吹風機頭的注射模設計【一模一腔】【側抽芯】【說明書+CAD+PROE】
吹風機頭的注射模設計【一模一腔】【側抽芯】【說明書+CAD+PROE】,一模一腔,側抽芯,說明書+CAD+PROE,吹風,機頭,注射,設計,說明書,仿單,cad,proe
南京理工大學泰州科技學院
畢業(yè)設計(論文)外文資料翻譯
系 部: 機械工程系
專 業(yè): 機械工程及自動化
姓 名: 張 榮
學 號: 05010144
(用外文寫)
外文出處:Int J Adv Manuf Techool(2006)28: DoI.10.1007/s00170-004-2328-8
附 件: 1.外文資料翻譯譯文;2.外文原文。
指導教師評語:
該篇外文資料內容與課題有一定的相關性,譯文比較正確地表達了原文的意義、概念描述基本符合漢語的習慣,語句較通暢,層次較清晰。翻譯質量良。
簽名:
年 月 日
注:請將該封面與附件裝訂成冊。
附件1:外文資料翻譯譯文
對于注塑模具鋼研磨和拋光工序的自動化表面處理
摘要 本文研究了注塑模具鋼自動研磨與球面拋光加工工序的可能性,這種注塑模具鋼PDS5的塑性曲面是在數控加工中心完成的。這項研究已經完成了磨削刀架的設計與制造。 最佳表面研磨參數是在鋼鐵PDS5 的加工中心測定的。對于PDS5注塑模具鋼的最佳球面研磨參數是以下一系列的組合:研磨材料的磨料為粉紅氧化鋁,進給量500毫米/分鐘,磨削深度20微米,磨削轉速為18000RPM。用優(yōu)化的參數進行表面研磨,表面粗糙度Ra值可由大約1.60微米改善至0.35微米。 用球拋光工藝和參數優(yōu)化拋光,可以進一步改善表面粗糙度Ra值從0.343微米至0.06微米左右。在模具內部曲面的測試部分,用最佳參數的表面研磨、拋光,曲面表面粗糙度就可以提高約2.15微米到0.07微米。
關鍵詞 自動化表面處理 拋光 磨削加工 表面粗糙度 田口方法
1 引言
塑膠工程材料由于其重要特點,如耐化學腐蝕性、低密度、易于制造,并已日漸取代金屬部件在工業(yè)中廣泛應用。 注塑成型對于塑料制品是一個重要工藝。注塑模具的表面質量是設計的本質要求,因為它直接影響了塑膠產品的外觀和性能。 加工工藝如球面研磨、拋光常用于改善表面光潔度。
研磨工具(輪子)的安裝已廣泛用于傳統(tǒng)模具的制造產業(yè)。自動化表面研磨加工工具的幾何模型將在[1]中介紹。自動化表面處理的球磨研磨工具將得到示范和開發(fā)。 磨削速度, 磨削深度,進給速率和砂輪尺寸、研磨材料特性如圖1所示。
圖1球面研磨過程示意圖
圖2球面拋光過程示意圖
比如,人們發(fā)現, 用碳化鎢球滾壓的方法可以使工件表面的塑性變形減少,從而改善表面粗糙度、表面硬度、抗疲勞強度[3-6]。拋光的工藝的過程是由加工中心 [3,4]和車床[5,6]共同完成的。對表面粗糙度有重大影響的拋光工藝主要參數,主要是球或滾子材料,拋光力, 進給速率,拋光速度,潤滑、拋光率及其他因素等。注塑模具鋼PDS5的表面拋光的參數優(yōu)化,分別結合了油脂潤滑劑,碳化鎢球,拋光速度200毫米/分鐘,拋光力300牛, 40微米的進給量[7]。采用最佳參數進行表面研磨和球面拋光的深度為2.5微米。通過拋光工藝,表面粗糙度可以改善大致為40%至90%[3-7]。
此項目研究的目的是,發(fā)展注塑模具鋼的球形研磨和球面拋光工序,這種注塑模具鋼的曲面實在加工中心完成的。表面光潔度的球研磨與球拋光的自動化流程工序,如圖3所示。我們開始自行設計和制造的球面研磨工具及加工中心的對刀裝置。利用田口正交矩陣法,確定了表面球研磨最佳參數。選擇為田口L18型矩陣實驗相應的四個因素和三個層次。用最佳參數進行表面球研磨則適用于一個曲面表面光潔度要求較高的注塑模具。為了改善表面粗糙,利用最佳球面拋光工藝參數,再進行對表層打磨。
PDS試樣的設計與制造
選擇最佳矩陣實驗因子
確定最佳參數
實施實驗
分析并確定最佳因子
進行表面拋光
應用最佳參數加工曲面
測量試樣的表面粗糙度
球研磨和拋光裝置的設計與制造
圖3自動球面研磨與拋光工序的流程圖
2 球研磨的設計和對準裝置
實施過程中可能出現的曲面的球研磨,研磨球的中心應和加工中心的Z軸相一致。球面研磨工具的安裝及調整裝置的設計,如圖4所示
圖4球面研磨工具及其調整裝置
電動磨床展開了兩個具有可調支撐螺絲的刀架。磨床中心正好與具有輔助作用的圓錐槽線配合。 擁有磨床的球接軌,當兩個可調支撐螺絲被收緊時,其后的對準部件就可以拆除。研磨球中心坐標偏差約為5微米, 這是衡量一個數控坐標測量機性能的重要標準。 機床的機械振動力是被螺旋彈簧所吸收。球形研磨球和拋光工具的安裝,如圖5所示。
圖5 a.球面研磨工具的圖片. b. 球拋光工具的圖片
為使球面磨削加工和拋光加工的進行,主軸通過球鎖機制而被鎖定。
3 矩陣實驗的規(guī)劃
3.1 田口正交表
利用矩陣實驗田口正交法,可以確定參數的有影響程度[8]. 為了配合上述球面研磨參數,該材料磨料的研磨球(直徑10毫米),進給速率,研磨深度,再次研究中電氣磨床被假定為四個因素(參數),指定為從A到D(見表1實驗因素和水平)。三個層次(程度)的因素涵蓋了不同的范圍特征,并用了數字1、2、3標明。挑選三類磨料,即碳化硅(SiC),白色氧化鋁(Al2O3,WA),粉紅氧化鋁(Al2O3, PA)來研究. 這三個數值的大小取決于每個因素實驗結果。選定L18型正交矩陣進行實驗,進而研究四——三級因素的球形研磨過程。
3.2 數據分析的界定
工程設計問題,可以分為較小而好的類型,象征性最好類型,大而好類型,目標取向類型等[8]。 信噪比(S/N)的比值,常作為目標函數來優(yōu)化產品或者工藝設計。 被加工面的表面粗糙度值經過適當地組合磨削參數,應小于原來的未加工表面。 因此,球面研磨過程屬于工程問題中的小而好類型。這里的信噪比(S/N),η,按下列公式定義[8]:
η =?10 log (平方等于質量特性)
=?10 log
這里,
y——不同噪聲條件下所觀察的質量特性
n——實驗次數
從每個L18型正交實驗得到的信噪比(S/N)數據,經計算后,運用差異分析技術(變異)和方差檢驗來測定每一個主要的因素 [8]。 優(yōu)化小而好類型的工程問題更是盡量使η最大而定。各級η選擇的最大化將對最終的η因素有重大影響。 最優(yōu)條件可視研磨球而待定。
4 實驗工作和結果
這項研究使用的材料是PDS5工具鋼(相當于艾西塑膠模具)[9], 它常用于大型注塑模具產品在國內汽車零件領域和國內設備。 該材料的硬度約HRC33(HS46)[9]。 具體好處之一是, 由于其特殊的熱處理前處理,模具可直接用于未經進一步加工工序而對這一材料進行加工。式樣的設計和制造,應使它們可以安裝在底盤,來測量相應的反力。 PDS5試樣的加工完畢后,裝在大底盤上在三坐標加工中心進行了銑削,這種加工中心是由楊鋼鐵公司所生產(中壓型三號),配備了FANUC- 18M公司的數控控制器(OM型)[10]。用hommelwerket4000設備來測量前機加工前表面的粗糙度,使其可達到1.6微米。 圖6試驗顯示了球面磨削加工工藝的設置。
圖6 球面磨削加工工藝的設置
一個由Renishaw公司生產的視頻觸摸觸發(fā)探頭,安裝在加工中心上,來測量和確定和原始式樣的協(xié)調。 數控代碼所需要的磨球路徑由PowerMILL軟件產生。這些代碼經過RS232串口界面,可以傳送到裝有控制器的數控加工中心上。
完成了L18型矩陣實驗后,表2 (PDS5試樣光滑表層的粗糙度)總結了光滑表面的粗糙度Ra值,計算了每一個L18型矩陣實驗的信噪比(S/N),從而用于方程1。表2:
通過表2提供的各個數值,可以得到4中不同程度因子的平均信噪比(S/N),在圖7中已用圖表顯示。如下圖7: 球面研磨工藝的目標,就是通過確定每一種因子的最佳優(yōu)化程度值,來使試樣光滑表層的表面粗糙度值達到最小。因為? log是一個減函數,我們應當使信噪比(S/N)達到最大。因此,我們能夠確定每一種因子的最優(yōu)程度使得η的值達到最大。因此基于這個點陣式實驗的最優(yōu)轉速應該是每分鐘18000轉,如表4(優(yōu)化組合球面研磨參數)所示。?如下表4:
通過使用數據方差分析的技術和F比檢驗方法,進一步確定了每一種因子有什么主要的影響,從而確定了它們的影響程度(見表5信噪比和表面粗糙度)。如下表5:
F0.10,2,13的F比的比值是2.76,相當于10%的影響程度。(或者置信水平為90%)這個因子的自由度是2,自由度誤差是13,根據F分布表[11]。如果F比值大于2.76,就可以認為對表面粗糙度有顯著影響。結果,進給量和磨削深度都對表面粗糙度有顯著影響。
為了觀察使用最優(yōu)磨削組合參數的重復性能,進行了5種不同類別的實驗,如表6所示。獲得被測試樣的表面粗糙度值Ra大約是0.35微米。使用球研磨組合參數,可使表面粗糙度提高了78%。使用球面拋光的優(yōu)化參數,光滑表面進一步被拋光。經過球面拋光可獲得粗糙度Ra值為0.06微米的表面。被改善了的拋光表面,可以在30×光學顯微鏡觀察下進行觀察,如下圖8:
經過拋光工藝,工件機加工前的表面粗糙度改善了近95%。
從田口矩陣實驗獲得的球面研磨優(yōu)化參數,適用于曲面光滑的模具,從而改善表面的粗糙度。選擇香水瓶為一個測試載體。對于被測物體的模具數控加工中心,由PowerMILL軟件來模擬測試。經過精銑,通過使用從田口矩陣實驗獲得的球面研磨優(yōu)化參數,模具表面進一步光滑。緊接著,使用打磨拋光的最佳參數,來對光滑曲面進行拋光工藝,進一步改善了被測物體的表面粗糙度。(見圖 9)。如下圖9:
圖9 表面粗糙度對比
模具內部的表面粗糙度用hommelwerket4000設備來測量。模具內部的表面粗糙度Ra的平均值為2.15微米,光滑表面粗糙度Ra的平均值為0.45微米,拋光表面粗糙度Ra的平均值為0.07微米。被測物體的光滑表面的粗糙度改善了:(2.15-0.45)/2.15=79.1%,拋光表面的粗糙度改善了:(2.15-0.07)/2.15=96.7%。
5 結論
在這項工作中,對注塑模具的曲面進行了自動球面研磨與球面拋光加工,并將其工藝最佳參數成功地運用到加工中心上。 設計和制造了球面研磨裝置(及其對準組件)。通過實施田口L18型矩陣進行實驗,確定了球面研磨的最佳參數。對于PDS5注塑模具鋼的最佳球面研磨參數是以下一系列的組合:材料的磨料為粉紅氧化鋁,進給量料500毫米/分鐘,磨削深度20微米,轉速為每分鐘18000轉。通過使用最佳球面研磨參數,試樣的表面粗糙度Ra值從約1.6微米提高到0.35微米。應用最優(yōu)化表面磨削參數和最佳拋光參數,來加工模具的內部光滑曲面,可使模具內部的光滑表面改善79.1%,拋光表面改善96.7%。
附件2:外文原文(復印件)
收藏