連桿螺栓孔鉆孔夾具及多軸箱設計【鉆2-φ16孔夾具設計】【氣動夾具】
連桿螺栓孔鉆孔夾具及多軸箱設計【鉆2-φ16孔夾具設計】【氣動夾具】,鉆2-φ16孔夾具設計,氣動夾具,連桿,螺栓,鉆孔,夾具,軸箱,設計,16,氣動
畢業(yè)設計說明書(論文)
作 者: 學 號:
系 部:
專 業(yè):
題 目:連桿螺栓孔鉆孔夾具及多軸箱設計【氣動夾具】
指導者:
(姓 名) (專業(yè)技術職務) 注:打印時刪除
評閱者:
(姓 名) (專業(yè)技術職務) 注:打印時刪除
注:
20 年 月
30
洛陽理工學院畢業(yè)設計(論文)
連桿螺栓孔鉆孔夾具及多軸箱設計【氣動夾具】
摘 要
在機械制造各行業(yè)的工藝過程中廣泛應用著各種不同的,用以固定加工對象,使之占有正確位置,以便接受施工的一種工藝裝備,統(tǒng)稱為夾具。因此,無論是在機械加工,裝配,檢驗,還是在焊接,熱處理等冷,熱工藝中,以及運輸工作中都大量采用夾具。但在機械加工中應用最為廣泛的是金屬切削機床上使用的夾具,我們稱其為機床夾具。它在保證產品優(yōu)質,高產,低成本,充分發(fā)揮現有設備的潛力,以便工人掌握復雜或精密零件加工技術,以減輕繁重的體力勞動等諸方面起著巨大的作用。因此,機床夾具的設計和使用是促進生產迅速發(fā)展的重要工藝措施之一。為此,在本次畢業(yè)設計時,選擇了機床夾具設計。
本文主要圍繞機床鉆孔夾具設計為中心。用以鉆連桿零件,首先通過參觀實習讓我們對夾具設計有了初步的了解,特別是對鉆模夾具設計的了解更為深刻。然后,在導師的指導下,對夾具設計方案進行分析和選擇。選定方案后,。通過查閱相關夾具設計書籍和相關圖例在鉆孔夾具設計過程中,。在查閱了相關文獻后完成外文翻譯。參考相關資料完成夾具的總體設計。
此次設計為連桿鉆孔多軸箱的機械設計。設計主要介紹了鉆孔多軸箱的設計原理、調整方法及設計計算過程。通過預先給定的加工要求可確定所需的計算參數,進而依據可調立式鉆孔多軸箱的設計原理來設計計算并校核各個部位的零件,然后進行組裝。本次設計可從五大方面進行設計。通過預先給定的加工要求計算并進行了雙頭鉆頭的設計、傳動系統(tǒng)減速箱的設計、傳動系統(tǒng)電機的選用、可以保證較高的加工精度和孔間相對位置精度。
關鍵詞:氣動夾具;電動機;變速箱;
Connecting rod bolt-hole drilling jig and multi-axle pneumatic clamp design
Abstract
In the process machinery manufacturing industries are widely used in a variety of different, to fix the object to be processed so that it occupies a correct position in order to receive a construction of process equipment, collectively referred to as fixtures. Therefore, whether in machining, assembly, inspection, or welding, heat treatment, cold and hot processes, as well as extensive use of transport work in both fixtures. But in machining the most widely used is the fixture for use on metal-cutting machine tools, jigs and fixtures we call it. It is to ensure product quality, high yield, low cost, the full potential of existing equipment in order to grasp the complexity of workers or precision parts processing techniques to reduce the heavy manual labor and other aspects play a huge role. Therefore, the design and use of jigs and fixtures is one of the important technical measures to promote the rapid development of production. For this reason, in this graduation project, select the tool fixture design.
In this paper, the machine drilling fixture design around the center. For drill rod parts, first by visiting fixture design expertise allows us to have a preliminary understanding, especially understanding the jig fixture design is more profound. Then, under the guidance of instructors, for fixture design analysis and selection. After selecting the program. Through access to relevant books and related fixture design legend in drilling fixture design process. Access to the relevant literature in foreign language translation is completed. References relevant information to complete the overall design fixture.
The design of multi-axle drilling rod mechanical design. Design introduces the drilling of multi-axle box design principles, methods and design adjustment calculation. By processing requirements given in advance to determine the parameters required for the calculation, and then based on adjustable vertical drilling multi-axle box design principles to design calculations and check all parts of the parts, then assembled. This design can be designed from five aspects. By pre-processing requirements of a given calculation and design of the double-headed drill, drive train gearbox design, selection of the motor drive system, ensuring both high precision and accuracy of the relative position of the hole.
Keywords: pneumatic clamps; motor; gearbox;
目 錄
1 前言 1
1.1 本課題的背景和研究意義 1
1.3 鉆床的發(fā)展趨勢 2
1.4鉆床夾具的概述 2
1.5 本課題解決的問題和設計時主要的工作 3
2 連桿組合機床結構設計的總體方案 4
2.1鉆床總體結構 4
2.2設計方案選擇 4
3 連桿多軸箱的設計 7
3.1 預選加工材料,加工直徑 8
3.2 計算高速鋼麻花鉆軸向切削力及扭矩 8
3.2.1 計算單個鉆頭軸向切削力 8
3.2.2 計算單個鉆頭扭矩 9
3.3 鉆頭中各軸及齒輪的計算 10
3.3.1 齒輪8、9、10、11的計算 10
3.3.2 齒輪5、6、7的計算 14
3.4 雙頭鉆頭內各軸的設計 16
3.4.1 計算軸I、VIII的最小直徑 16
3.4.2 計算軸II、VII的最小直徑 16
3.4.3 計算軸III的最小直徑 16
4 傳動系統(tǒng)減速設計 18
4.1減速箱內各齒輪設計 18
4.1.1傳動系統(tǒng)減速箱齒輪、的設計 18
4.1.2傳動系統(tǒng)減速箱齒輪、的設計 19
4.2 雙頭鉆頭內各軸的設計 19
4.2.1 計算軸III的最小直徑 19
4.2.2 計算軸IV的最小直徑 19
4.2.3 計算軸V的最小直徑 20
4.2.4 計算軸VI的最小直徑 20
5 傳動系統(tǒng)電機的選用 21
6 工件的夾緊計算及其選擇 22
6.1 工件的夾緊 22
6.1.1 夾緊基本原理理論 22
6.1.2 夾緊座 23
6.1.3 夾緊壓板 23
6.1.4 夾緊螺釘 24
6.2 夾緊力的選擇 24
6.2.1 夾緊力方向 24
6.2.2 夾緊力的作用點 25
6.2.3 夾緊力的計算 25
6.3 氣缸的選型計算 26
6.3.1 氣缸的直徑確定 27
6.3.2 氣缸的選型 28
6.3.3 夾具精度計算與分析 29
7 夾具結構分析與設計 31
7.1 夾具的夾緊裝置和定位裝置 31
7.2 夾具的導向 32
7.3 鉆孔與工件之間的切屑間隙 35
7.4 鉆模板 36
7.5定位誤差的分析 36
7.6 確定夾具體結構和總體結構 37
結 論 38
致 謝 39
參考文獻 40
1 前言
1.1 本課題的背景和研究意義
鉆床主要用在工件上孔的加工。通常鉆頭的旋轉為主運動,鉆頭的軸向移動為進給運動。普通鉆床的結構比較簡單,加工精度較低,可鉆通孔、盲孔。在鉆床上配有工藝裝備時,還可以進行鏜孔,在鉆床上配萬能工作臺還能進行分割鉆孔、擴孔、鉸孔。鉆床的特點是工件固定不動,刀具做旋轉運動。加工過程中工件不動,讓刀具移動,將刀具中心對正孔中心,并使刀具轉動(主運動) [3-4]。
鉆床主要分為立式鉆床、臥式鉆床、搖臂鉆床、臺式鉆床、深孔鉆床和中心孔鉆床等。為了滿足模具制造業(yè)發(fā)展的需要,又開發(fā)了除鉆削深孔以外,還可以進行銑削、攻絲等的多功能鉆床。
20世紀70年代初,鉆床還是普遍采用普通繼電器控制的。如70年代-80年代進入中國的美國ELDORADO公司的MEGA50,日本神崎高級精工制作所的DEG型,德國TBT公司的T30-3-250等。
80年代后期數控技術逐漸開始在深孔鉆床上應用,特別是90年代以后這種先進的技術才迅速推廣。如TBT公司90年代初上市的ML系列深孔鉆床,進給系統(tǒng)由機械無級變速器改為采用交流伺服電機驅動的滾珠絲杠副,進給用滑臺導軌也改為采用滾動直線導軌。鉆桿箱傳動為了保證高速旋轉、精度平穩(wěn),由交換皮帶輪及皮帶,和雙速電機驅動的有級傳動變?yōu)闊o級調速的變頻電機到電主軸驅動,為鉆削小孔深孔和提高深孔鉆床的水平質量提供了有利條件[5-8]。
長期以在我國的機械制造業(yè)中鉆床加工的工作量在總的制造工作量中占有很大的比重。制造業(yè)中孔類加工多數由傳統(tǒng)鉆床來完成。單頭鉆床是機械行業(yè)最通用的設備,主要用于工件上孔的加工。但是傳統(tǒng)的單孔鉆床在大批量生產時存在許多的不足之處。由于單頭鉆床只有一根主軸,因此,一次只能加工一個孔。如果要加工多孔的工件, 只有通過移動夾具多次對刀來實現,工人的勞動強度大,生產效率低,很難進行大批量的生產,而且孔的位置精度較低。隨著工業(yè)的發(fā)展,對產品質量、加工效率、加工零件方式多樣性以及工藝發(fā)展的要求的不斷提升,生產效率低、操作工人勞動強度大、加工精度較低的傳統(tǒng)單頭鉆床已不適用于大批量的產品生產。隨著中國經濟的快速發(fā)展,進入21世紀,我國機床制造業(yè)既面臨著提升機械制造業(yè)水平的需求而引發(fā)的制作裝備發(fā)展的良機,也遭遇到加入WTO后市場激烈的競爭壓力。隨著工業(yè)的發(fā)展,產品質量和加工效率的不斷提升,數控機床的大量應用也日趨廣泛。但將數控機床作為加工孔的專用設備與多軸鉆床相比,投入資金就有點得不償失了。單孔搖臂鉆床作為加工孔的通用機床,生產效率低、操作工勞動強度大,已不適用于大批量的成線生產。于是,多軸鉆床加工成為一種提高生產率的有效措施。而多軸加工逐漸成為一種新的加工趨勢。
多軸鉆床俗稱多軸器、多孔鉆或多軸鉆孔器。是一種運用于機械領域鉆孔、攻牙的機床設備。可以兩軸或兩軸以上同時鉆孔或攻牙,故稱多軸鉆床。一臺普通的多軸鉆床一次能把幾個乃至十幾個孔或螺紋同時加工出來。如果配上液壓或氣壓裝置,可以方便的自動進行快進、工進(工退)、快退、停止等動作,加工效率更高。多軸鉆床也稱群鉆床,一般型號的可以同時鉆2-16個孔,而且很多機種都沒有軸數限制,鉆頭主軸形式、尺寸大小也可以依客戶之需進行設計加工[9-13]。
如今多軸鉆床在生產中的應用已經十分廣泛,主要用于工件上多孔的加工。由于普通單軸鉆床只有一根主軸, 一次只能加工一個孔,如果要加工多孔的工件,只有通過移動夾具并多次對刀來實現,不僅工人的勞動強度大,而且孔的位置精度低。而多軸鉆床不僅效率高,在加工成角度的孔時,角度精確,再與數控相結合更可以保證距離精度[4]。多軸鉆床廣泛應用于機械行業(yè)多孔零部件的鉆孔及攻絲加工。如汽車、摩托車多孔零部件、發(fā)動機箱體、鋁鑄件殼體、制動鼓、剎車盤、轉向器、輪轂、差速殼、軸頭、半軸、車橋等,泵類、閥類、液壓元件、太陽能配件等等。多軸加工生產效率高,投資少,生產準備周期短,產品改型時設備損失少。而且隨著我國數控技術的發(fā)展,多軸加工的范圍變的愈來愈廣,加工效率也在不斷提高。
1.2 鉆床的發(fā)展趨勢
鉆床系指主要用鉆頭在工件上加工孔的機床。通常鉆頭旋轉為主運動,鉆頭軸向移動為進給運動。鉆床結構簡單,加工精度相對較低,可鉆通孔、盲孔,更換非凡刀具,可擴、锪孔,鉸孔或進行攻絲等加工。鉆床可分為下列類型:
(1)臺式鉆床:可安放在作業(yè)臺上,主軸垂直布置的小型鉆床。
(2)立式鉆床:主軸箱和工作臺安置在立柱上,主軸垂直布置的鉆床。
(3)搖臂鉆床:搖臂可繞立柱回轉、升降,通常主軸箱可在搖臂上作水平移動的鉆床。它適用于大件和不同方位孔的加工。
(4)銑鉆床:工作臺可縱橫向移動,鉆軸垂直布置,能進行銑削的鉆床。
(5)深孔鉆床:使用特制深孔鉆頭,工件旋轉,鉆削深孔的鉆床。
(6)平端面中心孔鉆床:切削軸類端面和用中心鉆加工的中心孔鉆床。
(7)臥式鉆床:主軸水平布置,主軸箱可垂直移動的鉆床
鉆床相關標準與其他金屬切削機床相關標準大體相同,其專用標準有:GB6477.4-86《金屬切削機床術語鉆床》,GB2815-89、JB/T5763-91《鉆床聯接尺寸標準》,GB9461-88、JB/Z108-89《搖臂鉆床參數及系列型譜標準》等,出口產品不得低于一等品。
主要生產廠家有:中捷友誼廠、沙市第一機床廠、寧夏大河機床廠、魯南機床廠、保定鉆床廠等。鉆床主要出口日本、東南亞、歐、美、非洲及港、澳等30余個國家及地區(qū)。
1.3鉆床夾具的概述
鉆床夾具:用干各種鉆床(鏜床組合機床)上的夾具,又稱鉆模,鏜模。主要目的保證孔的精度(位置)。要想對鉆床夾具有深刻的了解,就要先知道鉆床夾具的特點。
在一般鉆床對工件進行空加工,多具一下特點:
首先是刀具本身的剛性比較差。鉆床上所加工的空多為小尺寸的孔,其工序內容不外乎鉆、擴、鉸、锪或攻螺紋等加工,所以,刀具直徑往往比較小,而軸向尺寸比較啊,刀具的剛性均較差。
其次是多刃刀的不對稱,易造成空的形位公差。鉆、擴、鉸等孔加工刀具,多為多刃刀具,當刀刃分布不對稱,或刀刃分布不對稱,或刀刃長度不等,會造成被加工孔的制造誤差,尤其是采用普通麻花鉆鉆孔,手工刃磨鉆頭所造成的兩側不對稱,極易造成被加工孔的孔位偏移、孔徑增大及孔軸線的彎曲和歪斜,嚴重影響孔的形狀、位置精度。
再有就是普通麻花鉆頭起鉆時,孔的精度極差。普通麻花鉆軸向尺寸大,結構剛性差,加上鉆心結構所形成的橫刃,破壞定心,使鉆尖運動布穩(wěn)定,往往在起鉆過程造成較大的孔位誤差。在單件、小批量生產種中,往往要考操作工在起鉆過程中不斷地進行人工矯正控制孔位精度,而在大批生產中,則需依靠刀刃結構的改進和夾具對刀具的嚴格引導解決。
綜合以上孔加工特點,鉆床夾具的主要任務是解決好工件相對刀具的正確加工位置的嚴格控制問題。在大批量生產中,為有自傲解決鉆頭鉆孔的精度不穩(wěn)定的問題,多直接設置帶有刀具引導的鉆模板,對鉆頭進行正確引導和對孔位進行強制性限制。尤其是對箱體、蓋板類工件的鉆孔,往往要同時有多支鉆頭一次性鉆出眾多的孔,為保證加工孔隙的位置精度,一定要通過一塊精確的模版,把多個孔位由引導限制好。這種用來正確引導鉆頭控制孔位精度的模版。專業(yè)化、高效生產中的鉆床夾具,通常具有較精確的鉆模版,以正確、快速地引導鉆頭控制孔位精度,這是鉆床夾具的最主要的特點。所以,習慣上又把鉆床夾具稱為鉆模。為防止鉆刃破壞鉆模板上引導孔的孔壁,多在引導孔中設置高硬度的鉆套,以維持鉆模板的孔系精度。
對鉆床夾具的類型要有一定的認知。
1.4 本課題解決的問題和設計時主要的工作
單頭鉆床是機械行業(yè)最通用的設備,主要用于工件上孔的加工。但是傳統(tǒng)的單孔鉆床在大批量生產時存在許多的不足之處。由于單頭鉆床只有一根主軸,因此,一次只能加工一個孔。如果要加工多孔的工件, 只有通過移動夾具多次對刀來實現,工人的勞動強度大,生產效率低,很難進行大批量的生產,而且孔的位置精度較低。隨著工業(yè)的發(fā)展,對產品質量、加工效率、加工零件方式多樣性以及工藝發(fā)展的要求的不斷提升,生產效率低、操作工人勞動強度大、加工精度較低的傳統(tǒng)單頭鉆床已不適用于大批量的產品生產,而多軸加工逐漸成為一種新的加工趨勢。
本課題就設計了這么一種連桿組合機床,這種鉆床價格相對低廉,體積小、重量輕、操作方便、可靠性高,且可以同時鉆兩孔的工作方式大大提高了工作效率,減輕了工作量,提高了工作效率和加工精度。
本課題的主要工作包括以下幾個方面:
1. 廣泛查閱國內外關于多軸鉆床的研究資料,闡述了課題的研究意義,在綜述了國內外研究資料和研究目的之后,給出了本文研究的主要內容。
2. 深入研究連桿組合機床的設計原理,提出多種連桿組合機床的總體設計方案,進行各功能的求解,通過分析各個方案的優(yōu)缺點,確定了最優(yōu)方案。
3.設計連桿組合機床的整體結構。
4.對鉆床整體及各個零件進行尺寸設計并進行校核,合理調整各零件的相對位置,并繪制鉆床的裝配圖和主要零件的零件圖。
2 連桿組合機床結構設計的總體方案
2.1鉆床總體結構
立式連桿組合機床主要由床身、工作臺、鉆頭、主傳動系統(tǒng)、電機等部分組成。立式連桿組合機床的設計需要完成以下幾個步驟:
1.雙頭鉆頭的結構設計:
通過齒輪間的位置轉動實現兩鉆頭間距離的可調性。
2.傳動系統(tǒng)變速箱的設計:
鉆床的主運動為旋轉,由主電動機驅動,動力通過皮帶輪傳遞給主軸箱,主軸箱是鉆床的主要驅動裝置。主運動(旋轉)及進給運動同時進行。主軸箱驅動軸的運轉由主電機經過交換齒輪來驅動。
3.傳動系統(tǒng)驅動電機的選型;
通過將加工工件時所需的轉矩折算到電機主軸上,通過電機主軸上的轉矩和電機轉速算出功率,然后進行電機的篩選。
2.2設計方案選擇
本設計根據可調鉆頭實現可調功能的原理不同可有兩種鉆孔頭的結構設計方案。
<方案一>:通過可伸縮式萬向聯軸器調節(jié)
本結構用齒輪箱配合萬向節(jié)頭所組成,由于萬向節(jié)頭是可活動軸件,股在限定范圍內可左右移動。
萬向聯軸器的共同特點是角向補償量較大,不同結構型式萬向聯軸器兩軸線夾角不相同,一般≤5°-45°之間。萬向聯軸器利用其機構的特點,使兩軸不在同一軸線,存在軸線夾角的情況下能實現所聯接的兩軸連續(xù)回轉,并可靠地傳遞轉矩和運動。萬向聯軸器最大的特點是具有較大的角向補償能力,結構緊湊,傳動效率高。
圖2.1 可伸縮焊接方式萬向聯軸器
工作原理:多軸鉆床的實現主要是由于有多軸器的存在才得以實現的。主軸旋轉帶到多軸器中的其他軸轉動。多軸器結構由齒輪箱配合萬向節(jié)頭所組成,由于萬向節(jié)是可活動軸件,故在限定范圍內可左右移動。在調整加多軸頭箱內有一個主動輪和多個從動輪,主動輪與電機聯結,將動力傳給多個從動輪,從動輪再驅動鉆頭對工件進行加工。多軸鉆床廣泛應用于機械行業(yè)多孔零部件的鉆孔及攻絲加工。
優(yōu)點:在調整加工孔距時不受齒輪所限制,適合加工不定性孔件,使用范圍較廣多軸鉆床在其加工范圍內,其主軸的數量、主軸間的距離,相對可以任意調整,一次進給同時加工數 孔。在其配合液壓機床工作時,可自動進行快進、工進(工退)、快退、停止同單軸鉆(攻絲)比較,工件加工精度高、工效快,可有效的節(jié)約投資方的人力、物力、財力。尤其機床的自動化大大減輕操作者的勞動強度 。
缺點:精度方面控制有所欠缺,長期使用跑位率相比略高。適合單件加工量不大,長年更換加工件的企業(yè)。
<方案二>:通過齒輪調節(jié)
該多軸鉆孔頭是根據太陽系中太陽、行星及衛(wèi)星的運動規(guī)律設計的,即:行星繞太陽轉動,衛(wèi)星繞行星轉動,利用這個運動規(guī)律,還可實現鉆孔軸相對位置的調整。
此連桿組合機床原理如圖:
圖2.2 兩軸鉆孔動力頭結構調整圖
此次設計主要目的在于改造單頭鉆床為多頭鉆床。使其可以在較大的范圍和多個工位上同時加工兩個孔,很大程度上擴大了鉆床加工范圍,提高了機床適用性,并保證兩孔的相對位置精度。鉆頭可加工的范圍為:Lmin-Lmax之間的圓環(huán)范圍,并可通過調整鉆頭的位置在一個圓上進行等分圓的加工。
鉆孔頭的結構設計:
以兩軸鉆孔頭為例進行說明,圖2.3所示兩軸鉆孔頭的結構圖,鉆孔頭通過連接體1 與鉆床主軸的不回轉部分連接,連接體1 是一個開口套,用螺釘鎖緊在主軸上;太陽齒輪3通過錐孔套在主軸回轉部分的錐體上,靠摩擦傳遞扭矩。通過行星齒輪6,太陽齒輪把動力傳給鉆孔主軸17,行星齒輪6 在這里是惰輪(過橋齒輪),在調整時它只能和整個鉆孔頭一起繞太陽齒輪公轉。主軸端部靠彈簧卡頭21,夾緊鉆頭。為了使該鉆頭結構盡量緊湊,我們盡量選用小尺寸齒輪,衛(wèi)星齒輪8 與鉆孔主軸17靠過盈配合傳遞扭矩,所采用的軸承均為無內外圈滾針軸承。調整時,行星齒輪軸14,距離調整塊13可帶動衛(wèi)星齒輪8,滾針軸承9、18,隔離塊10,襯套15,止推軸承16,鉆孔主軸17,緊定螺釘19,鉆孔主軸套20 及彈簧卡頭21 等繞行星輪軸14 自由轉動,調整角度α。松開連接體1 的鎖緊螺釘,整個鉆孔頭可以繞太陽齒輪3,自由轉動,調整回補轉角θ。
圖2.3 兩軸鉆孔頭結構圖
1.連接體 2.鉆床主軸 3.太陽齒輪 4、9、18.滾針軸承 5.隔套 6.行星齒輪 7.隔墊 8.衛(wèi)星齒輪 10.隔離塊 11.殼體 12.前端法蘭 13.距離調整塊 14.行星齒輪軸 15.襯套 16.止推軸承 17.鉆 孔主軸 19.緊定螺釘 20.鉆孔主軸套 21.彈簧卡頭
優(yōu)點:該系列鉆孔頭,結構緊湊,調整方便,使用可靠,加工效率高,可以在中小批量生產中推廣使用。
缺點:由于鉆孔主軸相對位置固定,大大限制了調整鉆孔主軸位置的靈活性,使得該系列鉆孔頭,在同時加工3個或4個孔時,孔分布比較規(guī)則時,可以比較方便地調整鉆孔位置,而且不會使鉆床主軸的受力情況惡化;但當孔分布不規(guī)則時,調整比較麻煩,多數情況,根本調不出來,即使可以調整到位,加工時也會使鉆床主軸受力惡化。
選用該系列鉆孔頭時,要考慮鉆床的最大加工能力和待加工孔大小相匹配[12]。
綜上,經過比較后選定方案二為設計方案
3 連桿多軸箱的設計
圖3.1 裝配圖
3.1 預選加工材料,加工直徑
查表3-10[1]得,鋼
選用鉆頭直徑d=16(mm),設定鉆頭轉速960(r/min)
查表3-11[1]在d=16(mm)時,取
3.2 計算高速鋼麻花鉆軸向切削力及扭矩
3.2.1 計算單個鉆頭軸向切削力
查表3-10[1]得,軸向切削力公式
(3.1)
查表3-10[1]得,加工鋼()時:
(1) 當鉆頭未磨損時
(2) 當鉆頭未磨損時
3.2.2 計算單個鉆頭扭矩
查表3-10[1]得
扭矩公式
(3.2)
查表3-10[1]得
(1) 鉆頭未磨損
(2) 鉆頭磨鈍后
圖3.2 雙頭鉆頭及傳動系統(tǒng)中各齒輪和軸所受轉矩簡圖
3.3 鉆頭中各軸及齒輪的計算
3.3.1 齒輪8、9、10、11的計算
1.選用直齒圓柱齒輪傳動。選定齒輪8,齒輪11為配對齒輪副中的小齒輪。齒輪9,齒輪10為配對齒輪副中的大齒輪。且兩對齒輪副完全相同,故計算時只計算一對齒輪副8、11即可。小齒輪8轉速,設計工作壽命15年,每年工作300天,兩班制,每班8小時。
初選:小齒輪材料(調制)硬度280(HBs);齒數
大齒輪材料45鋼(調制)硬度240(HBs);齒數
2.按齒面接觸強度計算
由設計計算公式進行計算,即
(3.3)
(1)確定公式內的各計算數值
1)試選載荷系數
2)小齒輪傳遞的轉矩
由2.2.2計算所得的鉆頭扭矩即為小齒輪傳遞扭矩
3)由表10-7[2]選取齒寬系數。
4)由表10-6[2]查的材料的彈性影響系數
5)由圖10-21d[2]按齒面硬度查的小齒輪的接觸疲勞強度極限,大齒輪的接觸疲勞強度極限
6)由式 (3.4)
計算應力循環(huán)次數
式中
n—齒輪轉速
j—齒輪每轉一圈,同一齒面嚙合次數
Lh—齒輪工作壽命(h)
u—齒輪傳動比
7)由圖10-19[2]取接觸疲勞壽命系數,;。
8) 計算接觸疲勞許用應力,取失效概率為,安全系數S=1,由式
(3.5)得
(2)計算
1)計算小齒輪分度圓直徑,代入中較小的值。
故,取整
2)計算圓周速度v。
3)計算齒寬b
4)計算齒寬與齒高之比
5)計算載荷系數
根據,7級精度,由圖10-8[2]查得動載系數
直齒輪,
由表10-2[2]查得使用系數;
由表10-4[2]用插值法查得7級精度、小齒輪相對支撐非對稱布置時,
由,,查圖10-13[2]得;故載荷系數
6)按實際的載荷系數校正所得的分度圓直徑
7)計算模數
3.按齒根彎曲強度設計
按齒根彎曲強度設計公式為
(3.6)
(1)確定公式內的各計算數值
1)由圖10-20c[2]查得小齒輪8的彎曲疲勞強度極限;大齒輪9的彎曲疲勞強度極限;
2)由圖10-18[2]取彎曲疲勞壽命系數,;
3)計算彎曲疲勞許用應力。
取彎曲疲勞安全系數S=1.4,由下式得
4)計算載荷系數
5)查取齒形系數。
由表10-5[2]查得 ,。
6)查取應力校正系數。
由表10-5[2]查得 ,
7)計算大、小齒輪并加以比較
大齒輪的數值大
(2)設計計算
對比計算結果,由齒面接觸疲勞強度計算的模數大于由齒根彎曲疲勞強度計算的模數,由于齒輪模數的大小主要取決于彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力,僅與齒輪直徑(即模數與齒數的乘積)有關,可以取由彎曲疲勞強度算得的模數1.131并就近圓整為標準值,按接觸疲勞強度計算得的分度圓直徑,算出小齒輪齒數
大齒輪齒數
這樣計算出的齒輪傳動,既滿足了齒面接觸疲勞強度,又滿足了齒根彎曲疲勞強,并做到了結構緊湊,避免浪費。
4.幾何尺寸計算
(1)計算分度圓直徑
(2)計算中心距
(3)計算齒輪寬度
圓柱齒輪的實用齒寬在按計算后適當圓整,且常將小齒輪的齒寬在整值的基礎上人為的加寬,以防大小齒輪因裝配誤差產生軸向錯位,導致嚙合齒寬減小而增大齒輪單位齒寬的工作載荷。
故取,
3.3.2 齒輪5、6、7的計算
<1>.選用直齒圓柱齒輪傳動。選定齒輪5,齒輪6,齒輪7為相同的齒輪。并設計齒輪6與齒輪9合為雙聯齒輪,并設計齒輪7與齒輪10合為雙聯齒輪。又因為已算出齒輪9、10的模數為1.5,所以給定齒輪5、6、7模數為1.5。工作壽命15年,每年工作300天,兩班制,每班工作8小時。
初選: 齒輪材料45鋼(調制)硬度240(HBs);齒數
故得
<2>齒輪的校核
因為齒輪5,6,7為相同材料、相同模數、相同齒數的材料,且齒輪5受到的轉矩為齒輪6、7的兩倍。故,只需分析校核齒輪5即可
1.齒輪傳遞的轉矩
計算齒輪6、7的扭矩
式中
—傳動效率,
計算齒輪5的轉矩
2.計算過程參照齒輪8、9、10、11的計算過程
計算后的
2.幾何尺寸計算
(1)計算分度圓直徑
(2)計算中心距
(3)計算齒輪寬度
圓柱齒輪的實用齒寬在按計算后適當圓整,且常將齒輪6、7的齒寬在整值的基礎上人為的加寬,以防齒輪因裝配誤差產生軸向錯位,導致嚙合齒寬減小而增6、7齒輪單位齒寬的工作載荷。
故取,
3.4 雙頭鉆頭內各軸的設計
設定軸的材料為45鋼
3.4.1 計算軸I、VIII的最小直徑
由3.2.2知單個鉆頭扭矩
(3.7)
式中
— 軸1最細處直徑,。
— 軸1傳遞的扭矩,。
— 許用扭轉切應力,。
由于
又查表15-3[2]的為25
當軸截面上開有鍵槽時,應增大軸徑以考慮鍵槽對軸強度的削弱。對于直徑的軸,有一個鍵槽時,軸徑增大;有兩個鍵槽時,應增大
故,;取整值
3.4.2 計算軸II、VII的最小直徑
軸2、7不轉動,故不受扭矩
故給定軸2、7直徑為,
齒輪,的轉矩為:
3.4.3 計算軸III的最小直徑
查表15-3[2]的為25
軸截面上開有鍵槽,應增大軸徑以考慮鍵槽對軸強度的削弱。對于直徑的軸,有一個鍵槽時,軸徑增大;有兩個鍵槽時,應增大
故,;取整數值
4 傳動系統(tǒng)減速設計
4.1減速箱內各齒輪設計
設定齒輪箱中兩對齒輪與;與有相同的齒數比 1.5
4.1.1傳動系統(tǒng)減速箱齒輪、的設計
工作壽命15年,每年工作300天,兩班制,每班工作8小時。
初選: 齒輪4材料45鋼(調制)硬度240HBs;齒輪3材料(調制)硬度280HBs。齒數,。
1.計算齒輪3的扭矩
小齒輪傳遞扭矩
式中
—傳動效率,
2.計算過程參照齒輪8、9、10、11的計算過程
計算的
(1)
大齒輪齒數
(2)幾何尺寸計算
1)計算分度圓直徑
2)計算中心距
3)計算齒輪寬度
圓柱齒輪的實用齒寬在按計算后適當圓整,且常將小齒輪的齒寬在整值的基礎上人為的加寬,以防大小齒輪因裝配誤差產生軸向錯位,導致嚙合齒寬減小而增大齒輪單位齒寬的工作載荷。
故取,
4.1.2傳動系統(tǒng)減速箱齒輪、的設計
由于齒輪副、與齒輪副、有相同的傳動比,又因為齒輪副、比齒輪副、傳遞的轉矩大,故齒輪副、可選用與齒輪副、完全相同的齒輪
,
4.2 雙頭鉆頭內各軸的設計
設定軸的材料為45鋼
4.2.1 計算軸III的最小直徑
查表15-3[2]的為25
軸截面上開有鍵槽,應增大軸徑以考慮鍵槽對軸強度的削弱。對于直徑的軸,有一個鍵槽時,軸徑增大;有兩個鍵槽時,應增大
故,;取整數值
4.2.2 計算軸IV的最小直徑
查表15-3[2]的為25
軸截面上開有鍵槽,應增大軸徑以考慮鍵槽對軸強度的削弱。對于直徑的軸,有一個鍵槽時,軸徑增大;有兩個鍵槽時,應增大
故,;取整數值
4.2.3 計算軸V的最小直徑
查表15-3[2]的為25
軸截面上開有鍵槽,應增大軸徑以考慮鍵槽對軸強度的削弱。對于直徑的軸,有一個鍵槽時,軸徑增大;有兩個鍵槽時,應增大
故,;取整數值
4.2.4 計算軸VI的最小直徑
查表15-3[2]的為25
軸截面上開有鍵槽,應增大軸徑以考慮鍵槽對軸強度的削弱。對于直徑的軸,有一個鍵槽時,軸徑增大;有兩個鍵槽時,應增大
故,;取整數值
5 傳動系統(tǒng)電機的選用
由3.2.2知單個鉆頭扭矩:
故,
所需電機功率
式中
—軸6的轉速, 注:(為齒輪1的轉速)
—軸6的轉矩,
—所需電機功率,
綜上,由表12-1[3]得,選用型電機,電機額定功率2.2kW,同步轉速1500r/min,滿載轉速1430r/min,電機質量34kg。
6 工件的夾緊計算及其選擇
6.1 工件的夾緊
6.1.1 夾緊基本原理理論
夾緊的目的是保證工件在夾具中的定位,不致因工時受切削力,重力或伴生離心力,慣性力,熱應力等的作用產生移動或振動。夾緊裝置是夾具完成夾緊作用的一個重要的而不可以缺少的組成部分,除非工件在加工過程中所受到的各種力不會使它離開定位時所需確定的位置,才可以設有夾緊裝置。夾緊裝置設計的優(yōu)劣,對于提高夾緊的精度和加工作效率,減輕勞動強度都有很大的影響。
夾緊對象特征
加工信息特征
夾緊要求特征
動力源項
元功能解項
技術性
經濟性
社會性
應用實例
技術參數
夾緊功能原理方案設計
功能項
原理解項
評價項
備注項
圖3.1 夾緊功能原理方案設計組成結構
分析各類夾具的基本功能要求可以將夾緊裝置概括為兩類:第一類是性能要求,主要指定位唯一性、定位穩(wěn)定性,夾緊穩(wěn)定性及總體約束;第二類要求是夾具的結構剛性、成本及易操作性、易于維修等要求。本設計目錄中功能項包括夾緊對象特征項、加工信息特征及夾緊要求特征。
夾緊對象特征項目:包括夾緊對象類型、材料、形狀、體積、數量、物理特性、磁性、導電性、剛性等信息。
加工信息特征項:加工類型、機加工、裝配、檢測、焊接等、加工參數、切削參數、運動參數、幾何參數等。
夾緊要求特征項:主要指性能要求,包括定位要求、定位基準選擇,如特征點、特征面。夾緊力大小、夾緊方向、夾緊行程、夾緊松開速率,自鎖性等。
元件功能分析:夾緊功能主要包括四種元功能。它們是:定位功能、傳動功能、執(zhí)行功能和分度功能等輔助功能。定位功能由定位元件完成,定位元件按定位面特征分為平面定位元件、圓孔定位元件、外圓定位元件。傳動功能由中間遞力機構完成,該機構一般有三個作用;改變作用力的力一向、大小和自鎖作用。目前常用的有以下機構:斜楔機構、螺旋機構、圓偏心機構、杠桿鉸鏈機構、連桿機構、聯動機構、對中機構、定心機構等。
設計夾緊裝置時,應滿足下述主要要求:[2]
1.夾緊裝置在對工件夾緊時,不應破壞工件的定位,為此,必須正確選擇夾緊力的方向及著力點。
2.夾緊力的大小應該可靠,適當,要保證工件在夾緊后的變形和受壓表面的損傷不致超出允許的范圍。
3.夾緊裝置結構簡單合理,夾緊動作要迅速,操作方便省力,安全。
4.夾緊力或夾緊行程在一定范圍內可進行調整和補償。
6.1.2 夾緊座
在不考慮重力和其它的伴生力的情況下,夾緊力的大小既與切削力的大小有 關,也與切削力對支承的作用有關。
W=KM(f1Rf1+f2Rf2)N(其中K=K1K2K3K4,K1=1.5~2,K2=1.2,K3=1.1~1.3,K4=1.2)
M為切削扭矩
W=1.8×1.2×1.2×1.2×85×(0.2×7+0.2×7)=740.28(N)
Q 需=KP/(f1+f2)=1.8×1.2×1.2×1.2×100/(0.2+0.2)=777.4N
Q 需為切削力
為簡化夾具的成本及考慮工廠實際情況,擬用螺釘夾緊裝置。計算螺釘的夾緊力:W=2QL/ D中/tg(α+φ1)。此公式采用中的數據以M16標準螺紋計算。
α為螺紋升角;t“gα=S/лD中;φ1螺紋摩擦角;D中螺紋中徑;Q人工作用力;其中有f=0.1(螺母端面與工件間的摩擦系數),φ1=6。34,;計算W=836.8(N)。
很明顯,可以使用螺釘夾緊機構。
夾緊座加工要求:1.表面發(fā)藍或其它的防銹處理;2.熱處理:T10A,淬火HRC60~64;滲碳深度0.2~0.6mm;3.銳邊無毛刺;4.螺紋孔以國家標準的M16配做。
6.1.3 夾緊壓板
夾緊支板和夾緊座的目的相同,都是夾緊工件的,保證在加工過程中工件不移動,限制它的自由度,夾緊支板的工件接觸裝置擬用夾緊螺釘,支板在其中是輔助支承的,最終起決定作用的還是人的操作,不同人操作同樣的夾具或者是在夾緊的過程中用力和速度的不同,都對工件的加工精度有影響。由于取用的夾緊螺釘是一樣的,前面已經計算過了,在此不重復了。[5]具體的結構見零件圖。
螺旋夾緊機構是指螺旋副與其他元件(壓板、墊片、螺釘等)相結合,對工件實施夾緊的機構。螺旋夾緊機構在生產中使用極為普遍。螺旋夾緊機構結構簡單,夾緊行程大,且自鎖性能好,增力比大,是手動夾緊中用的最多的一種夾緊機構。常用的夾緊形式有:單個螺旋夾緊機構、螺旋壓板夾緊機構。
圖3.2 壓板
夾緊壓板加工要求:1.表面發(fā)藍或其它的防銹處理;2.熱處理:T10A,淬火HRC38~45;滲碳深度0.2~0.6mm;3.銳邊無毛刺;4.螺紋孔以國家標準的M27配做。[1] [6]
6.1.4 夾緊螺釘
根據公司的實際情況選用夾緊螺釘,人工操作。節(jié)省成本,制造夾具的時間縮短并以國家標準的規(guī)格生產。
夾緊功能的原理方案設計目錄是設計目錄應用的具體體現,由于夾具種類繁多,如何對其進行抽象化整理,以利于運用設計目錄的結構形式,還需要更深入的研究。建立原理方案設計目錄涉及的知識面較廣,難度較大,目錄本身的構造規(guī)律也很復雜。這里僅作最基本的原理方案設計研究。
為使工件在定位件上所占有的規(guī)定位置在加工過程中保持不變,就要用夾緊裝置將工件夾緊.保證工件的定位基準與夾具上的定位表面可靠的接觸,防止在加工過程中移動、振動、或變形。
因為此套夾具加工的工件剛度較好,防止了切削力作用是所引起的振動,側面在加上移動壓板的定位,免除夾緊力對加工表面幾何形狀精度的不利影響夾具的夾緊選用加工表面的松態(tài)夾緊,夾緊力的作用線不通過加工表面的周圍,使加工表面的材料處在自由狀態(tài)下。
6.2 夾緊力的選擇
6.2.1 夾緊力方向
在保證安裝的真確可靠,減少工件的變形,定位方便和在可以減少所需夾緊力的大小的前提下,此套夾具的夾緊方向和工件重力方向和切削方向相同。工件的定位工作面為垂直方向上,則工件的夾緊通過工件的一個定位銷與水平方向的移動壓塊完成。夾緊力的方向為平行重力方向垂直夾緊。[2]
在本次夾具設計中,夾緊力是由中心螺桿和一邊壓板提供的。
6.2.2 夾緊力的作用點
夾緊力的作用點是指夾緊元件與工件相接觸的一小塊面積?,F在夾緊力的方案已定??紤]夾具的結構尺寸特征可以確定夾緊力的作用點個數為2個。
考慮夾緊力作用點的一般要求:[1]
① 夾緊力的作用點應能保持工件定位穩(wěn)定,而不至引起工件發(fā)生位移和偏轉;
② 夾緊力的作用點,應使被夾緊的夾緊變形盡可能的小些;
③ 夾緊力的作用點應盡可能靠近加工表面,以提高定位穩(wěn)定性。
6.2.3 夾緊力的計算
夾緊力的大小重要取決于切削P和重力G,重力是可認為不變的,而切削力在切削的過程中是變化的。影響切削力的大小因素很多,如工件質量的不均勻,加工質量的不均勻,刀具磨損以及切削用量的變化等等。同時夾緊力也和其他因素有關,如夾緊件和工件及工件與定位件間接觸表面的光潔度,工藝系統(tǒng)的剛性等等,因此夾具夾緊力的設計只能對其作初略的估算。
W:實際夾緊力 Wi:理論夾緊力 K:安全系數
安全系數:K= K1×K2×K3×K4
式中: K1-基本安裝系數 K2-加工安裝系數
K3-刀具鈍化系數 K4-切削特點系數
其加工直徑全部為16
刀具:鉆頭 D=16。
則軸向力:見《工藝師手冊》表28.4
F=Cdfk……………………………………3.1
式中: C=420, Z=1.0, y=0.8, f=0.35
k=(
F=420
轉矩
T=Cdfk
式中: C=0.206, Z=2.0, y=0.8
T=0.206
功率 P=
在計算切削力時,必須考慮安全系數,安全系數
K=KKKK
式中 K—基本安全系數,1.5;
K—加工性質系數,1.1;
K—刀具鈍化系數, 1.1;
K—斷續(xù)切削系數, 1.1
則 F=KF=1.5
鉆削時 T=17.34 N
切向方向所受力:
F=
取
F=4416
F> F
所以,時工件不會轉動,故本夾具可安全工作。
6.3 氣缸的選型計算
根據氣缸推力拉力的大小要求,選定氣缸使用壓力參數以及缸徑尺寸
氣缸推力計算公式:氣缸推力F1=0.25πD2P
氣缸拉力計算公式F2=0.25π(D2-d2)P
公式式中:D-氣缸活塞直徑(cm)
d-氣缸活塞桿直徑(cm)
P-氣缸的工作壓力(kgf/cm2)
F1,F2-氣缸的理論推拉力(kgf)
為了避免用戶選用時的有關計算,下附雙作用氣缸輸出力換算表,用戶可根據負載、工作壓力、動作方向從表格中選擇合適的缸徑尺寸
雙作用氣缸輸出力表單位Kgf
缸徑
mm
氣缸的理論輸出力(推力)單位:KG/公斤
使用空液壓壓力MPa
0.2
0.3
0.4
0.5
0.6
0.7
0.8
10
1.57
2.36
3.14
3.93
4.71
5.50
6.28
16
4.02
6.03
8.04
10.1
12.1
14.1
16.1
20
6.28
9.42
12.6
15.7
18.8
22.0
25.0
25
9.81
14.7
19.6
24.5
29.4
34.4
39.2
48
16.0
24.1
48.2
40.2
48.3
56.3
64.4
40
25.1
37.7
50.3
62.8
75.4
88.0
100.5
50
39.2
58.9
78.5
98.2
117
137
157
63
62.3
93.5
125
156
187
218
250
80
100
151
201
251
300
352
402
100
157
236
314
393
471
550
628
125
245
368
491
615
736
859
982
160
402
603
804
1005
1206
1407
1608
180
508
763
1018
1272
1527
1781
2036
200
628
942
1257
1571
1885
2199
2514
250
981
1473
1963
2454
2945
3436
3926
480
1608
2412
4816
4021
4825
5629
6448
400
2531
3796
5026
6283
7539
8796
10052
· 選定氣缸的行程:確定工作的移動距離,考慮工況可選擇滿行程或預留行程。當行程超過推薦的最長行程時,要考慮活塞桿的剛度,可以選擇支撐導向或選擇特殊氣缸。
· 選定氣缸緩沖方式:根據需要選擇緩沖形式,無緩沖氣缸,固定緩沖氣缸,可調緩沖氣缸
· 選擇潤滑方式:有給油潤滑氣缸,無給油潤滑氣缸
· 選擇氣缸系列:根據以上條件,按需選擇適當系列的氣缸
· 選擇氣缸的安裝形式:根據不同的用途和安裝需要,選用適當的安裝形式
6.3.1 氣缸的直徑確定
本氣缸屬于單向作用氣缸。根據力平衡原理,單向作用氣缸活塞桿上的輸出推力必須克服彈簧的反作用力和活塞桿工作時的總阻力,其公式為:
式中: - 活塞桿上的推力,N
- 彈簧反作用力,N
- 氣缸工作時的總阻力,N
- 氣缸工作壓力,Pa
彈簧反作用按下式計算:
Gf =
式中:- 彈簧剛度,N/m
- 彈簧預壓縮量,m
- 活塞行程,m
- 彈簧鋼絲直徑,m
- 彈簧平均直徑,.
- 彈簧有效圈數.
- 彈簧材料剪切模量,一般取
在設計中,必須考慮負載率的影響,則:
由以上分析得單向作用氣缸的直徑:
代入有關數據,可得
所以:
查有關手冊圓整,得
由,可得活塞桿直徑:
圓整后,取活塞桿直徑校核,按公式
有:
其中,[],
則:
滿足實際設計要求。
6.3.2 氣缸的選型
經過比較,參考市場上的氣缸類型,選擇一種可靠優(yōu)質的氣缸產品的生產商—速易可(上海)有限公司http://www.tonab.net/about_us.asp。
速易可液壓動(上海)有限公司成立于2004年,從事于空油壓零組件和設備研 究、生產、銷售的自動化廠商,產品以『TONAB』品牌營銷國內外市場,產品主要有空液壓凈化組件、液壓動控制組件、液壓動執(zhí)行組件、輔助組件、空油壓設備,產 品廣泛應用
收藏