【機(jī)械類畢業(yè)論文中英文對照文獻(xiàn)翻譯】控制系統(tǒng)基于現(xiàn)場總線的高壓陶瓷電容器芯片
【機(jī)械類畢業(yè)論文中英文對照文獻(xiàn)翻譯】控制系統(tǒng)基于現(xiàn)場總線的高壓陶瓷電容器芯片,機(jī)械類畢業(yè)論文中英文對照文獻(xiàn)翻譯,機(jī)械類,畢業(yè)論文,中英文,對照,對比,比照,文獻(xiàn),翻譯,控制系統(tǒng),基于,現(xiàn)場總線,高壓,陶瓷,電容器,芯片
編號
無錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
相關(guān)資料
題目: 自動排向機(jī)改造研究
——石墨舟倉結(jié)構(gòu)設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動化專業(yè)
學(xué) 號: 0923272
學(xué)生姓名: 支俊
指導(dǎo)教師: 宋廣雷 (職稱:副教授 )
2013年5月25日
目 錄
一、畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
四、實(shí)習(xí)鑒定表
無錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
開題報(bào)告
題目: 自動排向機(jī)改造研究
——石墨舟倉結(jié)構(gòu)設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動化 專業(yè)
學(xué) 號: 0923272
學(xué)生姓名: 支俊
指導(dǎo)教師: 宋廣雷 (職稱:副教授 )
2012年11月12日
課題來源:本課題來源于企業(yè)橫向研究項(xiàng)目,針對現(xiàn)有二極管針腳排向機(jī)的不足和缺陷,提出改進(jìn)措施,加強(qiáng)在線檢測,減少人工,包括機(jī)械系統(tǒng)和電控系統(tǒng)等。
科學(xué)依據(jù):
1、課題研究的現(xiàn)狀及發(fā)展趨勢
二極管又稱晶體二極管,簡稱二極管。它是一種具有單向傳導(dǎo)電流的電子器件。在半導(dǎo)體二極管內(nèi)部有一個PN結(jié)兩個引線端子,這種電子器件按照外加電壓的方向,具備單向電流的轉(zhuǎn)導(dǎo)性。一般來講,晶體二極管是一個由p型半導(dǎo)體和n型半導(dǎo)體燒結(jié)形成的p-n結(jié)界面。在其界面的兩側(cè)形成空間電荷層,構(gòu)成自建電場。當(dāng)外加電壓等于零時,由于p-n結(jié)兩邊載流子的濃度差引起擴(kuò)散電流和由自建電場引起的漂移電流相等而處于電平衡狀態(tài),這也是常態(tài)下的二極管特性。
二極管的構(gòu)造和符號:
二極管的生產(chǎn)工藝:
焊接→酸洗→模壓→印字→機(jī)包→外揀→包裝
其中焊接又可分為排向、裝填、進(jìn)爐、出爐轉(zhuǎn)換,利用焊片通過一定溫度,使芯片與金屬引線連接,形成歐姆觸角。
酸洗是利用化學(xué)品將晶體表面加以侵蝕,使P-N接面呈現(xiàn)正角比例以獲得最佳的電性品質(zhì)。于晶片表面形成SiO2,以達(dá)到絕緣目的。
模壓是使管芯與外界環(huán)境隔離,避免有害氣體侵蝕,并使表面光潔和具有特定的幾何形狀,起到保護(hù)管芯、穩(wěn)定表面、固定管芯內(nèi)引線,提高二極管機(jī)械強(qiáng)度的作用。
排向機(jī)是二極管生產(chǎn)過程中的關(guān)鍵設(shè)備,可以將二極管針腳有序地排列到石墨舟中,進(jìn)行后續(xù)工序的加工?,F(xiàn)有排向機(jī)勞動強(qiáng)度大,用工人數(shù)多。改善后的排向機(jī)加強(qiáng)了在線監(jiān)測,加入了PLC控制系統(tǒng),完成了生產(chǎn)的自動化,大大提高了二極管的生產(chǎn)效率,減少了人工。
現(xiàn)有排向機(jī)的構(gòu)造:
如圖,針腳通過人工方式在料參中進(jìn)行震動,并有序向上移動,然后來到針腳分流裝置中,進(jìn)行向下移動,針腳分流裝置可以漿成批的運(yùn)輸過來的二極管針腳進(jìn)行分流成為十股針腳,一列一列進(jìn)行向前移動,移動至擋板處。其中彎的或者殘缺的針腳將被擋板擋住,并流入下料盤中,質(zhì)量良好的針腳將有序的一個個豎立地流入擋板下面的槽中,在整個機(jī)器的震動中來到氣缸,氣缸通過左右移動將一排排針腳準(zhǔn)確的安放到上模中,上模與石墨舟通過定位銷進(jìn)行了定位,每一個孔都準(zhǔn)確對齊,針腳在氣缸的左右移動中對齊地放入上模,再由經(jīng)上模準(zhǔn)確的放入石墨舟中,整個機(jī)器由旁邊的控制臺進(jìn)行控制。
然而,舊版的排向機(jī)有一定的不足如下:
(1) 在針腳分流裝置中,雖然整個裝置進(jìn)行過周密的計(jì)算,但是針腳分流仍舊是按照一定的概率進(jìn)行等量分流的,可能會產(chǎn)生某一列或者幾列在分流過程中針腳出現(xiàn)空缺的狀況,這一問題在流水線上繼續(xù)作業(yè)會使石墨舟上出現(xiàn)一列或者幾列的空缺,影響生產(chǎn)效率;
(2) 在料參和下料盤中的針腳都需要通過人為的進(jìn)行補(bǔ)充以及放回,增加了工人的負(fù)擔(dān),并且在一定程度上降低了生產(chǎn)效率,也無法自動排出質(zhì)量有問題的針腳;
(3) 在氣缸出沒有檢測針腳是否空缺的裝置,如果在氣缸前有針腳卡主或者堵塞,有可能出現(xiàn)一列或者幾列的針腳空缺情況,使進(jìn)行排列后的石墨舟可能出現(xiàn)不足或者空缺的情況;
(4) 上模處沒有檢測石墨舟是否每一個孔里面都裝入了針腳的傳感器及控制裝置,無法檢測是否沒個石墨舟工序后針腳是否填滿;
石墨舟在填滿后需要通過人工進(jìn)行移動,并補(bǔ)充新的空的石墨舟,在日生產(chǎn)量巨大的工廠中,大大影響了生產(chǎn)的效率,為企業(yè)帶來不必要的損耗。
2、課題研究的目的和意義
排向機(jī)是二極管生產(chǎn)過程中的關(guān)鍵設(shè)備,可以將二極管針腳有序地排列到石墨舟中,進(jìn)行后續(xù)工序的加工。
改善后的排向機(jī)彌補(bǔ)了現(xiàn)有排向機(jī)的不足和缺陷。在在線監(jiān)測方面得到了加強(qiáng),原本在生產(chǎn)線上掉落的針腳需要工人放回料斗,經(jīng)過改善,可自行回收進(jìn)入料斗。改善前石墨舟針腳排滿后需人工取走,再放上空的石墨舟,改善后由PLC控制自動補(bǔ)給石墨舟,從而減少了人工,提高了二極管生產(chǎn)效率,增加了經(jīng)濟(jì)收益。
另一方面,本次的課題研究是大學(xué)四年所學(xué)知識的一次綜合運(yùn)用,涉及的學(xué)科有機(jī)械制圖、機(jī)械制造技術(shù)基礎(chǔ)、機(jī)電一體化系統(tǒng)設(shè)計(jì)、液壓與氣壓傳動、機(jī)器人技術(shù)及其應(yīng)用等。研究這個課題,不僅讓我們再次復(fù)習(xí)了專業(yè)知識,也讓我們認(rèn)識到了理論知識與實(shí)際生產(chǎn)的關(guān)系。實(shí)際生產(chǎn)離不開理論知識的支持,理論知識可以為實(shí)際生產(chǎn)提供技術(shù)保障,對技術(shù)的改革發(fā)展更是起到?jīng)Q定性作用。而且,這次實(shí)際生產(chǎn)的案例用理論知識來改進(jìn)的例子讓我們?yōu)榻窈蟮墓ぷ魈峁┝藢氋F的經(jīng)驗(yàn)。
研究內(nèi)容:
排向機(jī)是二極管生產(chǎn)過程中的關(guān)鍵設(shè)備,可以將二極管針腳有序地排列到石墨舟中,進(jìn)行后續(xù)工序的加工,勞動強(qiáng)度大,用工人數(shù)多。本課題來源于企業(yè)橫向研究項(xiàng)目,針對現(xiàn)有二極管針腳排向機(jī)的不足和缺陷,提出改進(jìn)措施,加強(qiáng)在線檢測,減少人工。包括機(jī)械系統(tǒng)和電控系統(tǒng)等。
本課題設(shè)計(jì)內(nèi)容以機(jī)電氣一體化技術(shù)為核心,整機(jī)采用PLC控制,要求和原設(shè)備無縫銜接,學(xué)生需掌握機(jī)械工程及自動化專業(yè)相關(guān)基礎(chǔ)理論
本子課題主要完成石墨舟倉結(jié)構(gòu)設(shè)計(jì)。
擬采取的研究方法、技術(shù)路線、實(shí)驗(yàn)方案及可行性分析
(1)實(shí)驗(yàn)方案:
由于現(xiàn)有排向機(jī)有無法自動檢測針腳是否裝滿,石墨舟需要人工搬動,下料盤和料參之間沒有互通裝置等特點(diǎn),我們研究并設(shè)計(jì)了新的排向機(jī)方案如圖,震動料盤連接輸送帶機(jī)器支架,上面有光電傳感器連接至PLC控制器,檢測針腳是否裝滿,針腳輸送器前端連接石墨舟及其家具堆疊起來的器具,每堆約10-15層,可以自動更替,整個過程由PLC控制臺控制。如此,我們實(shí)現(xiàn)了PLC氣動控制與機(jī)械傳動相結(jié)合的新的排向機(jī)的初步結(jié)構(gòu)設(shè)計(jì)。
(2)研究方法:
查閱資料了解國內(nèi)同類了加工設(shè)備的特點(diǎn),分析設(shè)備運(yùn)行原理,確定系統(tǒng)方案,設(shè)計(jì)提升機(jī)機(jī)械結(jié)構(gòu),完善設(shè)計(jì)方案。
(3)技術(shù)路線:
研究計(jì)劃及預(yù)期成果:
研究計(jì)劃:
2012年11月12日-12月2日:按照任務(wù)書要求查閱論文相關(guān)參考資料,填寫畢業(yè)設(shè)計(jì)開題報(bào)告書
2013年12月3日-2013年1月20日:實(shí)習(xí)實(shí)訓(xùn),參與工作。
2013年1月21日-3月1日:按照要求修改畢業(yè)設(shè)計(jì)開題報(bào)告。
2013年3月4日-3月8日:查閱與設(shè)計(jì)有關(guān)的資料不少于10本,外文不少于2本。
2013年3月11日-4月12日:自動排向機(jī)的設(shè)計(jì)說明書編寫。
2013年4月15日-5月10日:繪制自動排向機(jī)零件圖裝配圖。
2013年5月13日-5月17日:完成設(shè)計(jì)說明書、摘要和小結(jié)。
2013年5月20日-5月25日:整理所有資料上交指導(dǎo)教師,答辯。
預(yù)期成果:
彌補(bǔ)現(xiàn)有排向機(jī)的不足和缺陷:在在線監(jiān)測方面加強(qiáng),原本在生產(chǎn)線上掉落的針腳需要工人放回料斗,經(jīng)過改善,可自行回收進(jìn)入料斗。改善后由PLC控制自動補(bǔ)給石墨舟,從而減少人工,提高二極管生產(chǎn)效率,增加經(jīng)濟(jì)收益。
特色或創(chuàng)新之處:
排向機(jī)是二極管生產(chǎn)過程中的關(guān)鍵設(shè)備,可以將二極管針腳有序地排列到石墨舟中,進(jìn)行后續(xù)工序的加工。
改善后的排向機(jī)彌補(bǔ)了現(xiàn)有排向機(jī)的不足和缺陷。在在線監(jiān)測方面得到了加強(qiáng),原本在生產(chǎn)線上掉落的針腳需要工人放回料斗,經(jīng)過改善,可自行回收進(jìn)入料斗。改善前石墨舟針腳排滿后需人工取走,再放上空的石墨舟,改善后由PLC控制自動補(bǔ)給石墨舟,從而減少了人工,提高了二極管生產(chǎn)效率,增加了經(jīng)濟(jì)收益。
已具備的條件和尚需解決的問題:
條件:
1、學(xué)??商峁╅_發(fā)用計(jì)算機(jī)及編程工具,圖書館有相關(guān)書籍和文獻(xiàn)檢索系統(tǒng);
2、學(xué)生通過前期課程的學(xué)習(xí)和設(shè)計(jì)環(huán)節(jié)的培養(yǎng)已具有機(jī)電系統(tǒng)設(shè)計(jì)的基礎(chǔ);
3、學(xué)生具有掌握新技術(shù)和新工藝的能力;
4、指導(dǎo)教師具有從事相關(guān)技術(shù)研究及其應(yīng)用的科研背景。
問題:
(1)石墨舟倉方案確定;
(2)結(jié)構(gòu)設(shè)計(jì)和圖紙實(shí)現(xiàn);
指導(dǎo)教師意見
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領(lǐng)導(dǎo)簽名:
年 月 日
英文原文:
Control System of Chip High Voltage Ceramic Capacitor
Based on PROFIBUS
Chen Zigen Li XunboFengPeifuLvQiang Yu Sijia(School of Mechatronics Engineering, University of Electronic Science and Technology of China,
Chengdu 610054, China)
Abstract: As the whole electric-machine is becoming smaller and thinner, function parts are becoming more and more high-voltage resistant, the chip capacitor should do some changes to meet these requirements. For this reason, we are looking for a set of automated equipment to satisfy the requirements above. In view of the present situation, a control system of automated production line based on PROFIBUS has been proposed. By means of analyzing the basic traits and structure of PROFIBUS network, this paper established a hardware structure of the control system of chip high voltage ceramic capacitor (CCH) based on PROFIBUS, realized data-transmitting and function-controlling, finished the hardware and software configuration for the whole system .This system has been successfully used in some enterprise ,realized the automated production of CCH, cut down the costs ,improved labor productivity and obtained good economic effectiveness.
Keywords: PROFIBUS; Control System; Configuration; PLC.
1 Introduction
With the rapidly development of LCD, LCD TV and laptop, there are more and more surface mount component(SMC)[1], chip capacitor is one of them .Chip ceramic capacitor is multilayer ceramic capacitor(MLCC)[2], but the making of Small-capacity MLCC is relatively difficult in high voltage capacitor . The performance of chip single layer ceramic capacitor is superior to that of MLCC, and it is much more competitive than MLCC as for technology and costs. With the market demand increasing, more and more chip single layer ceramic capacitors are used[3]. In recent years, MLCC is developing in the direction of high voltage, but within the country it remains in the starting stage. Some high voltage circuit,, for example, high voltage arrester, laser device and electron microscope, MLCC which used in these high voltage circuits is Chip capacitor enveloped by colophony, the further integration of high voltage circuit was restricted. So, we devised chip high voltage ceramic capacitor(CCH), which filled in this gap. In the interests of market demand, it is very urgent to research the control system of CCH based on PROFIBUS.
Field bus is a communication network which mainly used in process and manufactures automation ,which is the integration of field communication network and control system [4]. This is also a combination of computer, communication and control technology, is a new generation control system which is distributed and opened up [5]. Meanwhile, the control system of CCH is distributed and opened up network. The slave station each has their roles in the network of this control system. Therefore it is feasible to apply field bus to the control system of CCH .PROFIBUS is a field bus, depending on its distinguished traits, mighty reliability and particular design. Field bus especially fits to inter connecting of the industry process monitoring equipments [4].Furthermore it is figured as one of the most promising field bus. Based on analyzing the development of CCH and PROFIBUS, the control system of CCH based on PROFIBUS is designed.
2 Profibus
PROFIBUS is one of the most widely used fieldbus, which uses a token-based medium access control mechanism that is a version of the Timed Token Protocol [6] and the MS (master-slave) way between the master and their slaves. In the PROFIBUS protocol, a token circulates between the stations of a logical ring, which is implemented on a physical bus .In the logical ring system, Master stations manage the token and control communications with the Slave stations, which are devices connected to the bus that cannot transmit unless authorized by a master, but every station would become the master station if it obtains the token and the token time. Messages are transmitted in a message cycle, which comprises an action frame (request or send request frame), a reply frame (acknowledgement or response frame) and possible retires [7].
The typical structure of PROFIBUS-DP system includes mono-master and multi-master system .Generally, token passing mode is adopted for data transmission among the masters. MS (master-slave)polling mode is adopted for data exchange between the masters and their slaves. The operation of PROFIBUS-DP is based on MS relationship among the devices connected to the network. In particular ,each master is assigned a set of slaves which it regularly polls on a periodic basis. The right to access the network (and hence to poll the slaves) is regulated by a token circulating among the masters which form a logical ring through this way. If the network works properly, each master may hold the token for the time necessary to perform all its scheduled operations .Then the token is passed to the subsequent master in the logical ring. The time employed by the token to pass through all the masters of the network is defined as the PROFIBUS-DP cycle time and corresponds to the period with which the slaves are polled [8].
3 Structure of Hardware System
This system is used for automated control of CCH production line, so PROFIBUS-DP network is adopted. The whole system consists of one master ,two slaves and some field devices. Slave A is mainly used to gather the input signal which comes from the switching sensors of the lead feeding machine ,tin-print machine and assemble machine, in the meantime, its output signal control cylinder solenoid valve ,vacuum valve and electromagnetic relays. Slave B is mainly used to gather the input signal which comes from the switching sensors of the lead discharging machine, and output signal to control cylinder solenoid valve, vacuum valve and electromagnetic relays.
The central processing unit (CPU) of this control system adopts the German company’s Siemens SIMATIC S7-300 series’ medium-sized programmable logic controller (PLC) 315-2DP, which possesses fast processing speed, high reliability, strong anti-jamming capability and is capable of controlling medium-sized complex systems .When an automatic control system is set up, the simplest structure of this system is the mono-master DP system. Generally, we adopt MS communication mode. According to the principle of MS communication, the master exchanges data with its slaves by polling. These control systems are varying because of their different task; therefore two kinds of network structures are usually adopted, which will be described below.
The first structure of the network system is shown in Fig.1. It is a simple mono-master DP system .The master station consists of PLC and PC. And its slave is made of the bus interface module and some field devices. The other I/Os, for example, sensors and switches, are connected to the PLC of master. PC is used to edit and debug program. The tasks of the master are to monitor and control each slave from long distance. Besides, the control arithmetic of this system is done in the master. It is used to control these slaves according to the request of whole control system. Via the bus interface module, the field device is connected to the PROFIBUS-DP network. The slave station receives the controlling command from its master and controls that field devices. With the development of field bus technology, more and more I/O modules are designed. The structure shown in Fig.1 is feasible and convenient. In this case, the slaves receive data from DP network by its communication control module.
In order to further improve the performance of control each slave, it is suggested that the structure of network system shown in Fig. 2 should be adopted .The difference between the structure of system shown in Fig. 2 and Fig. 1 is that the slave in Fig.2 is based on I/O module BL20, DP bus communication modules ,power modules and switching of I/O modules are provided by the Germany Turck Company. The structure of network is still a mono-master DP system .The primary task of master is the same as the system discussed above shown in Fig. 1. It can monitor every slave in long distance and realize the control arithmetic. The slaves connect with the I/O module which adopts vector control mode, and the I/O moduleBL20 connects with the field device. In this way, we can control the entire system better.
The DP masters exchange various message with their slaves. These message includes the services of SRD (send and require responsive data) and SDN(send data with no acknowledge). The DP master sends data to their slaves and receives the data from their Slaves within the DP polling cycle time. To increase the reliability of the data transmission process ,there are mandatory services for the master station .The services offered are shown in Fig.3 .It is quite significant to set up this control system based on PROFIBUS-DP. In this way, the cable length can be reduced, the structure of system becomes simple, the reliability of system is improved, and it makes designing more convenient. What’s more, the control system possesses the highly ability of expansion because the mode of design is modularized.
4 Structure of Software System
In order to realize the control system based on PROFIBUS-DP network, hardware configuration of PROFIBUS-DP network must be done via STEP7 5.2 version software. The application software of monitoring can be edited by configuration software MCGS or the others. But in this control system, we monitor the whole system through MCGS. They will be described below.
4.1 Slave Monitor
This system adopts SIMATIC S7-300 which is supported by programming tool STEP7 V5.2 to complete the hardware configuration, parameter setting, PLC programming, testing, debugging and document processing. The hardware configuration flow diagram is shown in Fig.4.Program consists of organization block, function and function block ,system function and system function block and data block. The user’s program in the DP master controls and monitors the communication on PROFIBUS-DP by special SIMATIC S7 FC blocks. The FCs carries out the following tasks: (1) transfer output data fromS7 CPU to field device, Vice versa; (2) monitor and diagnose scene equipment.
4.2 Master Monitor
The user application system created by MCGS consists of control window, equipment window, user window, real-time database and operating strategy. In this system, according to the practical working condition, the control window is chip capacitor monitoring system; the main equipment are lead feeding machine, lead discharging machine, tin-print machine and assemble machine. The established user window are shear lead, lead feeding, tin-printing ,transmitting, product recording, discharging and capacitance assemble. The real-time database consists of the scene data of the assembly-line and the parameter of real-time processing which includes the working data of various devices, emergency situations ,alarming parameters, etc. In the strategy, we mainly adopt startup strategy, circulation strategy, alarming strategy, matter strategy and exiting strategy. Through real-time monitoring, we get to know each device’s working condition and guarantee the entire production process going smoothly, which has met the requirements of remote monitoring in producing process. The overall monitoring of Master Station is shown in Fig. 5.
5 Conclusion
It is proved by practice that this system can satisfy the demand of control in accuracy, real-time capacity and have high reliability, simple structure, and relatively low prices as well. It is applied to the production field and is able to quickly meet the needs of mass production in CCH mass production, making the whole process achieves production automation and enhance the company’s competitiveness in the market, so that enterprises gradually meet the requirements of industrial modernization.
References
[1] Xiao Yongshan, Song Fumin, Liu Shaojun. Survey onlacement Equipment of SMC/SMD.Equipment forlectronic Products Manufacturing, Sum.143, No.12,p.11-17, Dec.2006.
[2] Yang Bangchao, FengZhesheng, Lu Yun, Current Statusnd Tendency of MLCC Technology, Electronicomponents& Materials,Vol.20, No.6, pp. 17-19.2001.
[3] Zhang Shiying, Wang Yan, LuoShiyong et al, Type CCHigh Voltage Ceramic Capacitors, electronic components& materials, Vol.23, No.6,pp.10-13, Jun. 2004.
[4] Li Zhengjun, Field Bus and Application, mechanism press,2006.
[5] Cui Zhijin, Fieldbus Technology and Its Trend, Journal ofShanghai Maritime University, Vol. 22,No. 1, pp.81-83,Mar. 2001.
[6] R. M. Grow, “A timed token protocol for local areanetworks,” In Proceedings of Electro’82, Token AccessProtocols, pp. 1–7, May 1982.
[7] L.Lo Bello, O.Mirablla. A Multi-Ring Scheduling Strategyfor Profibus Networks.In Proceedings of the 27th AnnualConference of the IEEE Industrial Electronics Society,Vol.1, pp.2144-2148, Nov.2001.
[8] S.Vitturi, Stochastic model of the Profibus DP cycle time,IEEE Proceedings Science, Measurement and Technology,Vol. 151, No. 5, pp.335-342, Sept. 2004.
Author BiographyChen Zigen (1984-), male, graduate of School of MechatronicsEngineering, University of Electronic Science and Technologyof China, is engaged in research of Algorithm and automaticcontrol system.
中文翻譯:
控制系統(tǒng)基于現(xiàn)場總線的高壓陶瓷電容器芯片
(機(jī)電一體化工程學(xué)校,中國電子科技大學(xué),成都 610054,中國)
摘要:由于現(xiàn)在電動機(jī)整體正變得更小,更薄,功能部件越來越耐高壓,片式電容應(yīng)該做一些改變,以滿足這些要求。出于這個原因,我們正在尋找一種自動化設(shè)備,以滿足上述要求。鑒于目前的情況,我們提出了基于現(xiàn)場總新的被檢定的自動化生產(chǎn)線的控制系統(tǒng)。通過總線網(wǎng)絡(luò)的基本特征和結(jié)構(gòu)分析,本文建立了一個高壓陶瓷電容器芯片(CCH)?;诂F(xiàn)場總線控制系統(tǒng)的硬件結(jié)構(gòu),實(shí)現(xiàn)數(shù)據(jù)傳輸和控制功能,完成了硬件和軟件配置整個系統(tǒng)。這個系統(tǒng)已成功地在一些企業(yè)中使用,實(shí)現(xiàn)了高壓陶瓷電容器芯片的自動配對生產(chǎn),降低成本,提高勞動生產(chǎn)率,取得了良好的經(jīng)濟(jì)效益。
關(guān)鍵詞:現(xiàn)場總線;控制系統(tǒng);配置;PLC。
1. 說明
隨著液晶顯示器,液晶電視和筆記本電腦的迅速發(fā)展,有越來越多的表面貼裝元件(SMC),片式電容就是其中之一。片式陶瓷電容器是多層陶瓷電容器(MLCC),但在高電壓電容中,生產(chǎn)小容量MLCC的是比較困難的。芯片單層陶瓷電容器比MLCC的性能優(yōu)越,它是技術(shù)和成本遠(yuǎn)比MLCC有競爭力。隨著市場需求的增加,人們越來越多的使用芯片單層陶瓷電容器。近年來,MLCC在高電壓的方向發(fā)展,但在國內(nèi)仍然在起步階段。例如,一些高電壓電路,高壓避雷針,激光設(shè)備,電子顯微鏡,在這些高電壓電路用于MLCC用于電容由樹脂包膜,但是高壓電路的進(jìn)一步集成受到限制。因此,我們設(shè)計(jì)了芯片高壓陶瓷電容器(CCH),從而填補(bǔ)這一差距。優(yōu)于市場利益的需求,研究基于現(xiàn)場總線CCH的控制系統(tǒng)是非常緊迫的。
現(xiàn)場總線是一種通信網(wǎng)絡(luò),主要用于工藝和生產(chǎn)自動化,這是通信網(wǎng)絡(luò)和控制系統(tǒng)兩個領(lǐng)域的集成。這也是計(jì)算機(jī),通信和控制技術(shù)的結(jié)合,是產(chǎn)生并開發(fā)出的新一代控制系統(tǒng)。同時,CCH控制系統(tǒng)產(chǎn)生并開辟了網(wǎng)絡(luò)。從站在該控制系統(tǒng)的網(wǎng)絡(luò)中各自都具有自己的角色。因此,應(yīng)用現(xiàn)場總線的CCH控制系統(tǒng)是可行的?,F(xiàn)場總線是一種現(xiàn)場總線,取決于其杰出的特質(zhì),強(qiáng)大的可靠性和特別設(shè)計(jì)的。現(xiàn)場總線,尤其適用于除工業(yè)過程監(jiān)控設(shè)備的連接。此外,它被認(rèn)為是最有前途的現(xiàn)場總線之一。CCH和現(xiàn)場總線,CCH控制系統(tǒng)是基于現(xiàn)場總線發(fā)展分析的基礎(chǔ)上設(shè)計(jì)。
2. 現(xiàn)場總線
現(xiàn)場總線是使用最廣泛的現(xiàn)場總線,它使用一個以象征為基礎(chǔ)的介質(zhì)存取控制機(jī)制,并且定時指令的一個版本協(xié)議與MS(主站和伺服站點(diǎn))的在主站和伺服站點(diǎn)之間的方式。在現(xiàn)場總線協(xié)議之間的一種象征性的循環(huán)站的邏輯環(huán)在現(xiàn)實(shí)的總線上執(zhí)行。在邏輯環(huán)系統(tǒng)中,主站管理記號并控制與伺服站點(diǎn)的通信,伺服站點(diǎn)站點(diǎn)的設(shè)備與不能傳輸信號除非是由主站授權(quán)的總線連接,但是每一個站點(diǎn)如果獲得了記號并且有時間的話都可以成為主站站點(diǎn)。信息在一個由動作環(huán)節(jié)(申請或發(fā)送申請環(huán)節(jié))、反應(yīng)環(huán)節(jié)(接受或反映環(huán)節(jié))、和可能的回收環(huán)節(jié)組成的信息環(huán)中傳遞。
DP現(xiàn)場總線總線系統(tǒng)的典型結(jié)構(gòu),包括(mono)主站點(diǎn)、多站點(diǎn)系統(tǒng)。 一般來說,指令傳遞方式進(jìn)行數(shù)據(jù)傳輸采用主站。MS(主站和伺服站點(diǎn))推送模式采用主站和他的伺服站點(diǎn)質(zhì)檢的數(shù)據(jù)傳輸進(jìn)行。DP現(xiàn)場總線的運(yùn)作是基于MS裝置連接到網(wǎng)絡(luò)。特別的,每一臺主站都被指派了一組定期上傳數(shù)據(jù)的伺服站點(diǎn)。通過這種方式,有權(quán)獲得網(wǎng)絡(luò)(并從而推送伺服站點(diǎn))是一種象征性的循環(huán)中規(guī)定的來自于臨時邏輯環(huán)的主站。如果網(wǎng)絡(luò)順利,各個主站都可表示為足夠的時間來完成所有計(jì)劃行動。然后指令傳遞到接下來的主站所在的邏輯環(huán)上。時間受限于標(biāo)志穿過所有主站的定義是:DP現(xiàn)場總線網(wǎng)絡(luò)周期和對應(yīng)的伺服站點(diǎn)周期都參與了推送數(shù)據(jù)。
3. 硬件系統(tǒng)結(jié)構(gòu)
這種系統(tǒng)用于CCH的自動控制生產(chǎn)線,因此采用DP現(xiàn)場總線網(wǎng)絡(luò)。整個系統(tǒng)由一個主站,兩個伺服站點(diǎn)和一些現(xiàn)場設(shè)備組成。主站A主要是用來收集來自于鉛料機(jī),tin-print機(jī)和裝配機(jī)開關(guān)傳感器的輸入信號,,同時,其輸出信號控制缸電磁閥、真空閥門和電磁繼電器。伺服站點(diǎn)B主要是用來收集來自于開關(guān)傳感器的鉛排放機(jī)的輸入信號而輸出信號用于控制圓柱螺線閥、真空閥門和磁力繼電器。
中央處理單元(CPU),該控制系統(tǒng)采用德國西門子公司的“S7 - 300系列”采用SIMATIC中型可編程邏輯控制器(PLC)315 - 2 - DP,具有處理速度極快,可靠性高,抗干擾能力強(qiáng),能夠控制中型的復(fù)雜系統(tǒng)。當(dāng)建立一個自動控制系統(tǒng)時,該系統(tǒng)的最簡單的硬件結(jié)構(gòu)是mono-master DP系統(tǒng)。一般來說,我們采用MS信息傳輸模式。根據(jù)MS信息傳輸?shù)脑瓌t,主站與伺服站點(diǎn)通過推送信息進(jìn)行交流。這些控制系統(tǒng)是不同的,因?yàn)樗麄兊牟煌娜蝿?wù),因此兩種網(wǎng)絡(luò)結(jié)構(gòu)通常是采用將下面描述。
第一個結(jié)構(gòu)的網(wǎng)絡(luò)系統(tǒng)是顯示在圖1。這是一個簡單mono-master DP系統(tǒng)。 主站站點(diǎn)由PLC和電腦組成。它的伺服站點(diǎn)由總線接口模塊和一些現(xiàn)場設(shè)備等構(gòu)成。其他的I /O系統(tǒng),例如,傳感器和開關(guān),被連接到主站的PLC。電腦是用來編輯和調(diào)試程序的。主站的任務(wù)是監(jiān)視遠(yuǎn)距離和控制每個伺服站點(diǎn)。此外,該系統(tǒng)的控制算法是在主站中完成的。它是根據(jù)整個控制系統(tǒng)用來控制伺服站點(diǎn)的要求。通過總線接口模塊、現(xiàn)場設(shè)備連接到DP現(xiàn)場總線網(wǎng)絡(luò)。伺服站點(diǎn)站點(diǎn)接收控制命令它主站和現(xiàn)場設(shè)備的控制。隨著現(xiàn)場總線技術(shù)的發(fā)展,越來越多的I / O模塊被設(shè)計(jì)出來。顯示在圖1上結(jié)構(gòu)是可行的、方便的。在這種情況下,伺服站點(diǎn)通過通訊控制模塊從DP網(wǎng)絡(luò)接收數(shù)據(jù)。
為了進(jìn)一步提高其性能的控制每一個伺服站點(diǎn),圖2 顯示的網(wǎng)絡(luò)的結(jié)構(gòu)系統(tǒng)應(yīng)該被采納。結(jié)構(gòu)之間的區(qū)別在圖2顯示系統(tǒng)和圖1是,圖2中的伺服站點(diǎn)是基于在I / O模塊,DP總線式通信模塊、電源模塊和交換的I / O模塊由德國圖爾克的公司生產(chǎn)的。網(wǎng)絡(luò)的結(jié)構(gòu)仍然是一個mono-master DP系統(tǒng)。主站的首要任務(wù)是和之前圖1上討論的系統(tǒng)相同的。它可以遠(yuǎn)程監(jiān)控
收藏