得t=2或t=-2. 故存在點(diǎn)P(2,0)或P(-2,0),無論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角. 方法二 因?yàn)闄E圓C的左頂點(diǎn)為A,則點(diǎn)A的坐標(biāo)為(-2,0). 因?yàn)橹本€y=kx(k≠0)與橢圓+=1交于兩點(diǎn)E,F(xiàn),設(shè)點(diǎn)E(x0,y0),則點(diǎn)F(-x0,-y0). 所以直線AE的方程為y=(x+2). 因?yàn)橹本€AE與y軸交于點(diǎn)M, 令x=0得y=, 即點(diǎn)M. 同理可得點(diǎn)N. 假設(shè)在x軸上存在點(diǎn)P(t,0),使得∠MPN為直角,則=0. 故存在點(diǎn)P(2,0)或P(-2,0),無論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角. 4.設(shè)圓x2+y2+2x-15=0的圓心為A,直線l過點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E. (1)證明|EA|+|EB|為定值,并寫出點(diǎn)E的軌跡方程; (2)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍. 解 (1)因?yàn)閨AD|=|AC|,EB∥AC, 故∠EBD=∠ACD=∠ADC,所以|EB|=|ED|, 故|EA|+|EB|=|EA|+|ED|=|AD|. 又圓A的標(biāo)準(zhǔn)方程為(x+1)2+y2=16,從而|AD|=4,所以|EA|+|EB|=4. 由題設(shè)得A(-1,0),B(1,0),|AB|=2,由橢圓定義可得點(diǎn)E的軌跡方程為:+=1(y≠0). (2)當(dāng)l與x軸不垂直時(shí),設(shè)l的方程為y=k(x-1)(k≠0),M(x1,y1),N(x2,y2). 由得(4k2+3)x2-8k2x+4k2-12=0. 則x1+x2=,x1x2=, 所以|MN|=|x1-x2|=. 當(dāng)l與x軸垂直時(shí),其方程為x=1,|MN|=3,|PQ|=8,四邊形MPNQ的面積為12. 綜上,四邊形MPNQ面積的取值范圍為[12,8). 5.已知橢圓C1:+=1(a>0)與拋物線C2:y2=2ax相交于A,B兩點(diǎn),且兩曲線的焦點(diǎn)F重合. (1)求C1,C2的方程; (2)若過焦點(diǎn)F的直線l與橢圓分別交于M,Q兩點(diǎn),與拋物線分別交于P,N兩點(diǎn),是否存在斜率為k(k≠0)的直線l,使得=2?若存在,求出k的值;若不存在,請(qǐng)說明理由. 解 (1)因?yàn)镃1,C2的焦點(diǎn)重合, 所以=, 所以a2=4. 又a>0,所以a=2. 于是橢圓C1的方程為+=1, 拋物線C2的方程為y2=4x. (2)假設(shè)存在直線l使得=2, 則可設(shè)直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2),M(x3,y3),N(x4,y4). 由可得k2x2-(2k2+4)x+k2=0, 則x1+x4=,x1x4=1, 所以|PN|==. 由可得(3+4k2)x2-8k2x+4k2-12=0, 則x2+x3=,x2x3=, 易錯(cuò)起源1、范圍、最值問題 例1、如圖,橢圓+=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,過F2的直線交橢圓于P,Q兩點(diǎn),且PQ⊥PF1. (1)若|PF1|=2+,|PF2|=2-,求橢圓的標(biāo)準(zhǔn)方程; (2)若|PQ|=λ|PF1|,且≤λ<,試確定橢圓離心率e的取值范圍. 解 (1)由橢圓的定義, 2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2. 設(shè)橢圓的半焦距為c,由已知PF1⊥PF2, 因此2c=|F1F2|= ==2, 即c=,從而b==1. 故所求橢圓的標(biāo)準(zhǔn)方程為+y2=1. (2)如圖, 由PF1⊥PQ,|PQ|=λ|PF1|,得 |QF1|==|PF1|. 由橢圓的定義,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a, 進(jìn)而|PF1|+|PQ|+|QF1|=4a, 于是(1+λ+)|PF1|=4a, 解得|PF1|=, 故|PF2|=2a-|PF1|=. 由勾股定理得 |PF1|2+|PF2|2=|F1F2|2=(2c)2=4c2, 進(jìn)而<e2≤,即<e≤. 【變式探究】如圖,已知橢圓:+y2=1,點(diǎn)A,B是它的兩個(gè)頂點(diǎn),過原點(diǎn)且斜率為k的直線l與線段AB相交于點(diǎn)D,且與橢圓相交于E,F(xiàn)兩點(diǎn). (1)若=6,求k的值; (2)求四邊形AEBF面積的最大值. 解 (1)依題設(shè)得橢圓的頂點(diǎn)A(2,0),B(0,1), 則直線AB的方程為x+2y-2=0. 設(shè)直線EF的方程為y=kx(k>0). 由點(diǎn)D在線段AB上,知x0+2kx0-2=0, 得x0=,所以=, 化簡(jiǎn),得24k2-25k+6=0,解得k=或k=. (2)根據(jù)點(diǎn)到直線的距離公式,知點(diǎn)A,B到線段EF的距離分別為h1=,h2=, 又|EF|=, 所以四邊形AEBF的面積為 S=|EF|(h1+h2)= 【名師點(diǎn)睛】 解決范圍問題的常用方法: (1)數(shù)形結(jié)合法:利用待求量的幾何意義,確定出極端位置后,數(shù)形結(jié)合求解. (2)構(gòu)建不等式法:利用已知或隱含的不等關(guān)系,構(gòu)建以待求量為元的不等式求解. (3)構(gòu)建函數(shù)法:先引入變量構(gòu)建以待求量為因變量的函數(shù),再求其值域. 【錦囊妙計(jì),戰(zhàn)勝自我】 圓錐曲線中的范圍、最值問題,可以轉(zhuǎn)化為函數(shù)的最值問題(以所求式子或參數(shù)為函數(shù)值),或者利用式子的幾何意義求解. 易錯(cuò)起源2、定點(diǎn)、定值問題 例2、橢圓C:+=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左,右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo). 解 (1)由e==,得a=2c, ∵a2=b2+c2,∴b2=3c2, 則橢圓方程變?yōu)椋?. 又由題意知=,解得c2=1, 故a2=4,b2=3, 即得橢圓的標(biāo)準(zhǔn)方程為+=1. (2)設(shè)A(x1,y1),B(x2,y2),聯(lián)立 得(3+4k2)x2+8mkx+4(m2-3)=0. 則① 又y1y2=(kx1+m)(kx2+m) =k2x1x2+mk(x1+x2)+m2 =. ∵橢圓的右頂點(diǎn)為A2(2,0),AA2⊥BA2, ∴(x1-2)(x2-2)+y1y2=0, ∴y1y2+x1x2-2(x1+x2)+4=0, ∴+++4=0, ∴7m2+16mk+4k2=0,解得m1=-2k,m2=-, 由①,得3+4k2-m2>0,② 當(dāng)m1=-2k時(shí),l的方程為y=k(x-2),直線過定點(diǎn)(2,0),與已知矛盾. 當(dāng)m2=-時(shí),l的方程為y=k,直線過定點(diǎn),且滿足②, ∴直線l過定點(diǎn),定點(diǎn)坐標(biāo)為. 【變式探究】已知拋物線:y2=2px(p>0)的焦點(diǎn)F在雙曲線:-=1的右準(zhǔn)線上,拋物線與直線l:y=k (x-2)(k>0)交于A,B兩點(diǎn),AF,BF的延長(zhǎng)線與拋物線交于C,D兩點(diǎn). (1)求拋物線的方程; (2)若△AFB的面積等于3,求k的值; (3)記直線CD的斜率為kCD,證明:為定值,并求出該定值. 解 (1)雙曲線:-=1的右準(zhǔn)線方程為:x=1, 所以F(1,0),則拋物線的方程為:y2=4x. (2)設(shè)A(,y1),B(,y2), 由得ky2-4y-8k=0, Δ=16+32k2>0,y1+y2=,y1y2=-8. S△AFB=1|y1-y2|= =2=3,解得k=2. (3)設(shè)C(,y3),則=(-1,y1),=(-1,y3), 【名師點(diǎn)睛】 (1)動(dòng)線過定點(diǎn)問題的兩大類型及解法 ①動(dòng)直線l過定點(diǎn)問題,解法:設(shè)動(dòng)直線方程(斜率存在)為y=kx+t,由題設(shè)條件將t用k表示為t=mk,得y=k(x+m),故動(dòng)直線過定點(diǎn)(-m,0). ②動(dòng)曲線C過定點(diǎn)問題,解法:引入?yún)⒆兞拷⑶€C的方程,再根據(jù)其對(duì)參變量恒成立,令其系數(shù)等于零,得出定點(diǎn). (2)求解定值問題的兩大途徑 ①→ ②先將式子用動(dòng)點(diǎn)坐標(biāo)或動(dòng)線中的參數(shù)表示,再利用其滿足的約束條件使其絕對(duì)值相等的正負(fù)項(xiàng)抵消或分子、分母約分得定值. 【錦囊妙計(jì),戰(zhàn)勝自我】 1.由直線方程確定定點(diǎn),若得到了直線方程的點(diǎn)斜式:y-y0=k(x-x0),則直線必過定點(diǎn)(x0,y0);若得到了直線方程的斜截式:y=kx+m,則直線必過定點(diǎn)(0,m). 2.解析幾何中的定值問題是指某些幾何量(線段的長(zhǎng)度、圖形的面積、角的度數(shù)、直線的斜率等)的大小或某些代數(shù)表達(dá)式的值等與題目中的參數(shù)無關(guān),不依參數(shù)的變化而變化,而始終是一個(gè)確定的值. 易錯(cuò)起源3、探索性問題 例3、如圖,拋物線C:y2=2px的焦點(diǎn)為F,拋物線上一定點(diǎn)Q(1,2). (1)求拋物線C的方程及準(zhǔn)線l的方程; (2)過焦點(diǎn)F的直線(不經(jīng)過Q點(diǎn))與拋物線交于A,B兩點(diǎn),與準(zhǔn)線l交于點(diǎn)M,記QA,QB,QM的斜率分別為k1,k2,k3,問是否存在常數(shù)λ,使得k1+k2=λk3成立,若存在,求出λ的值;若不存在,請(qǐng)說明理由. 解 (1)把Q(1,2)代入y2=2px,得2p=4, 設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系,知 x1+x2=,x1x2=1. 又Q(1,2),則k1=,k2=. 因?yàn)锳,F(xiàn),B共線,所以kAF=kBF=k, 即==k. 所以k1+k2=+ =+- =2k-=2k+2, 即k1+k2=2k+2. 又k3=k+1,可得k1+k2=2k3. 即存在常數(shù)λ=2,使得k1+k2=λk3成立. 【變式探究】如圖,橢圓E:+=1(a>b>0)的離心率是,點(diǎn)P(0,1)在短軸CD上,且=-1. (1)求橢圓E的方程; (2)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)P的動(dòng)直線與橢圓交于A,B兩點(diǎn).是否存在常數(shù)λ,使得+λ為定值?若存在,求λ的值;若不存在,請(qǐng)說明理由. 聯(lián)立 得(2k2+1)x2+4kx-2=0, 其判別式Δ=(4k)2+8(2k2+1)>0, 所以x1+x2=-,x1x2=-, 從而,+λ =x1x2+y1y2+λ[x1x2+(y1-1)(y2-1)] =(1+λ)(1+k2)x1x2+k(x1+x2)+1 = =--λ-2. 【名師點(diǎn)睛】 解決探索性問題的注意事項(xiàng): 存在性問題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確則不存在. (1)當(dāng)條件和結(jié)論不唯一時(shí),要分類討論. (2)當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件. (3)當(dāng)條件和結(jié)論都不知,按常規(guī)方法解題很難時(shí),要思維開放,采取另外的途徑. 【錦囊妙計(jì),戰(zhàn)勝自我】 1.解析幾何中的探索性問題,從類型上看,主要是存在類型的相關(guān)題型,解決這類問題通常采用“肯定順推法”,將不確定性問題明朗化.其步驟為:假設(shè)滿足條件的元素(點(diǎn)、直線、曲線或參數(shù))存在,用待定系數(shù)法設(shè)出,列出關(guān)于待定系數(shù)的方程組,若方程組有實(shí)數(shù)解,則元素(點(diǎn)、直線、曲線或參數(shù))存在;否則,元素(點(diǎn)、直線、曲線或參數(shù))不存在. 2.反證法與驗(yàn)證法也是求解存在性問題常用的方法. 1.若曲線ax2+by2=1為焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)a,b滿足( ) A.a(chǎn)2>b2 .< C.00),△ABC的三個(gè)頂點(diǎn)都在拋物線上,O為坐標(biāo)原點(diǎn),設(shè)△ABC三條邊AB,BC,AC的中點(diǎn)分別為M,N,Q,且M,N,Q的縱坐標(biāo)分別為y1,y2,y3.若直線AB,BC,AC的斜率之和為-1,則++的值為( ) A.- B.- C. D. 答案 B 即 所以++=-. 5.若點(diǎn)O和點(diǎn)F分別為橢圓+=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則的最大值為( ) A.2B.3C.6D.8 答案 C 解析 由題意得F(-1,0),設(shè)點(diǎn)P(x0,y0), 則y=3(1-)(-2≤x0≤2). =x0(x0+1)+y=x+x0+y =x+x0+3(1-)=(x0+2)2+2. 又因?yàn)椋?≤x0≤2,所以當(dāng)x0=2時(shí),取得最大值,最大值為6,故選C. 6.已知雙曲線C:-=1(a>0,b>0)的離心率為,A,B為左,右頂點(diǎn),點(diǎn)P為雙曲線C在第一象限的任意一點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),若直線PA,PB,PO的斜率分別為k1,k2,k3,記m=k1k2k3,則m的取值范圍為________. 答案 (0,2) ∴0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)四海八荒易錯(cuò)集專題16 圓錐曲線的綜合問題 高考 數(shù)學(xué) 四海 八荒 易錯(cuò)集 專題 16 圓錐曲線 綜合 問題
鏈接地址:http://www.820124.com/p-11848952.html