購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。帶三維備注的都有三維源文件,由于部分三維子文件較多,店主做了壓縮打包,都可以保證打開的,三維預覽圖都是店主用電腦打開后截圖的,具體請見文件預覽,有不明白之處,可咨詢QQ:1304139763===========題目最后備注XX系列,只是店主整理分類,與內容無關,請忽視
英文原文
中文譯文
液壓頂升支架的最優(yōu)化設計
摘要:本文介紹了從兩組不同參數(shù)的采礦工程所使用的液壓頂升支架(如圖1)中選優(yōu)的流程。這種流程建立在一定的數(shù)學模型之上。第一步,尋找四連桿機構的最理想的結構參數(shù)以便確保支架的理想的運動軌跡有最小的橫向位移。第二步,計算出四連桿有最理想的參數(shù)時的最大誤差,以便得出最理想的、最滿意的液壓頂升支架。
圖1 液壓頂升支架
關鍵詞:四連桿機構; 優(yōu)化設計; 精確設計; 模糊設計; 誤差
1.前言:設計者的目的時尋找機械系統(tǒng)的 最優(yōu)設計。導致的結果是一個系統(tǒng)所選擇的參數(shù)是最優(yōu)的。一個數(shù)學函數(shù)伴隨著一個合適的系統(tǒng)的數(shù)學模型的出現(xiàn)而出現(xiàn)。當然這數(shù)學函數(shù)建立在這種類型的系統(tǒng)上。有了這種數(shù)學函數(shù)模型,加上一臺好的計算機的支持,一定能找出系統(tǒng)最優(yōu)的參數(shù)。
Harl描述的液壓頂升支架是斯洛文尼亞的Velenje礦場的采煤設備的一個組成部分,它用來支護采煤工作面的巷道。它由兩組四連桿機構組成,如圖2所示.四連桿機構AEDB控制絞結點C的運動軌跡,四連桿機構FEDG通過液壓泵來驅動液壓頂升支架。
圖2中,支架的運動,確切的說,支架上絞結點C點豎向的雙紐線的運動軌跡要求橫向位移最小。如果不是這種情況,液壓頂升支架將不能很好的工作,因為支架工作在運動的地層上。
實驗室測試了一液壓頂升支架的原型。支架表現(xiàn)出大的雙紐線位移,這種雙紐線位移的方式回見少支架的承受能力。因此,重新設計很有必要。如果允許的話,這會減少支架的承受能力。因此,重新設計很有必要。如果允許的話,這種設計還可以在最少的成本上下文章。它能決定去怎樣尋找最主要的
圖2 兩四連桿機構
四連桿機構數(shù)學模型AEDB的最有問題的參數(shù)。否則的話這將有必要在最小的機構AEDB改變這種設計方案。
上面所羅列出的所有問題的解決方案將告訴我們關于最理想的液壓頂升支架的答案。真正的答案將是不同的,因為系統(tǒng)有各種不同的參數(shù)的誤差,那就是為什么在數(shù)學模型的幫助下,參數(shù)允許的最大的誤差將被計算出來。
2.液壓頂升支架的確定性模型
首先,有必要進一步研究適當?shù)囊簤喉斏Ъ艿臋C械模型。它有可能建立在下面所列假設之上:
(1)連接體是剛性的,
(2)單個獨立的連接體的運動是相對緩慢的.
液壓頂升支架是只有一個方向自由度的機械裝置。它的運動學規(guī)律可以通過同步的兩個四連桿機構FEDG和AEDB的運動來模擬。最主要的四連桿機構對液壓頂升支架的運動規(guī)律有決定性的影響。機構2只是被用來通過液壓泵來驅動液壓頂升支架。絞結點C的運動軌跡L可以很好地來描述液壓頂升支架的運動規(guī)律。因此,設計任務就是通過使點C的軌跡盡可能地接近軌跡K來找到機構1的最理想的連接長度值。四連桿機構1的綜合可以通過 Rao 和 Dukkipati給出運動的運動學方程式的幫助來完成。
圖3 點C軌跡L
圖3描述了一般的情況。
點C的軌跡L的方程式將在同一框架下被打印出來。點C的相對應的坐標x和y隨著四連桿機構的獨有的參數(shù)…一起被打印出來。
點B和D的坐標分別是
xB=x -cos (1)
yB=y -sin (2)
xD=x -cos() (3)
yD=y -sin() (4)
參數(shù)…也彼此相關
xB2 +yB2= (5)
(xD-α1)2+ yD2= (6)
把(1) - (4)代入(5)-(6)即可獲得支架的最終方程式
(x-cos)2+ (y- sin)2- =0 (7)
[x- cos()-]2+[ y- sin()]2- =0 (8)
此方程式描述了計算參數(shù)的理想值的最基本的數(shù)學模型。
2.1數(shù)學模型
Haug和Arora提議,系統(tǒng)的數(shù)學模型可以用下面形式的公式表示
min f(u,v), (9)
約束于
gi(u,v)0, i=1,2,…,l, (10)
和響應函數(shù)
hi(u,v)=0, j=1,2,…,m. (11)
向量 u=[u1,u2,…,un]T 響應設計時的變量, v=[v1,v2,…,vm]T是可變響應向量,(9)式中的f是目標函數(shù)。
為了使設計的主導四連桿機構AEDB達到最佳,設計時的變量可被定義為
u=[ ]T, (12)
可變響應向量可被定義為
v=[x y]T. (13)
相應復數(shù)α3,α5,α6的尺寸是確定的。
目標函數(shù)被定義為理想軌跡K和實際軌跡L之間的一些“有差異的尺寸”
f(u,v) =max[g0(y)-f0(y)]2, (14)
式中x= g0(y) 是曲線K的函數(shù),x= f0(y)是曲線L的函數(shù)。
我們將為系統(tǒng)挑選一定局限性。這種系統(tǒng)必須滿足眾所周知的最一般的情況。
(15)
(16)
不等式表達了四連桿機構這樣的特性:復數(shù)只可能只振蕩的。
這種情況:
(17)
給出了設計變量的上下約束條件。
用基于梯度的最優(yōu)化式方法不能直接的解決(9)–(11)的問題。
min un+1 (18)
從屬于
gi(u,v) 0, i=1,2,…,l, (19)
f(u,v)- un+10, (20)
并響應函數(shù)
hj(u,v)=0, j=1,2,…,m, (21)
式中:
u=[u1 … un un+1]T
v=[v1 … vn vn+1]T
因此,主導四連桿機構AEDB的一個非線性設計問題可以被描述為:
minα7, (22)
從屬于約束
(23)
(24)
,
(25)
(26)
并響應函數(shù):
(27)
(28)
有了上面的公式,使得點C的橫向位移和軌跡K之間的有最微小的差別變得可能。結果是參數(shù)有最理想的值。
3.液壓頂升支架的隨機模型
數(shù)學模型可以用來計算比如參數(shù)確保軌跡 L 和 K 之間的距離保持最小。然而端點C的計算軌跡L可能有些偏離,因為在運動中存在一些干擾因數(shù)??催@些偏離到底合時與否關鍵在于這個偏差是否在參數(shù) 容許的公差范圍內。
響應函數(shù)(27)-(28)允許我們考慮響應變量v的矢量,這個矢量依賴設計變量v的矢量。這就意味著v=h (v),函數(shù)h是數(shù)學模型(22)-(28)的基礎,因為它描述出了響應變量v的矢量和設計變量v的矢量以及和數(shù)學模型中v的關系。同樣,函數(shù)h用來考慮參數(shù)的誤差值 的最大允許值。
在隨機模型中,設計變量的矢量u=[u1,…,un]T可以被看作U=[U1,…,Un]T的隨機矢量,也就是意味著響應變量的矢量v=[v1,…,vn]T也是一個隨機矢量V=[V1,V2,…,Vn]T
v=h(u) (29)
假設設計變量 U1,…,Un 從概率論的觀點以及正常的分類函數(shù)Uk~ (k=1,2,…,n)中獨立出來。主要參數(shù)和 (k=1,2,…,n)可以與如測量這類科學概念和公差聯(lián)系起來,比如=,。所以只要選擇合適的存在概率
, k=1,2,…,n (30)
式(30)就計算出結果。
隨機矢量 V 的概率分布函數(shù)被探求依賴隨機矢量 U 概率分布函數(shù)及它實際不可計算性。因此,隨意矢量 V 被描述借助于數(shù)學特性,而這個特性被確定是利用Taylor的有關點 u=[u1,…,un]T 的函數(shù)h逼近描述,或者借助被Oblak和Harl在論文提出的Monte Carlo 的方法。
3.1 數(shù)學模型
用來計算液壓頂升支架最優(yōu)化的容許誤差的數(shù)學模型將會以非線性問題的獨立的變量
w=[ ] (31)
和目標函數(shù)
(32)
的型式描述出來。
約束條件
(33)
,
(34)
在式(33)中,E是是坐標C點的x 值的最大允許偏差,其中
A={1,2,4} (35)
非線性工程問題的計算公差定義式如下:
(36)
它服從以下條件:
(37)
, (38)
(39)
4.有數(shù)字的實列
液壓頂升支架的工作阻力為1600kN。以及四連桿機構AEDB及FEDG 必須符合以下要求:
-它們必須確保鉸接點C 的橫向位移控制在最小的范圍內,
-它們必須提供充分的運動穩(wěn)定性
圖2中的液壓頂升支架的有關參數(shù)列在表1 中。
支撐四桿機構 FEDG 可以由矢量
(mm) (40)
來確定。
四連桿AEDB 可以通過下面矢量關系來確定。
(mm)
在方程(39)中,參數(shù)d是液壓頂升支架的移動步距,為925mm .四連桿AEDA的桿系的有關參數(shù)列于表2中。
表 1 液壓頂升支架的參數(shù) 表 2 四連桿AEDA的參數(shù)
4.1四連桿AEDA的優(yōu)化
四連桿的數(shù)學模型AEDA的相關數(shù)據(jù)在方程(22)-(28)中都有表述。(圖3)鉸接點C雙紐線的橫向最大偏距為65mm。那就是為什么式(26)為
(41)
桿AA與桿AE之間的角度范圍在76.8o和94.8o之間,將數(shù)…依次導入公式(41)中所得結果列于表3中。
這些點所對應的角…都在角度范圍[76.8o,94.8o]內而且它們每個角度之差為1o
設計變量的最小和最大范圍是
(mm) (42)
(mm) (43)
非線性設計問題以方程(22)與(28)的形式表述出來。這個問題通過
Kegl et al(1991)提出的基于近似值逼近的優(yōu)化方法來解決。通過用直接的區(qū)分方法來計算出設計派生數(shù)據(jù)。
設計變量的初始值為
(mm) (44)
優(yōu)化設計的參數(shù)經過25次反復計算后是
表3 絞結點C對應的x與y 的值
角度
x初值(mm)
y初值(mm)
x終值(mm)
y終值(mm)
76.8
66.78
1784.87
69.47
1787.50
77.8
65.91
1817.67
68.74
1820.40
78.8
64.95
1850.09
67.93
1852.92
79.8
63.92
1882.15
67.04
1885.07
80.8
62.84
1913.85
66.12
1916.87
81.8
61.75
1945.20
65.20
1948.32
82.8
60.67
1976.22
64.29
1979.44
83.8
59.65
2006.91
63.46
2010.43
84.8
58.72
2037.28
62.72
2040.70
85.8
57.92
2067.35
62.13
2070.87
86.8
57.30
2097.11
61.73
2100.74
87.8
56.91
2126.59
61.57
2130.32
88.8
56.81
2155.80
61.72
2159.63
89.8
57.06
2184.74
62.24
2188.67
90.8
57.73
2213.42
63.21
2217.46
91.8
58.91
2241.87
64.71
2246.01
92.8
60.71
2270.08
66.85
2274.33
93.8
63.21
2298.09
69.73
2302.44
94.8
66.56
2325.89
70.50
2330.36
(mm) (45)
在表3中C點x值與y 值分別對應開始設計變量和優(yōu)化設計變量。
圖 4 用圖表示了端點 C開始的雙紐線軌跡 L(虛線)和垂直的理想軌跡K(實線)。
圖4 絞結點C 的軌跡
4.2 四連桿機構AEDA的最優(yōu)誤差
在非線性問題(36)-(38),選擇的獨立變量的最小值和最大值為
(mm) (46)
(mm) (47)
獨立變量的初始值為
(mm) (48)
軌跡偏離選擇了兩種情況E=0.01和E=0.05。在第一種情況,設計變量的理想公差經過9次反復的計算,已初結果。第二種情況也在7次的反復計算后得到了理想值。這些結果列在表 4和表5 中。
圖 5和圖 6的標準偏差已經由Monte Carlo方法計算出來并表示在圖中(圖中雙點劃線示)同時比較泰勒近似法的曲線(實線)。
圖5 E=0.01時的標準誤差
圖6 E=0.05時的標準誤差
5.結論
通過選用系統(tǒng)的合適的數(shù)學模型以及采用數(shù)學函數(shù),讓液壓頂升支架的設計得到改良,而且產品的性能更加可靠。然而,由于理想誤差的結果的出現(xiàn),將有理由再考慮一個新的問題。這個問題在四連桿的問題上表現(xiàn)的尤為突出,因為一個公差變化稍微都能導致產品成本的升高。
17
SJ002-1
2013屆畢業(yè)設計(論文)任務書
二級學院: 班 級:
學 生: 學 號:
指導教師: 職 稱:
課題名稱
3t車用手動臥式千斤頂設計
課題類型
? 畢業(yè)設計 □ 畢業(yè)論文
課題內容及其目標(指標)要求
本課題要求設計的千斤頂為臥式液壓可移動式千斤頂,主要用于重量在3噸左右的轎車的抬升。本課題要求綜合應用機械設計和液壓理論知識完成3t車用手動臥式千斤頂設計,主要包括輪系部分、支架部分、搖臂部分和液壓組件四個部分,并利用三維工程軟件Pro/E實現(xiàn)零件造型和虛擬裝配,同時撰寫設計說明書。
課題具體工作內容包括:
1.課題調研,收集相關工程設計資料,擬訂總體設計方案,撰寫開題報告;
2.完成裝配總圖;
3.完成主要零件工程圖;
4.零部件Pro/E造型及裝配;
5.完成畢業(yè)設計說明書;
6.查閱翻譯課題相關英文資料,約15000英文字符。
設計指標如下:
1.頂起重量3噸;
2.最小頂起高度為126mm,最大頂起高度為503mm;
3.操作力為950N。額定內壓為89Mpa,負荷為3175/7000 Kg/LB,油壓揚程為140mm;
4.要求整機重量較輕。
進程安排
1.準備工作(熟悉課題、調查研究、收集資料等)及撰寫開題報告:2周;
2.確定整體設計方案:2周;
3.方案細化、繪制工程圖及設計計算:6周;
4.三維建模及裝配:2周;
5.審核、修改課題相關資料及圖紙,整理編寫畢業(yè)設計說明書并審核:3周;
6.答辯準備及答辯:1周。
指導教師:
年 月 日
系 主 任:
年 月 日
開題報告
題目名稱
液壓千斤頂設計
學生姓名
一、 選題的目的和意義:
隨著我國汽車工業(yè)的快速發(fā)展,汽車隨車千斤頂?shù)囊笠苍絹碓礁?同時隨著市場競爭的加劇,用戶要求的不斷變化,將迫使千斤頂?shù)脑O計質量要不斷提高,以適應用戶的需求。用戶喜歡的、市場需要的千斤頂將不僅要求重量輕,攜帶方便,外形美觀,使用可靠,還會對千斤頂?shù)倪M一步自動化,甚至智能化都有所要求。如何充分利用經濟、情報、技術、生產等各類原理知識,使千斤頂?shù)脑O計工作真正優(yōu)化?如何在設計過程中充分發(fā)揮設計人員的創(chuàng)造性勞動和集體智慧,提高產品的使用價值及企業(yè)、社會的經濟效益? 如何在知識經濟的時代充分利用各種有利因素,對資源進行有效整合等等都將是我們面臨著又必須解決的重要的問題。千斤頂與我們的生活密切相關,在建筑、鐵路、汽車維修等部門均得到廣泛的應用,因此千斤頂技術的發(fā)展將直接或間接影響到這些部門的正常運轉和工作。
本次對液壓千斤頂進行設計可以了解液壓千斤頂?shù)脑硪约皯谩Mㄟ^查閱大量文獻,和對千斤頂各部件進行設計、繪制不但熟悉了千斤頂內液壓傳動原理還使得我對一些繪圖軟件的操作更加熟練。同時也在以前書本學習的基礎上對液壓傳動加深了理解。
二、國內外研究狀況
千斤頂起源于20世紀初的英、美、德等國家,在逐步發(fā)展中工藝逐漸成熟。因其具有抗腐蝕、耐高溫、強度高、表面精美、百分之百可回收等無與倫比的良好性能,被廣泛應用于建筑、交通、能源、石化、環(huán)保、城市景觀、醫(yī)療、餐飲等各個領域,并且逐漸被人們所接受,也越來越多地走進尋常百姓的日常生活。
早在20 世紀40 年代,臥式千斤頂就已經開始在國外的汽車維修部門中使用,但由于當時在設計和使用上的原因,其尺寸較大,承載量較低。后來隨著社會需求量的增大以及千斤頂本身技術發(fā)展,在90 年代初國外絕大部分用戶已以臥式千斤頂替代了立式千斤頂,90年代后期研制出了充氣千斤頂和便攜式液壓千斤頂?shù)刃滦颓Ы镯斦埂?
而我國的千斤頂產業(yè)發(fā)展進步較晚,建國以來到改革開放前,我國千斤頂?shù)男枨笾饕且怨I(yè)和國防尖端使用為主。由于歷史的原因,直到1979 年才接觸到類似于國外臥式千斤頂。但是上世紀九十年代后,我國千斤頂產業(yè)進入快速發(fā)展期,千斤頂需求的增速遠高于全球水平我國的工程千斤頂產業(yè)得到快速持續(xù)發(fā)展,成為全球千斤頂生產增長最快和千斤頂消耗量最大的國家之一。同時九十年代后期起,我國太鋼、寶鋼以及寶新、張浦等國有和合資企業(yè)通過引進和技術改造,先后建成了一系列千斤頂生產線,千斤頂工藝技術裝備達到國際先進水平,千斤頂生產初具規(guī)模。與國外的差距在不斷縮小。經過幾十年的發(fā)展,我國的千斤頂就外觀美麗,使用方便,承載力大,壽命長等方面,都超過了國外的同類產品, 并且迅速打入歐美市場。
現(xiàn)在,由于自動化技術的迅速發(fā)展和用戶需求觀念的變化,促使了千斤頂向著智能化、短小化時尚化、輕薄化、人性化發(fā)展。
2010年,是千斤頂行業(yè)發(fā)展的新起點,預計行業(yè)未來呈現(xiàn)出新的發(fā)展態(tài)勢。首先是結構調整將有重大突破。當前我國千斤頂行業(yè)存在一系列深層次的結構性矛盾,包括總體產能過剩,低水平產能比重過大;企業(yè)規(guī)模小而且分散,產業(yè)集中度低;生產力布局不合理現(xiàn)象依然存在;企業(yè)節(jié)能減排的任務重;科技創(chuàng)新能力不強;資源控制力不強,保障體系建設滯后等。這些深層次的結構性矛盾,決定了2010年千斤頂行業(yè)必須下大力量,突出抓好結構調整,實現(xiàn)產業(yè)升級,認真解決影響千斤頂行業(yè)發(fā)展的重大問題。第二,行業(yè)內要大力推動共性技術研究開發(fā),掌握核心技術、關鍵技術的自主知識產權。當前,千斤頂行業(yè)共性技術的科研經費投入不足,研究開發(fā)力量薄弱。2010年,各企業(yè)應加大在我國重點培育自主知識產權的技術裝備研發(fā)力量??梢杂杏媱潯⒂胁襟E地加強國家重點實驗室、國家工程技術研究中心、行業(yè)科研院所等共性技術研究開發(fā)平臺的建設,重點支持原創(chuàng)性技術、共性技術及戰(zhàn)略性關鍵技術的研究開發(fā),并培養(yǎng)一支既精通基礎技術又熟悉行業(yè)技術的高科技人才隊伍,努力掌握核心技術、關鍵技術和重要產品的自主知識產權。第三,進入加快發(fā)展制造服務業(yè)階段。當前,千斤頂行業(yè)存在一些不利于產業(yè)發(fā)展的缺陷,如缺少高端技術,企業(yè)規(guī)模偏小等。面臨這些問題和激烈的市場競爭,千斤頂企業(yè)極需提高自身的核心競爭力,轉變增長方式。在制造過程中重視服務,從市場調研、售后,直到產品報廢回收,努力為客戶提供以知識密集、附加值高為特征的服務項目,則是千斤頂企業(yè)實現(xiàn)可持續(xù)發(fā)展的一個關鍵內容?,F(xiàn)代服務業(yè)大部分是以人力資本和知識資本作為其主要投入,這對千斤頂企業(yè)在解決發(fā)展、升級問題的同時,提升競爭力也具有重要支撐作用。
與國外千斤頂技術水平相比,我國的主要差距為基礎理論研究差,產品技術開發(fā)能力低,工藝裝備和實驗手段后,產品技術起點低,規(guī)格品種、效率、制造質量可靠性差。另外,技術含量高和特殊要求的產品還滿足不了國內需求。
三、 畢業(yè)設計(論文)所采用的研究方法和手段:
本設計主要研究的是PRO/E 液壓千斤頂三維模型設計。
查閱圖書館資料、互聯(lián)網(wǎng)資料和現(xiàn)有相關資料,參觀考察實際工程,通過分析、計算、測試完成設計任務。
四、 主要參考文獻與資料獲得情況:
[1]胡世超.《液壓與氣動技術》,鄭州:鄭州大學出版社 ,2008.5.
[2]周亞,程友斌等.《機械設計基礎》,上海:化學工業(yè)出版社,2008.6.
[3]魏增菊,李莉等.《機械制圖》,北京:科學出版社,2007.
[4]劉建華,杜鑫等.《機械設計課程設計指導》,上海:化學工業(yè)出版社,2008.8.
[5]肖瓏.《液壓與氣壓傳動技術》,西安:西安電子科技大學出版社,2007.
[6]丁樹模,丁問司等.《液壓傳動》,北京:機械工業(yè)出版社,2009.6(2011.1重?。?
[7]李洪人.《液壓控制系統(tǒng)》,北京:國防工業(yè)出版社,1990.
[8]鄒建華,吳定智,許曉明等.《液壓與氣動技術基礎》,武漢:華中科技大學出版社,2006.
[9]張群生.《液壓與氣壓傳動》,北京:機械工業(yè)出版社,2008.
[10]張利平.《液壓與氣動技術實用問答》,上海:化學工業(yè)出版社,2007.
[11]周士昌.《液壓系統(tǒng)設計圖集》,北京:機械工業(yè)出版設,2005.
[12]雷天覺.《液壓工程手冊》[M],北京.機械工業(yè)出版社,1990.
五、畢業(yè)設計(論文)進度安排(按周說明):
第四、五周:查閱相關資料,通過學習準備相關知識;
第六、七周:做開題報告;
第八、九周:做出各部分的初步的設計;
第十、十一周:確定各部件規(guī)格、尺寸。設計好整個裝置。
第十二、十三周:完成設備生產制造、調試并檢驗其性能。
六、指導教師審批意見(對選題的可行性、研究方法、進度安排作出評價,對是否開題作出決定):
指導教師: (簽名)
年 月 日
指標(目標)要求:
1、頂起重量3噸;
2、最小頂起高度為126mm,最大頂起高度為503mm
3、操作力為950N。額定內壓為89Mpa,負荷為3175/7000 Kg/LB,油壓揚程為140mm。
完成千斤頂?shù)耐暾O計圖紙并實現(xiàn)主要零件三維建模及裝配,另外要求撰寫40頁左右的畢業(yè)設計說明書
常州工學院機電工程學院畢業(yè)設計說明書
摘 要
本課題所要設計的對象是可移式臥式液壓千斤頂,設計大體可以分為四個部分:輪系部分、支架部分、搖臂部分和液壓組件,其中后兩部分的設計是重點和難點。設計時首先考慮的是液壓組件(液壓系統(tǒng))的設計。液壓系統(tǒng)由四大部分組成:動力部分,控制部分,執(zhí)行部分和輔助裝置。液壓系統(tǒng)的形式有開式液壓系統(tǒng)和閉式液壓系統(tǒng)之分,考慮到四輪臥式千斤頂?shù)捏w積要盡可能的小,所以液壓系統(tǒng)也不能過大,確定采用閉式液壓系統(tǒng)。設計輪系部分時要對大輪軸的強度進行計算。支架部分和搖臂部分是起支撐重物作用的,所以在設計時應改充分考慮到支架和搖臂的強度要滿足千斤頂?shù)墓ぷ饕?,必須對支架部分和搖臂部分進行具體的強度計算,確保設計的可行性。對于機械設計部分,我們參照樣機進行設計,經過核算各部分的強度,剛度以及穩(wěn)定性,得出最終尺寸,并利用AUTOCAD繪制整機的裝配圖。
關鍵詞:液壓 千斤頂 輪系 支架 剛度
Abstract: This subject is designed to be removable horizontal hydraulic jack, the design can be roughly divided into four parts: part of gear, frame parts, arm parts and hydraulic components, after which the two parts of this design is the focus of and difficult. First of all, consider the design of the hydraulic components (hydraulic system) design. Hydraulic system consists of four major components: power of control of the operative and auxiliary devices. The form of the hydraulic system of open and closed hydraulic system, hydraulic system of points, taking into account the size of four-wheel-horizontal jack small as possible, so the hydraulic system can not be too large, determine the use of closed-hydraulic system. Part of the design of gear to the big wheel to calculate the intensity. Rocker support section and part of the role of supporting heavy loads, so the design should be changed to take full account of the strength of brackets and rocker Jack to meet the work requirements must be part of the bracket and arm strength of some specific terms, to ensure the feasibility of the design. Design some to machinery , we designed according to the prototype of a machine, through checking and calculating the intensity of every part, rigidity and stability, draw the final size, utilize AUTOCAD to draw the installation diagram of the complete machine.
Key words: hydraulic jacks gear legs intensity
目 錄
第一章 緒論 5
1.1液壓傳動的應用和發(fā)展 6
1.2液壓系統(tǒng)的設計概論 6
1.2.1 液壓系統(tǒng)的組成 6
1.2.2 液壓系統(tǒng)的優(yōu)缺點 7
1.3目前的研究方法 7
1.4液壓系統(tǒng)的可靠性設計 7
1.5支架部分和搖臂部分的設計概論 8
第二章 液壓部分設計說明 9
2.1明確設計要求 9
2.1.1 總體規(guī)劃、確定液壓執(zhí)行元件 9
2.1.2 明確液壓執(zhí)行元件的載荷 10
2.1.3 確定系統(tǒng)的工作壓力 10
2.1.4 確定執(zhí)行元件的控制和調速方案 10
2.1.5草擬液壓系統(tǒng)原理圖 11
2.2 計算執(zhí)行元件的主要參數(shù) 12
2.3選擇液壓控制元件 12
2.4 繪制千斤頂?shù)难b配圖、液壓組圖 12
第三章.支架搖臂部分計算 13
3.1空載下托盤極限位置的計算 13
3.1.2 千斤頂最大高度的計算 13
3.1.3 千斤頂最小高度的計算 14
3.2工作活塞桿的計算 15
3.2.1 工作活塞桿的最大推力計算 15
3.2.1工作活塞桿的強度核算 17
3.3油缸的強度計算 18
3.3.1 油缸臂厚的計算 18
3.3.2 油缸的變形計算 18
3.4方鐵的強度計算 18
3.4.1中性軸的計算 19
3.5連桿的強度計算 20
3.5.1受拉時 21
3.5.2受擠時 21
3.5.3受剪時 21
3.6大輪軸的強度計算 21
3.6.1每只大輪受力 21
3.6.2大輪軸的強度計算 22
3.7頂臂軸的強度計算 22
3.7.1托盤的受力分析 22
3.7.2頂臂軸的受力分析 23
3.7.3頂臂軸的強度計算 24
3.7.4頂臂軸受剪切時的計算 25
3.7.5頂臂的強度計算 25
3.7.6求分力 25
3.8小輪支架的強度計算 26
3.8.1小輪最大的受力情況 26
3.8.2小輪支架的抗剪計算 27
3.8.3焊縫的抗彎計算 27
3.9撐桿的強度計算 28
4.0托盤架的強度計算 29
第四章 其它部分設計 30
4.1調壓彈簧的計算 30
4.1.2彈簧指數(shù) 30
4.1.3曲度系數(shù) 30
4.1.4允許的極限負荷 30
4.1.5最大工作負荷為: 30
4.1.6彈簧總剛度位: 30
4.1.7極限負荷下變形 30
4.1.8最大工作負荷的變形 30
4.1.9調壓彈簧的臨界力 30
4.2拉簧計算 31
4.2.1彈簧指數(shù) 31
4.2.2曲度系數(shù) 31
4.2.3極限載荷 31
4.2.4最大工作載荷 31
4.2.5彈簧的總剛度 31
4.2.6應力計算 31
4.2.7極限載荷下的變形 31
4.2.8彈簧極限載荷下的伸長量 32
4.3扭簧的計算 32
4.3.1彈簧指數(shù) 32
4.3.2曲度系數(shù) 32
4.3.3最大工作扭矩 32
4.3.4極限扭矩 32
4.3.5扭簧剛度 33
4.3.6最大工作扭轉角 33
4.3.7極限扭轉角 33
4.3.8扭轉角和扭矩的計算 33
總 結 34
致 謝 35
參考文獻 36
第一章 緒論
機電一體化又稱機械電子學,英語稱為Mechatronics,它是由英文機械學Mechanics的前半部分與電子學Electronics的后半部分組合而成。機電一體化最早出現(xiàn)在1971年日本雜志《機械設計》的副刊上,隨著機電一體化技術的快速發(fā)展,機電一體化的概念被我們廣泛接受和普遍應用。隨著計算機技術的迅猛發(fā)展和廣泛應用,機電一體化技術獲得前所未有的發(fā)展?,F(xiàn)在的機電一體化技術,是機械和微電子技術緊密集合的一門技術,他的發(fā)展使冷冰冰的機器有了人性化,智能化。
機電一體化技術是將機械技術、電工電子技術、微電子技術、信息技術、傳感器技術、接口技術、信號變換技術等多種技術進行有機地結合,并綜合應用到實際中去的綜合技術。是現(xiàn)代化的自動生產設備幾乎可以說都是機電一體化的設備。
液壓技術發(fā)展趨勢液壓技術是實現(xiàn)現(xiàn)代化傳動與控制的關鍵技術之一,世界各國對液壓工業(yè)的發(fā)展都給予很大重視。
液壓傳動是以液體作為工作介質,利用液體的壓力能進行能量的傳遞和控制的一門技術。液壓傳動具有許多優(yōu)點,被廣泛應用于機械、建筑、冶金、化工以及航空航天等領域。如今,隨著微電子和計算機技術的發(fā)展,機、電、液技術的緊密結合,使液壓技術的發(fā)展和應用又進入了一個嶄新的階段。
隨著我國經濟的高速增長,人民生活水平的提高,擁有私家轎車的家庭是越來越多了,整個國家的汽車使用量也與日俱增。由于汽車質量良莠不齊,再加上各地的路況千差萬別,汽車很可能會突然拋錨,這對于一個司機來說是一個令人頭疼的問題,更為不幸時汽車會突然在公路中間拋錨,這時事情就變得危險得多,首當其沖的問題是如何將車移到一個安全的地方。
面對這樣的問題,人們想過無數(shù)的辦法。千斤頂?shù)膯柺澜鉀Q了不少司機的燃眉之急。然而,傳統(tǒng)的千斤頂都是立式的,而且它不能夠移動,這樣的千斤頂在使用時有兩方面的缺陷。首先,它不能移動,如果汽車在高速公路中央拋錨,立式千斤頂是起不到任何作用的,這是一件相當危險的事情;其次,立式千斤頂由于有一定的自身高度,對于汽車而言,有時千斤頂?shù)淖陨砀叨扰c汽車需要被頂起處的高度不一致,這樣一來,立式千斤頂使用起來又會變得非常的麻煩。但是如果司機們擁有了即將要介紹的四輪臥式千斤頂之后,這些問題便迎刃而解了。
本次對液壓千斤頂進行設計可以了解液壓千斤頂?shù)脑硪约皯?。通過查閱大量文獻,和對千斤頂各部件進行設計、繪制不但熟悉了千斤頂內液壓傳動原理還使得我對一些繪圖軟件的操作更加熟練。同時也在以前書本學習的基礎上對液壓傳動加深了理解。
四輪液壓臥式千斤頂又稱液壓臥式可移動式千斤頂。該千斤頂一改傳統(tǒng)(立式)千斤頂?shù)氖褂萌毕荩蟠蠓奖懔藦V大的司機朋友。首先,該千斤頂是可以移動的,用戶只需將千斤頂推到需要頂起的地方,然后,上下扳動手柄,汽車就可以被抬起。抬起之后,推動千斤頂?shù)桨踩牡胤竭M行修理。這一系列的動作并不需要花很大的力氣,我想一名女士都可以輕而易舉的;其次,臥式千斤頂?shù)淖陨砀叨群苄。谑褂脮r一般不會受到自身高度的影響,而且它的支架頂起的高度可以達到503mm,這樣一來,高度問題便不存在了。更為方便的是,這種千斤頂具有體積小、重量輕、容易操作等優(yōu)點。該系列的千斤頂?shù)捏w積與被頂起物的重量成正比,如果為一輛重3噸的轎車設計,那么千斤頂?shù)耐庑纬叽鐬椋?795×378×132立方毫米,重量大概為47Kg。但是,在使用是我們必須注意以下幾點:第一,重物必須正確落在千斤頂?shù)闹行奈恢茫坏诙?,只能在硬質、平坦的地面上使用,當千斤頂頂著重物時,決不要旋轉手柄;第三,為了安全起見,千斤頂嚴禁超載。
1.1液壓傳動的應用和發(fā)展
臥式液壓千斤頂采用液壓傳動作為整機的動力系統(tǒng),下面介紹一下液壓傳動的應用和發(fā)展。
液壓傳動相對于機械傳動來說,是一門新的技術。如果從1795年世界上第一臺水壓機誕生算起,液壓傳動已有200年的歷史。然而,液壓傳動的真正推廣使用卻是近50多年的事。特別是本世紀60年代以后,隨著原子能科學、空間技術、計算機技術的發(fā)展,液壓技術也得到了很大發(fā)展,滲透到國民經濟的各個領域之中,在工程機械、冶金、軍工、農機、汽車、輕紡、船舶、石油、航空和機床工業(yè)中,液壓技術得到了普遍的應用。當前,液壓技術正向高壓、高速、大功率、低噪聲、低能耗、經久耐用、高度集成化等方向發(fā)展;同時,新型液壓元件的應用,液壓系統(tǒng)的計算機輔助設計、計算機仿真和優(yōu)化、微機控制等工作,也日益取得顯著的成果。
1.2液壓系統(tǒng)的設計概論
1.2.1 液壓系統(tǒng)的組成
液壓系統(tǒng)主要由:動力元件(油泵)、執(zhí)行元件(油缸或液壓馬達)、控制元件(各種閥)、輔助元件和工作介質等五部分組成。
動力元件(油泵) 它的作用是把液體利用原動機的機械能轉換成液壓力能,是液壓傳動中的動力部分。
執(zhí)行元件(油缸、液壓馬達) 它是將液體的液壓能轉換成機械能。其中,油缸做直線運動,馬達做旋轉運動。
控制元件 包括壓力閥、流量閥和方向閥等,它們的作用是根據(jù)需要無級調節(jié)液壓動機的速度,并對液壓系統(tǒng)中工作液體的壓力、流量和流向進行調節(jié)控制。
輔助元件 除上述三部分以外的其它元件,包括壓力表、濾油器、蓄能裝置、冷卻器、管件及郵箱等,它們同樣十分重要。
工作介質 工作介質是指各類液壓傳動中的液壓油或乳化液,它經過油泵和液動機實現(xiàn)能量轉換。
液壓系統(tǒng)的形式有開式液壓系統(tǒng)和閉式液壓系統(tǒng)之分,考慮到四輪臥式千斤頂?shù)捏w積要盡可能的小,所以液壓系統(tǒng)也不能過大(當然是在滿足千斤頂?shù)男阅芤蟮那闆r之下),初步確定采用閉式液壓系統(tǒng)。
1.2.2 液壓系統(tǒng)的優(yōu)缺點
1、液壓傳動的優(yōu)點
(1) 體積小、重量輕,例如同等功率液壓馬達的重量只有電動機的10%~20%,因此慣性力較小。
(2) 能在給定范圍內平穩(wěn)的自動調節(jié)牽引速度,并可實現(xiàn)無級調速,且速度范圍最大可達1:2000(一般為1:100).
(3) 轉向容易,在不改變電機旋轉方向的情況下,可以較方便地實現(xiàn)工作機構旋轉和直線往復運動的轉換。
(4) 液壓泵和液壓馬達之間用油管連接,在空間布置上彼此不受嚴格限制。
(5) 由于采用油液為工作介質,元件相對運動表面間能自行潤滑,磨損小,使用壽命長。
(6) 操縱控制簡便,自動化程度高。
(7) 容易實現(xiàn)過載保護。
(8) 液壓元件實現(xiàn)了標準化、系列化、通用化,便于設計、制造和使用。
2、液壓傳動的缺點
(1) 使用液壓傳動對維護的要求高,工作油要始終保持清潔。
(2) 對液壓元件制造精度要求高,工藝復雜,成本較高。
(3) 液壓元件維修較復雜,且需有較高的技術水平。
(4) 液壓傳動對油溫變化較敏感,這會影響它的工作穩(wěn)定性,因此液壓傳動不宜在很高或很低的溫度下工作,一般工作溫度在-15℃~60℃范圍內較合適。
(5) 液壓傳動在能量轉化的過程中,特別是在節(jié)流調速系統(tǒng)中,其壓力大,流量損失大,因此系統(tǒng)效率較低。
1.3目前的研究方法
計算機輔助設計(CAD)今年發(fā)展迅速,使用廣泛。CAD是指利用計算機系統(tǒng)進行工程或者產品設計的全過程,其中包括資料檢索、市場分析、方案構思、計算分析、工程制圖、檢驗測試和編輯文件等設計環(huán)節(jié)。以上所講的液壓系統(tǒng)在設計時我也使用到了CAD,應用最多的我們稱之為液壓CAD。
沿用至今的經驗設計發(fā),主要是憑借局部經驗、零星資料,靠手工進行粗略的計算和繪圖。設計出產品往往需要經過大量的樣機試驗和反復修改才能滿足性能要求,費時、費力、費資源。應用CAD能大大提高設計的質量和速度,并使設計師擺脫單調乏味的計算、繪圖,以便從事更高的有創(chuàng)造性的工作。
1.4液壓系統(tǒng)的可靠性設計
可靠性是指:產品、系統(tǒng)在規(guī)定條件下和規(guī)定的時間內完成規(guī)定功能的能力。液壓系統(tǒng)可靠性預測的步驟和方法如下:
1. 根據(jù)設計方案所確定的元件類型,匯集元件失效率。
2. 根據(jù)設計方案和產品的使用環(huán)境條件,乘以降額因子,環(huán)境因子及任務時間,得到元件應用失效率。
3. 根據(jù)部件可靠性結構模型,求出部件失效率。
4. 根據(jù)回路和系統(tǒng)的可靠性結構模型求出系統(tǒng)的失效率。
5. 將預測的系統(tǒng)失效率與設計方案所要求的失效率進行比較,如果滿足要求且經費可行,則預測可以結束,否則應進行以下的工作。
6. 提出改變設計方案建議。如通過元件應用分析,改變采用元件類型,改變降因子或者改變可靠性結構模型等。其中,可以改變某一項,也可同時改變多項,視情況而定。
7. 改變后再重復上述步驟,直到滿足要求為止。
1.5支架部分和搖臂部分的設計概論
四輪臥式液壓千斤頂支架部分和搖臂部分的是起支撐重物的作用。設計要求指出千斤頂主要是用來支撐3噸左右的轎車,所以在設計時應改充分考慮到支架和搖臂的強度要滿足千斤頂?shù)墓ぷ饕?。此外,這兩部分的尺寸大小要與已經設計好的液壓系統(tǒng)的尺寸匹配,而且要做到在滿足工作要求的情況下使得整體設計成本最小化。
具體而言,整個支撐部分就相當于一個四桿機構,其中搖臂部分起最主要的支撐作用,托盤就固定在搖臂上;支架部分起輔助支撐作用,用螺栓和搖臂連接在一起。支撐部分和搖臂部分構成一個三角支架,穩(wěn)定性大大提高。為了確保整個支撐部分的強度要求,在材料方面,選擇厚度為5mm的槽鋼。為了減小槽鋼直角部分的應力,加工時在棱邊上倒角,在拐角處采用圓角過渡。
在設計論文中,我們將對支架部分和搖臂部分進行具體的強度計算,確保設計的可行性。
第二章 液壓部分設計說明
此液壓臥式可移動式千斤頂,系根據(jù)美商UPNEUMAT公司的圖紙和MASADA樣機,為美商Mentaford公司設計制造的產品。
此產品回來時并未附帶計算書,試驗技術條件等資料。對來圖我們首先將其錯誤改正過來,然后結合我國的國情,使來圖的表達全部符合我國的國家標準,因為我國的國家標準與美國的國家標準不一樣。以樣機性能試驗的情況來看,其性能可以滿足工作要求,但是試驗只能證明少數(shù)幾次使用后,樣機沒有出現(xiàn)問題,但是我們無法證明這樣的產品經過長期使用之后其性能會怎么變化,因此,我們要對樣機各構件的強度作計算和分析,做到心中有數(shù)。同時,在分析來圖時,我們發(fā)現(xiàn),來圖并不是正式的生產圖紙,故尚須作進一步的分析和研究,把生產圖紙畫出來。為了進一步了解、熟悉和掌握產品的性能,吃透圖紙,確保產品質量,我在分析和計算時特對此產品的主要零、組件進行了一些核算。為簡化計算程序,在計算時我參考了一個機部起重運輸機械研究所QY1.5-100噸,手動立式油壓千斤頂所采用的若干設計,以及生產實踐的經驗數(shù)據(jù)。為避免復雜的演算,對于例如變截面梁等,則采用取幾個有代表性的、主要的截面來比較分析,最終確定有一個基本定量的截面就可以了。
由于有關臥式千斤頂?shù)脑O計計算參考資料很有限,再加上缺乏設計經驗,在整個設計中錯誤在所難免,懇請老師給予指正。
2.1明確設計要求
液壓系統(tǒng)是液壓設備的一個組成部分,它與主機的關系密切,兩者的設計通常需要同時進行。其設計要求,一般是必須從實際出發(fā),重視調查研究,注意吸取國內外先進技術,力求做到設計出的系統(tǒng)重量輕、體積小、效率高、工作可靠、結構簡單、操作和維護保養(yǎng)方便、經濟性好。設計步驟大致如下。
要求本液壓臥式可移動式千斤頂能將3噸左右的轎車頂起,最小頂起高度為126mm,最大頂起高度為503mm,頂起后推動千斤頂能將轎車移動到所需要的位置。操作力為950N。額定內壓為89Mpa,負荷為3175/7000 Kg/LB,油壓揚程為140mm,油量為300ml。整機外形尺寸為1795×378×132。整機凈重為47Kg。
2.1.1 總體規(guī)劃、確定液壓執(zhí)行元件
表2.1:液壓缸的選擇
機構名稱
常用方案
優(yōu) 點
缺 點
采用方案
搖臂機構
復合增速缸
1.整機結構緊湊,構件少。
2.無需動梁閉合量調節(jié)機構。
1.復合缸結構復雜,加工制造難度大。
2.要設計充液閥;泵流
量大,液壓系統(tǒng)復雜行程速度低,生產效率低。
不采用
單行程液壓缸
1.1.在行程的近末端將液壓缸的出力放大,液壓缸的缸徑可以很小小。
2.空行程速度高,生產效率高。
3.泵的流量小,液壓系統(tǒng)簡單。
1. 連桿機構多,尺寸鏈多。
2.需要動梁合閉量調節(jié)
機構,結構復雜。
采用
2.1.2 明確液壓執(zhí)行元件的載荷
在設計技術任務書闡明的主機規(guī)格中,通常能夠直接知道作用于液壓執(zhí)行元件的載荷。但若主機的載荷是經過機械傳動關系作用到液壓執(zhí)行元件上時,則需要經過計算才能明確。有時,例如進行新機型液壓系統(tǒng)設計,其載荷往往需要由樣機實測、同類設備參數(shù)類比或者通過理論分析得出。當用理論分析確定液壓執(zhí)行元件的載荷時,必須仔細考慮其所有可能組成項目,如工作載荷、慣性載荷、彈性載荷、摩擦載荷、重力載荷和背壓載荷等。
基于上述設計理論,考慮到液壓臥式可移動式千斤頂在國內屬于新機型液壓系統(tǒng),載荷是通過理論計算和參考液壓立式千斤頂相關的設計參數(shù),最終得出執(zhí)行元件即液壓缸的操作力為950N。我們將在計算部分作詳細的說明。
2.1.3 確定系統(tǒng)的工作壓力
系統(tǒng)工作壓力由設備類型、載荷大小、結構要求和技術水平而定。系統(tǒng)工作壓力高,省材料,結構緊湊,重量輕,是液壓系統(tǒng)設計的發(fā)展方向,但要注意防止泄漏,控制噪聲和可靠性問題的妥善處理。經過樣機試驗,性能測試,理論計算,我們得出千斤頂?shù)囊簤航M的額定壓力為89Mpa,油壓揚程為140mm,油量為300ml。這樣的系統(tǒng)參數(shù),使得液壓組的機構比較緊湊,做到了體積小、重量輕、用材料比較節(jié)省。
2.1.4 確定執(zhí)行元件的控制和調速方案
根據(jù)已定的液壓執(zhí)行元件,參考相關的液壓基本液壓回路,以實現(xiàn)對執(zhí)行元件的控制。千斤頂液壓系統(tǒng)的執(zhí)行元件是液壓缸。千斤頂工作時,通過上下扳動手柄,手柄連接在手動泵上,手柄動作后使得手動泵工作,泵開啟后,液壓油經過管路流向順序閥,當壓力達到液壓閥的設計壓力時,液壓缸開始工作,進而將搖臂和支架頂起,實現(xiàn)對轎車的舉升。液壓缸的速度控制采用無級調速。在空載時,其運動速度較快,在舉升階段速度較慢。
2.1.5草擬液壓系統(tǒng)原理圖
液壓系統(tǒng)原理圖由液壓系統(tǒng)圖、工藝循環(huán)順序動作圖表和元件明細表三部分組成。擬定液壓系統(tǒng)圖注意事項:(1)不許有多余元件;使用的元件和電磁鐵數(shù)越少越好。(2)注意元件間的連鎖關系,防止相互影響產生誤動作。(3)系統(tǒng)各主要部件的壓力能夠隨時檢測;壓力表數(shù)目要少。(4)按國家標準規(guī)定,元件符號按常態(tài)工況繪出,非標準元件用簡練的結構示意圖表達。
液壓臥式可移動式千斤頂?shù)墓ぷ髟砗土⑹角Ы镯數(shù)墓ぷ髟砘旧舷嗤?,下面用立式千斤頂?shù)墓ぷ髟韴D來說明臥式千斤頂?shù)墓ぷ髟?。千斤頂?shù)墓ぷ髟韴D如下:
圖2.1:千斤頂?shù)墓ぷ髟韴D
立式液壓千斤頂?shù)慕Y構中有兩只油缸,小油缸完成吸油、壓油動作,大油缸則在油液壓力的作用下,將重物頂起。其動作過程是:用手向上扳動手柄,小活塞隨之向上移動,產生吸油作用。油液就從油箱經管道、左邊單向閥進入小油缸下腔。當向下扳動手柄,小活塞下移時,系統(tǒng)就將吸入小油缸下腔的油經管道、右邊單向閥壓入大油缸下腔。此時左邊單向閥不通,就迫使大活塞上移,頂起重物。這樣不斷地上下扳動手柄,就能將油間歇地壓入大油缸下腔,使重物緩慢上升。
臥式千斤頂?shù)墓ぷ髟砗土⑹角Ы镯旑愃啤K彩峭ㄟ^上下扳動手柄,使得液壓缸的容積反復變化,從而使得液壓缸的活塞作往復運動。進而將重物頂起。
液壓千斤頂是一種將密封在油缸中的液體作為介質,把液壓能轉換為機械能從而將重物向上頂起的千斤頂。它結構簡單、體積小、重量輕、舉升力大,易于維修,但同時制造精度要求較高,若出現(xiàn)泄漏現(xiàn)象將引起舉升汽車的下降,保險系數(shù)降低,使用其舉升時易受部位和地方的限制.傳統(tǒng)液壓千斤頂由于手柄、活塞、油缸、密封圈、調節(jié)螺桿、底座和液壓油組成。它利用了密閉容器中靜止液體的壓力以同樣大小各個方向傳遞的特性。優(yōu)點:輸出推力大。缺點:效率低。
2.2 計算執(zhí)行元件的主要參數(shù)
根據(jù)液壓系統(tǒng)和已經確定系統(tǒng)的工作壓力,計算:液壓缸的內徑、活塞桿的直徑;柱塞缸的柱塞、柱塞桿的直徑。這在下一章的計算部分中將作詳細說明。
2.3選擇液壓控制元件
根據(jù)液壓系統(tǒng)原理圖提供的情況,審查圖上各閥在各種工況下達到的最高工作壓力和最大流量,以此選擇閥的額定壓力和額定流量。一般情況下,閥的實際壓力和流量應與額定值相接近,但必要時允許實際流量超過額定流量20%。有的電液換向閥有時會出現(xiàn)高壓下?lián)Q向停留時間稍長不能復位的現(xiàn)象,因此,用于有可靠性要求的系統(tǒng)時,其壓力以降額(由32Mpa降至20-25Mpa)使用為宜,或者選用液壓強制對中的電液換向閥。
單出桿活塞缸的兩個腔有效作用面積不相等,當泵供油使活塞內縮時,活塞桿的排油流量閉泵的供油流量大得多,通過閥的最大流量往往是在這種情況下出現(xiàn),復合增速缸和其他等效組合方案也有相同情況,所以在檢查各閥的最大通過流量時,這一點要特別注意。
2.4 繪制千斤頂?shù)难b配圖、液壓組圖
為了把千斤頂?shù)恼w機構,內部結構表達清楚,在畫圖時需要進行局部剖視,而且,根據(jù)千斤頂?shù)脑O計尺寸,畫A0圖紙比較適合,因此,整個圖紙看起來會比較復雜,線比較多而且亂。詳細的圖參見千斤頂?shù)难b配圖紙。
第三章.支架搖臂部分計算
3.1空載下托盤極限位置的計算
3.1.2 千斤頂最大高度的計算
已知:H=132.25mm OO=69.65mm MO=184.65mm OB=350mm
OA=79.38mm MA=133mm =109.12
h=66-34.5+36=67.5mm b=59.75-29=30.75m
求: H
圖3.1:千斤頂?shù)淖畲蟾叨?
解: MO===197.35mm
tg=tg=69.33
又因:AM=MO+OA-2MO*OA*cos
則:cos=(MO+OA-AM)/2MO*OA
=
cos=0.87960663
OOmm
BOmm
=132.25+303.23+67.5
=502.98mm
另外 Lmm
3.1.3 千斤頂最小高度的計算
圖3.2:千斤頂?shù)淖钚「叨?
已知:H=132.25mm OO=69.65mm MO=91.75mm OB=350mm
OA=79.38mm MA=133mm =109.12 h=67.5mm b=30.75mm
求:H
解:MO===115.19mm
又:
AM
則:cos
=
=0.102852433
OO=OB*sin()=350*sin77.82=342.12mm
BO=OB*cos()=350*cos77.82=73.84mm
=132.25-73.84+67.5
=125.91mm
而當OB水平時,L=350+30.75=380.75mm
3.2工作活塞桿的計算
3.2.1 工作活塞桿的最大推力計算
按試驗條件,本千斤頂托盤處于310mm高度時調壓的額定載荷P=2000Kg。經計算分析,此時工作活塞桿的推力最大,從310mm再向上升,則工作活塞桿的推力逐漸減小。為求出工作活塞桿的最大推力,必須作如下計算:
3.2.1.1 托盤架的受力情況如圖所示:
圖3.3:托盤的受力情況
則:
=cos
=71.64
作 AD 則
另:AB=mm
AD=AB*cos=69*cos41.64=51.57mm
根據(jù)托盤架的轉動平衡,可求得撐桿上的作用力F
F==1192.55 Kg
根據(jù)平衡原理,作用在A點上的力的計算如下:
F
=2000-1192.55*sin18.36
=1624.36 Kg
F
=1192.55*cos18.36
=1131.84 Kg
3.2.1.2 求連桿對頂臂的拉力T與T
圖3.4:連桿頂臂受力圖
頂臂受力如圖所示。
F Kg
F Kg
T
根據(jù)力的平衡原理:
Kg
3.2.1.3 工作活塞桿的最大推力
工作活塞桿對連桿的推力,其大小、方向和連桿對頂臂的拉力相同。所以當托盤處于310mm高度時,工作活塞桿有最大推力。
Kg
Kg
Kg
3.2.1工作活塞桿的強度核算
3.2.1.1 工作活塞桿的強度計算
當活塞桿受壓時:
=
=870.90 Kg/cm
當活塞桿受彎時,托盤處于310mm高度時,彎矩最大,此時:
mm Kg
得: Kg.cm
危險截面上的最大復合應力為:
Kg/cm
材料為45號鋼,調質,則: Kg/cm
n= 強度許用。
3.2.1.2 工作活塞桿的穩(wěn)定性核算
活塞桿的伸出長度為: mm
活塞桿的直徑為:d=35 mm
一般受壓桿件時,要求作穩(wěn)定計算。
現(xiàn),故不作穩(wěn)定計算。
3.3油缸的強度計算
3.3.1 油缸臂厚的計算
由于
故采用公式:
上式中,
材料為45調質鋼, Kg/cm
無縫管的強度系數(shù)取:
補入臂厚公差及腐蝕系數(shù)C忽略不計
則 cm
臂厚許用。
3.3.2 油缸的變形計算
按厚壁筒計算:
上式中E取2×10
則:
=0.005 cm
=0.05 mm
變形量不大,所以許用。
3.4方鐵的強度計算
方鐵可看作簡支梁,受活塞桿的擠壓而發(fā)生彎曲變形。方鐵兩端的銷與連桿連接受剪。方鐵為45號鋼,連桿為20號鋼,所以不核算方鐵兩端端部的受剪和受擠。為簡化計算程序起見,方鐵只作彎曲校核。由于簡支梁受力產生彎曲變形,所以假定大活塞以兩集中載荷方式作用在方鐵端面上,其受力圖核彎矩圖如下
危險截面上的彎矩
其中心點上的彎矩最大,則:
圖3.5:危險截面的彎矩
Kg.cm
通常簡支梁的計算用的是許用應力法,即以梁的橫截面上最外層纖維處的最大正應力到達材料的危險應力作為整個梁達到危險狀態(tài)為條件。事實上塑性狀態(tài)的材料制成的,當橫截面外層最大應力達到屈服極限時,梁還可以繼續(xù)承載更多的載荷,直到整個截面逐漸全部達到塑性變形范圍,梁才達到了危險狀態(tài)。因此,對塑性材料,令,作為梁的危險狀態(tài)式保險的,所以對方鐵的強度,我們采用承接能力法進行計算。
3.4.1中性軸的計算
橫截面上的正應力均達到屈服極限時(見下圖),有靜力平衡條件可得:,即
即當梁達到危險狀態(tài)時,中性軸將橫截面分為面積相等的兩部分。
圖3.6:危險截面形狀
=210 mm
3.4.1.1塑性抗彎截面模量以及各截面面積對中性軸的靜矩的計算
-0.46×1.58×(2.1-0.55)-1.62×
1.3×(2.1-0.65)-0.5×1.62×0.47×(2.1-1.46)=4.568 cm
3.4.1.2承載能力的計算
取 45冷拉鋼
Kg/cm
則:
=0.65×6500×4.568
=19299.8 Kg.cm
3.4.1.3安全系數(shù)的計算
=
強度足夠。
3.5連桿的強度計算
圖3.7:連桿的強度計算
連桿主要是核算受拉、受擠和受剪:
Kg
3.5.1受拉時
20號鋼
許用。
3.5.2受擠時
取K=1
則:n= 安全。
3.5.3受剪時
=
n= 許用。
3.6大輪軸的強度計算
3.6.1每只大輪受力
經計算分析,當托盤升至310mm的高度時,大輪軸受力最大。
此時,P=2000 Kg,。
圖3.8:大輪的受力圖
AD=AB×cos=350×=332.19 mm
AE=AD+DE=332.19+30.75=362.94 mm
L-b==362.94+81.75=444.69 mm
每只大輪受力為,由得:2
Kg
3.6.2大輪軸的強度計算
大輪軸,L=264(全長),d=24 mm
材料為45號鋼,如圖,
Kg.cm
Kg
45號鋼,
安全系數(shù):
大輪軸是安全的,因剪力很小,故剪切強度不用核算。
圖3.9:大輪軸的強度計算
3.7頂臂軸的強度計算
經計算分析,托盤處于名義最低位置130mm時,頂臂軸的受力最大。
3.7.1托盤的受力分析
當托盤處于名義最低位置時,托盤的受力下頁的如圖所示:
由得:
由得:
由得:
圖3.10:托盤的受力圖
3.7.2頂臂軸的受力分析
圖3.11:頂臂軸的受力分析圖
Kg
因
得:
-
Kg
Kg Kg
由得:
=8379+2313=10692 Kg
Kg
Kg
3.7.3頂臂軸的強度計算
頂臂軸
頂臂軸是受均布載荷的簡直梁,經計算,如果無軸套作用,受載后變形量高達23mm,而軸套與軸間間隙最小為0.25mm。軸套可假定為絕對剛性的焊接結構,則軸受載變形后,均布載荷就變?yōu)檩S套兩端作用的集中載荷,如圖所示。故此軸簡化為受對稱集中載荷的簡支梁的計算:
Kg.cm
對于調質鋼,
安全系數(shù), 許用。
圖3.12:頂臂軸的強度計算
3.7.4頂臂軸受剪切時的計算
對于力P作用此面時的計算剪切應力為: Kg
對于調質碳素鋼,
安全系數(shù)為: 安全。
3.7.5頂臂的強度計算
經計算分析,托盤處于310mm高度時,頂臂所受的彎矩值達到最大。頂臂強度按如下的情況計算:
3.7.6求分力
圖3.13:頂臂的受力圖
托盤升至310mm的高度時,頂臂上A點受力。
合力為:
則:
設力垂直于頂臂上AO的分力為,平行于AO的分力為
3.8小輪支架的強度計算
3.8.1小輪最大的受力情況
當托盤升到最大高度時,每只小輪所受的載荷最小。
如圖所示,
則:
圖3.14:小輪的受力圖
3.8.2小輪支架的抗剪計算
圖3.15:小輪的抗剪計算
小輪架偏心距為:
材料為鋼板,板厚為:,焊縫高:
危險斷面為A-A,
安全。
3.8.3焊縫的抗彎計算
根據(jù)
焊接影響系數(shù):
安全。
3.9撐桿的強度計算
經計算分析,撐桿在托盤處于起始位置時受力為最大。如果將撐桿的重量略而不計,可簡化為二力桿計算。
圖3.16:撐桿的受力計算
根據(jù)托盤架受力計算可知,撐桿所受的力為:
剖面特性:
臨界壓力為:
則:
穩(wěn)定性足夠。
壓應力為:
安全。
孔的擠壓應力為:
擠壓強度為:
對于受載時,可以活動的連接: K=0.2
則:
受擠強度不夠。
如果轉動處潤滑良好,則K=0.3,
受擠強度足夠。
4.0托盤架的強度計算
以托盤架的受力分析來看,托盤架的受力形式主要是受彎受剪,以及支撐孔的受擠和孔邊剪切。由于托盤架的結構是成形和焊接的復合結構,其段面系數(shù)等參數(shù)都比較大,初步估算,其受彎受剪的問題都不大,故只核算其支撐孔的受擠及孔邊剪切。
托盤架支撐孔在托盤處于起始位置130mm高度時,受力為最大。
第四章 其它部分設計
4.1調壓彈簧的計算
彈簧,外徑D=7.3mm,鋼絲直徑d=2mm。
重徑,材料為:,n=6。
,取其平均值,則:
取
4.1.2彈簧指數(shù)
4.1.3曲度系數(shù)
4.1.4允許的極限負荷
4.1.5最大工作負荷為:
該彈簧承受第二類負荷,
4.1.6彈簧總剛度位:
4.1.7極限負荷下變形
4.1.8最大工作負荷的變形
4.1.9調壓彈簧的臨界力
托盤升起至310mm時,加載2000Kg,油缸內壓強為,調壓彈簧所受的臨界力為,,(閥孔直徑)。
因臨界力,故調壓彈簧的工作是安全的,這時彈簧的變形為:
4.2拉簧計算
拉簧圖號為00005,工組鋼絲,鋼絲直徑d=2.3mm,外徑中徑
4.2.1彈簧指數(shù)
4.2.2曲度系數(shù)
查表得:k=1.24
4.2.3極限載荷
已知:d=2.3mm,k=1.24,,
得:
4.2.4最大工作載荷
設拉簧承受第二類負荷。
4.2.5彈簧的總剛度
4.2.6應力計算
應力:
拉力:
4.2.7極限載荷下的變形
最大工作載荷下的變形為:
4.2.8彈簧極限載荷下的伸長量
當托盤上升至最大時,彈簧最大伸長量為288.4mm,超過了彈簧極限載荷下的伸長量274.2mm,故此時彈簧處于扭轉屈服應力狀態(tài)下工作屬于不安全狀態(tài)。
拉簧的工作圖見下圖:
圖4.1:拉簧的工作圖
4.3扭簧的計算
圖號為00004,工組鋼絲,鋼絲直徑d=4mm,內徑D=17.4mm,中徑為
,圈數(shù)為:n=7。
4.3.1彈簧指數(shù)
4.3.2曲度系數(shù)
(對于三類彈簧)
4.3.3最大工作扭矩
,
則:
4.3.4極限扭矩
4.3.5扭簧剛度
4.3.6最大工作扭轉角
4.3.7極限扭轉角
4.3.8扭轉角和扭矩的計算
設預加扭轉角為:,那么有:
使用扭轉角為:
使用極限扭轉角為:
設預加扭矩為:286.5Kg.mm
由于使用扭轉角比較小,所以在扳動手柄時,要控制使用扭角,最大不能超過,否則扭簧工作就不夠安全。扭簧的工作圖見下圖:
圖4.2扭轉角和扭矩的計算
總 結
經過半年的努力,我終于如期完成了我的畢業(yè)設計:可移式臥式液壓千斤頂?shù)脑O計。
畢業(yè)設計是大學學習階段一次非常難得的理論與實際相結合的學習機會,通過這次對液壓千斤頂理知識和實際設計的相結合,鍛煉了我的綜合運用所學專業(yè)知識,解決實際工程問題的能力,同時也提高了我查閱文獻資料、設計手冊、設計規(guī)范能力以及其他專業(yè)知識水平,而且通過對整體的掌控,對局部的取舍,以及對細節(jié)的斟酌處理,都使我的能力得到了鍛煉,經驗得到了豐富,并且意志品質力,抗壓能力以及耐力也都得到了不同程度的提升。這是我們都希望看到的也正是我們進行畢業(yè)設計的目的所在,提高是有限的但卻是全面的,正是這一次畢業(yè)設計讓我積累了許多實際經驗,使我的頭腦更好的被知識武裝起來,也必然讓我在未來的工作學習中表現(xiàn)出更高的應變能力,更強的溝通力和理解力。
其中胡老師對我的畢業(yè)設計每一個進展都有相當大的幫助,幫我認真的查看圖紙和說明書等。
通過這次畢業(yè)設計,我又重新溫習了四年來所學的許多知識,因為是畢業(yè)設計,所以包括的內容深度都較以前的課程設計難很多,也是真正考核我的綜合能力的一次設計,因此在這段設計的時間里面,我不僅從綜合能力上鍛煉了自己,也從中理解了一些自己在以前學習中的不足,從而重新進行深入的學習,使自己所學的知識有了進一步的擴展,這次畢業(yè)設計使我學會的理論真正的也實踐聯(lián)系在一起真正做到學以致用,這才是我們學習最重要的目的。
順利如期的完成本此畢業(yè)設計給了我很大的信心,讓我了解專業(yè)知識的同時也對本專業(yè)的發(fā)展前景充滿信心,但同時也發(fā)現(xiàn)了自己的許多不足與欠缺,留下了些許遺憾,不過不足與遺憾不會給我打擊只會更好的鞭策我前行,今后我更會關注新科技新設備新工藝的出現(xiàn),并爭取盡快的掌握這些先進知識,更好的為祖國的四化服務。
致 謝
經過半年的忙碌和工作,本次畢業(yè)設計已經接近尾聲,但由于經驗的匱乏,時間上處理不當,難免有許多考慮不周全的地方,如果沒有導師的督促指導,以及同學們的支持,這個畢業(yè)設計是很難完成的。所以在這里我想謝謝在我畢業(yè)設計中熱心幫助我的人。
首先,我要感謝的是我的導師胡少剛。雖然他平日里工作繁多,但是他從來不會因此而耽擱我們的設計。他每周都會對我們的設計進行評定,悉心的指導。從裝配圖到零件圖,老師很細心地糾正其中的錯誤。除了敬佩老師的專業(yè)水平外,他的治學嚴謹和科學研究的精神也是我學習的榜樣,并將積極影響我今后的學習和工作。
其次要感謝的是我的同學。由于專業(yè)知識基礎不是很牢固,在設計過程中,我經常會遇到“攔路虎”。但是因為有了一群富有熱情與耐心的同學,使我的畢業(yè)設計才順利的完成。
還要感謝圖書館的老師。因為他們在我經常因為找不到參考資料時伸出援助之手,熱心地幫我找,節(jié)約我的時間。感謝你們熱心的幫助。
最后感謝常州工學院的各位老師大學四年對我的大力栽培!
參考文獻
[1].成大先,機械設計手冊,單行本,液壓傳動,北京:化學工業(yè)出版社,2004.1
[2].濮良貴,紀明剛,機械設計,北京:高等教育出版社,2001
[3].王鴻翔,機械設計手冊,北京:化學工業(yè)出版社,2003.1
[4].雷天覺,液壓工程手冊,北京:機械工業(yè)出版社,2000
[5].賈培起,液壓缸,北京:北京科學技術出版社,1989
[6].章宏甲,黃誼,《液壓傳動》,北京:機械工業(yè)出版社,2003
[7].尚久明,李國斌,趙歧華,一種新型千斤頂?shù)脑O計,起重運輸機械,2007.12
[8].徐錦康.機械設計[M].機械工業(yè)出版社,2002年4月
[9] 周建方.材料力學[M].機械工業(yè)出版社,2004年1月
[10]袁化臨.起重與機械安全[M].首都經濟貿易大學出版社,2000年9月
[11] 機械工程手冊編輯委員會編.《機械工程手冊》[M].機械工業(yè)出版社,1979.25-34
[12] 吳宗澤主編.機械設計實用手冊.北京:化學工業(yè)出版社.1999年4月
37