購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
新拌混凝土的性能
作者:H.-J. Wierig
新拌混凝土為水、水泥、集料和外加劑(如果有的話)的混合物。攪拌后,新拌混凝土的操作如輸送、澆注、密實和終飾也會顯著影響硬化混凝土的性能。組成材料在施工的不同時期保持在混凝土中的均勻分布及完全密實是很重要的。若這些條件不理想,成品硬化混凝土的性能如強度和耐久性就有不利影響。
新拌混凝土影響完全密實的特性是其稠度、流動性和密實性。在混凝土實踐中這些一起被稱為和易性。混凝土維持其均勻性的能力由其穩(wěn)定性控制,穩(wěn)定性又取決于稠度和粘聚性。由于對混凝土拌和物運輸、澆注和搗固采用的方法與澆注構(gòu)件的性質(zhì)一樣隨工程不同而異,因此相應的和易性和穩(wěn)定性要求也會改變。對特定工作新拌混凝土的適應性的評定在某種程度上總存在人為判斷的問題。
盡管很重要,但塑性混凝土的行為通常被忽視。建議學生應學會鑒定塑性狀態(tài)混凝土的不同特性的重要性,了解在包括澆注混凝土結(jié)構(gòu)的施工操作時如何去改變它們。
和易性
混凝土的和易性從未被準確定義。實踐時一般認為是指混凝土拌和物從攪拌機施工到其最終密實形狀的容易程度。和易性的三個主要特性是稠度、流動性和密實性。稠度指濕潤度或流度的度量。流動性指拌和物流進并完全充滿模板或模具的容易程度。密實性指給定拌和物完全密實,排除所有截留空氣的容易程度。本章要求的拌和物和易性不僅取決于組成材料的特性和相應比例,而且取決于(1)運輸和密實采用的方法,(2)模板或模具的尺寸、形狀和表面粗糙度,(3)鋼筋的數(shù)量和間距(布筋)。
另一個普遍接受和易性的定義指產(chǎn)生完全密實所必須的有用內(nèi)功的數(shù)量。應認識到必需功又取決于被澆注構(gòu)件的性質(zhì)。內(nèi)功的確定存在許多困難,為此已發(fā)展了幾種方法,但沒有一種能給出和易性的絕對確定。
通常用于確定和易性的實驗不能確定和易性的單一特性(稠度、流動性和密實性)。然而它們的確給出了拌和物和易性的一個有用、實際的指導。和易性影響混凝土的質(zhì)量,并直接影響成本,如和易性不好的混凝土拌和物完全密實要求更多時間和勞力。最重要的是在對適宜的混凝土配比下任何結(jié)論之前要求對給定現(xiàn)場條件的和易性作出現(xiàn)實評定。
和易性的確定
三個廣泛應用確定和易性的實驗是坍落度、密實系數(shù)和V-B稠度計實驗(圖13.1),是英國的標準實驗,詳細描述在英標1881第2部分。在實施法規(guī)110第1部分也推薦使用。重要的是注意到不同混凝土的坍落度、密實系數(shù)和V-B值間沒有單一關系。下列章節(jié)討論了這些實驗的突出特點及其優(yōu)點和局限性。
坍落度實驗
此實驗由美國Chapman于1913年發(fā)展的。標準條件(英標1881第2部分)下準備的300mm高混凝土圓錐下沉,錐體下沉或高度的降低被確定為和易性的度量。儀器便宜、輕便、結(jié)實,是所有確定和易性方法中最簡單的。盡管存在一些局限性,坍落度實驗的普及是不足為奇的。
實驗主要確定塑性混凝土的稠度,盡管很難看出坍落度與和易性有象先前定義的任何顯著聯(lián)系,但它適用于檢測和易性的改變。如,用水量增加或細集料比例不足會引起坍落度增加。實驗適用于質(zhì)量控制目的,但應記住一般認為不適用于配比設計,因密實需不同工作量的混凝土可能有相似的坍落度數(shù)值。實驗檢測不同拌和物和易性改變的靈敏性和可靠性主要取決于其對稠度的靈敏性。實驗不適用于很干或濕的拌和物。坍落度為0或接近0的很干拌和物,和易性的一般改變不會引起坍落度有可測量的變化。對濕拌和物,混凝土的完全崩坍會產(chǎn)生不可信的坍落度值。
圖13.1儀器對工作性測量 (a) 坍落度, (b) 壓縮因子and (c) V-B .濃度測試器
通常觀察的三種坍落度為真實坍落度、剪切坍落度和崩坍坍落度,見插圖13.2。粘性富拌和物可看到真實坍落度,一般對和易性改變較敏感。剪切坍落度通常有很濕拌和物相關,一般表現(xiàn)為差質(zhì)量的混凝土,最常是由組成材料的離析引起。崩坍坍落度在貧拌和物中比富拌和物更常發(fā)生,指缺少粘性,一般與干硬性拌和物(砂漿含量少)相關。只要出現(xiàn)剪切坍落度就應重復實驗,若一再重復,就應記載此實驗現(xiàn)象和結(jié)果,因為獲得相差大的不同坍落度值取決于坍落度是真實或是剪切形式。
標準坍落度儀器僅適用于集料最大粒徑不超過37.5mm的混凝土。應注意坍落度值隨攪拌后時間而改變,因為正常的水化和一些游離水的蒸發(fā),因此在一固定時間內(nèi)完成實驗是比較理想的。
圖13.2三種坍落度
密實系數(shù)實驗
由英國Glanville(1947)等發(fā)展的這個實驗確定對于標準工作量下的密實程度,因此給出了如前定義的混凝土和易性的直接而合理可信的評價。儀器是相對簡單的機械裝置(圖13.1),描述在英標1881第2部分中。實驗要求確定部分和完全密實混凝土的重量,部分對完全密實重量的比值總小于1,即是密實系數(shù)。對于普通范圍的混凝土,密實系數(shù)為0.80~0.92。實驗尤其適用于坍落度實驗不理想的較干拌和物。在普通范圍的和易性之外時密實系數(shù)靈敏性減小,通常密實系數(shù)超過0.92時就是不理想的。
也應認識到,嚴格地說,實驗的一些基本假設是不正確的。用于克服檢測圓柱體的表面摩擦的工作可能隨拌和物的特性而異。Cusens(1956)指出對很低和易性的混凝土,當密實系數(shù)保持明顯不變時獲得完全密實要求的實際工作取決于拌和物的富度。因此通常認為有相同密實系數(shù)的混凝土完全密實要求的工作量相同的觀念不總是正確的。應注意的另一點是澆注混凝土到檢測圓柱體的程序與現(xiàn)場通常采用的方法并不相同。與坍落度實驗一樣,密實系數(shù)的確定必須在某一特定時間內(nèi)。標準儀器適用于集料最大粒徑達37.5mm的混凝土。
V-B稠度計實驗
實驗由瑞典Bhrner(1940)發(fā)展(看圖13.1)。盡管一般將其作為主要用于研究的實驗,但其潛力現(xiàn)在正在工業(yè)中被更廣泛公認,實驗逐漸被接受。實驗中(英標1881第2部分)記錄了通過振動把一個標準混凝土圓錐變成密實的平圓柱體所用的時間,即V-B時間,用s做單位,規(guī)定精確到0.5s。與前兩個實驗不同,此實驗處理混凝土與實際密實混凝土方法類似。而且,此實驗對稠度、流動性和密實性改變敏感,因此認為在實驗結(jié)果與現(xiàn)場和易性評定之間存在合理的相關關系。
實驗適用于大范圍拌和物,與坍落度和密實系數(shù)實驗不同,它對很干和引氣混凝土和易性變化很敏感,對集料特性如形狀和表面紋理的變化也更敏感。實驗結(jié)果的復驗性好。如其它實驗一樣,其準確性趨于隨集料最大粒徑增加而降低,大于19.0mm實驗結(jié)果有點不可信。對于密實要求很少振動的混凝土V-B時間僅約3s。這樣的結(jié)果可能可信度比大V-B時間要低,因為估計時間終點(混凝土接觸塑料盤的整個下面)比較困難。在和易性范圍的另一面,如很干拌和物,記錄的V-B時間可能超過真實和易性,因為消除透明盤下截留的氣泡要求延長振動。為克服這個困難,可在儀器上附上一個記錄相對于時間的盤垂直下沉量的自動裝置。這個記錄裝置也能消除判斷終點的人為誤差。V-B實驗儀器比坍落度和密實系數(shù)實驗更貴,要求有一電源,操作要更有經(jīng)驗,所有這些使其比普通現(xiàn)場使用,更適于預制混凝土工業(yè)和預拌混凝土工廠。
影響和易性的因素
已知影響新拌混凝土和易性的各種因素見圖13.3。從下述討論看與組成材料相關和易性的改變主要受用水量和水泥與集料的比表面積的影響。
水泥和水
圖13.3對新拌混凝土的影響因素
不同和易性的灰水比(體積計)和水泥體積分數(shù)的典型關系見圖15.5。對給定變化的灰水比,若改變用水量其和易性的變化比僅改變水泥用量要大些。一般水泥用量的影響對較富拌和物更大些。Hughes(1971)指出存在與組成材料的性能無關的類似線性的關系。
對給定拌和物,混凝土和易性由于比表面積增加而隨水泥細度增加而降低,這種影響在富混合物中更顯著。也應注意更細的水泥會改善拌和物的粘聚性。除石膏外,水泥的成分對和易性沒有顯著影響。不穩(wěn)定的石膏會產(chǎn)生假凝而削弱和易性,除非對新拌混凝土延長攪拌或重新攪拌。適于配制混凝土的水質(zhì)量的變化對和易性沒有重大影響。
外加劑
有助于混凝土和易性改善的主要外加劑是減水劑和加氣劑。和易性改善的程度取決于所用外加劑的種類和用量及新拌混凝土的常規(guī)特性。
和易性外加劑當配比保持恒定時用于增加和易性,或當和易性保持恒定時減少用水量。前者會引起混凝土強度的輕微降低。
加氣劑是到目前為止最普遍應用的和易性外加劑,因為它們也改善塑性混凝土的粘聚性和成品混凝土的抗凍性。關于加氣混凝土的兩點實踐要點是對于給定加氣量時圓形集料或小灰水比(體積計)混凝土的和易性增加趨于更小,并且,一般和易性增加的速度趨于隨含氣量的增加而降低。然而,原則上可假定含氣量每增加1%就會使密實系數(shù)增加0.01,使V-B時間降低10%。
集料
對于給定水泥、水和集料用量,混凝土和易性主要受集料的總表面積影響。集料表面積受最大粒徑、級配和形狀影響。比表面積增加,和易性降低,因為這要求有更大比例的水泥漿潤濕集料顆粒,因此潤滑所用漿體數(shù)量更少。因此,其它條件相同時當集料最大粒徑增加,集料顆粒變圓或綜合級配更粗時和易性將增加。然而,和易性這種變化的大小取決于配比,對很富拌和物(集灰比接近2),集料的影響可忽略不計。實際意義指對給定和易性和灰水比,能用于拌和物的集料數(shù)量的變化取決于集料的形狀、最大粒徑和級配,見圖13.4和表13.1、表13.2。加氣(4.5%)對和易性的影響也見圖13.4。
Maximum aggregate size
(mm)
Aggregate-cement ratio (by weight)
Low workability
Medium workability
High workability
Irregular gravel
Crushed rock
Irregular gravel
Crushed rock
Irregular gravel
Crushed rock
9.5
19.0
37.5
5.3
6.2
7.6
4.8
5.5
6.4
4.7
5.4
6.5
4.2
4.7
5.5
4.4
4.9
5.9
3.7
4.4
5.2
TABLE 13.1集料的形狀、最大粒徑和級配
Type of aggregate
Aggregate-cement ratio
Coarse grading
Fine grading
Rounded gravel
Irregular gravel
Crushed rock
7.3
5.5
4.7
6.3
5.1
4.3
TABLE 13.2集料的形狀、最大粒徑和級配
圖13.4對和易性的影響
已發(fā)展了幾種方法評價集料形狀,在第12章已討論了。棱角系數(shù)與級配模量和當量平均粒徑一起提供了考慮集料形狀、粒徑和級配的相應影響的方法(看第15章)。因?qū)o定材料和灰水比的完全密實混凝土的強度并不取決于粗集料對細集料的比值,因此對給定水泥用量采用粗集料用量配制最大和易性能獲得最大經(jīng)濟效益(Hughes,1960)(看圖13.5)。第15章記述了混凝土配比設計中最佳粗集料用量。應注意的是集料的體積分數(shù)而不是重量是重要的。
圖13.5一個典型的關系的工作性和粗集料混凝土
表面紋理對和易性的影響見圖13.6。能看出具有光滑紋理的集料比粗糙紋理的集料產(chǎn)生的和易性更高。當采用干或部分干燥集料時集料的吸水性也影響和易性。在這種情況下,和易性降低,降低程度取決于集料用量和其吸水能力。
環(huán)境條件
可能導致和易性降低的環(huán)境因素為溫度、濕度和風速。對給定混凝土,和易性變化受水泥水化速度和水的蒸發(fā)速度的支配。因此從攪拌開始到密實的時間間隔和裸露情況都影響和易性的降低。溫度升高加快了水用于水化的速度,也加快了它蒸發(fā)損失的速度。同樣,風速和濕度由于影響蒸發(fā)速度而影響和易性。值得記住的是實際上這些因素取決于天氣條件,并不受控制。
圖13.6光滑紋理的集料比粗糙紋理的集料產(chǎn)生的和易性更高
時間
混凝土攪拌到最終密實經(jīng)歷的時間取決于常規(guī)施工條件,如攪拌機和澆注點的距離、現(xiàn)場程序和常規(guī)管理。相應和易性的降低是游離水隨時間蒸發(fā)、集料吸收和水泥初始水化而損失造成的直接結(jié)果。和易性損失的速度受組成材料的某些特性的影響,如水泥的水化和放熱發(fā)展特性、集料的初始含水量和孔隙率,還有環(huán)境條件。
對于給定混凝土和一組環(huán)境條件,和易性隨時間損失的速度取決于施工條件?;炷翑嚢韬蟊3朱o止直至澆注的地方,最初一個小時內(nèi)和易性損失較明顯,和易性損失速度隨時間降低見圖13.7曲線A。相反,若持續(xù)攪拌,如預拌混凝土,和易性損失減小,尤其是最初1h左右(看圖13.7曲線B)。然而,在運輸中延長攪拌可能由于摩擦會增加固體顆粒的細度,使和易性更加降低。對運輸中持續(xù)攪拌和靜止混凝土,從攪拌開始到輸送到現(xiàn)場的允許(英標1926)時間間隔分別為2h和1h。
對實際應用,當混凝土和易性差,不能有效密實,從而對其強度和其它性能產(chǎn)生不利影響時和易性損失為主要因素。經(jīng)常采用的確?;炷猎跐沧r有理想和易性的矯正措施是或者增加初始用水量,或者臨在混凝土卸出前增加用水量繼續(xù)攪拌。當這些導致用水量比初始確定的大,將會出現(xiàn)硬化混凝土強度和耐久性的降低,除非相應地增加水泥用量。這個重要事實在現(xiàn)場經(jīng)常被忽略。應回想和易性損失隨拌和物、環(huán)境條件、施工條件和交付時間而變化。英國實施法規(guī)110第1部分沒有限制交付時間,但混凝土必須能在不再加水條件下被澆注和有效密實。對預拌混凝土使用的細節(jié),建議讀者參考Dewar(1973)的工作。
圖13.7混凝土的和易性損失時間
穩(wěn)定性
除了充分的可操作性,新拌混凝土應具有組分使其組成材料攪拌和密實期間及密實后到混凝土變硬前的期間能在混凝土中保持均勻分布。由于組成材料顆粒尺寸和比重存在差異,因此存在使它們分離的自然趨勢。能保持要求的均勻性的混凝土被認為是穩(wěn)定的,大多數(shù)粘性拌和物屬于這個范疇。對不穩(wěn)定拌和物,組成材料分離的程度取決于運輸、澆注和密實的方法。不穩(wěn)定混凝土的兩種最普遍特征是離析和泌水。
離析
若拌和物中粗顆粒和細顆粒有分離的顯著趨勢時就認為發(fā)生了離析。一般拌和物粘性越差,離析發(fā)生的趨勢越大。離析受包括水泥在內(nèi)的固體顆粒的總表面積和拌和物中砂漿數(shù)量的支配。干硬性、極端濕和干的拌和物與那些缺少砂,尤其是較細顆粒的拌和物一樣易于離析。應盡可能避免有助于離析的條件,如運輸中振搗混凝土、澆注時過高下落及密實中過度振動。
表面缺陷、砂質(zhì)條痕、多孔層和蜂窩麻面是離析的直接結(jié)果。這些特征不僅難看,而且會對硬化混凝土的強度、耐久性和其它性能產(chǎn)生不利影響。重要的是看清離析的影響可能不會被控制試件的常規(guī)強度實驗所預示,因為試件澆注和密實條件與實際結(jié)構(gòu)不同。沒有特定規(guī)律來猜疑可能的離析,但在經(jīng)過一些攪拌和操作混凝土的經(jīng)驗后不難看出可能會發(fā)生離析的拌和物。如用手抓一把混凝土擠壓后松開,讓其在手掌中,粘性混凝土仍能保持其形狀。此條件下不能保持形狀的混凝土肯定易于離析,尤其是對濕拌和物。
泌水
在密實到水泥漿硬化期間,固體顆粒有一向下運動的自然趨勢,這取決于粒徑和比重。若拌和物稠度使其不能容住所有水,一些水就逐漸轉(zhuǎn)移并上浮到表面,一些水可能通過模板接縫滲漏出去。水從拌和物以這種方式分離即泌水。部分水到達上表面,而部分水在較大顆粒下和鋼筋條下被截留?;炷林杏行в盟康淖罱K變化引起其性能的相應改變。例如,鋼筋和粗集料顆粒正下方的混凝土強度可能比平均強度小些,這些地方抵抗?jié)B水的能力也降低。通常,混凝土從上表面下其強度隨深度增加而增加。到達上表面的水產(chǎn)生了最嚴重的實際問題。若這些水不除去,則上表面及其附近的混凝土比其它地方的混凝土更脆弱,更不耐久。這尤其困擾著有大表面積的板材。另一方面,除去表面水將不適當?shù)匮娱L了現(xiàn)場的終飾施工。
當振動密實混凝土時泌水可能性增加,但采用正確設計的拌和物及確?;炷敛贿^度振動可使其最小。富拌和物比貧拌和物趨于少泌水。所用水泥品種也很重要,泌水發(fā)生趨勢隨水泥細度或堿和C3A含量增加而降低。加氣為控制泌水提供了另一個很有效的方法,如在離析和泌水經(jīng)常困擾的濕、貧拌和物中。
Properties of Fresh Concrete
Edited by H.-J. Wierig
Fresh concrete is a mixture of water, cement, aggregate and admixture (if any). After mixing, operations such as transporting, placing, compacting and finishing of fresh concrete can all considerably affect the properties of hardened concrete. It is important that the constituent materials remain uniformly distributed within the concrete mass during the various stages of its handling and that full compaction is achieved. When either of these conditions is not satisfied the properties of the resulting hardened concrete, for example, strength and durability, are adversely affected.
The characteristics of fresh concrete which affect full compaction are its consistency, mobility and compactability. In concrete practice these are often collectively known as workability. The ability of concrete to maintain its uniformity is governed by its stability, which depends on its consistency and its cohesiveness. Since the methods employed for conveying, placing and consolidatingd a concrete mix, as well as the nature of the section to be cast, may vary from job to job it follows that the corresponding workability and stability requirements will also vary. The assessment of the suitability of a fresh concrete for a particular job will always to some extent remain a matter of personal judgment.
In spite of its importance, the behaviour of plastic concrete often tends to be overlooked. It is recommended that students should learn to appreciate the significance of the various characteristics of concrete in its plastic state and know how these may alter during operations involved in casting a concrete structure.
13.1 Workability
Workability of concrete has never been precisely defined. For practical purposes it generally implies the ease with which a concrete mix can be handled from the mixer to its finally compacted shape. The three main characteristics of the property are consistency, mobility and compactability. Consistency is a measure of wetness or fluidity. Mobility defines the ease with which a mix can flow into and completely fill the formwork or mould. Compactability is the ease with which a given mix can be fully compacted, all the trapped air being removed. In this context the required workability of a mix depends not only on the characteristics and relative proportions of the constituent materials but also on (1) the methods employed for conveyance and compaction, (2) the size, shape and surface roughness of formwork or moulds and (3) the quantity and spacing of reinforcement.
Another commonly accepted definition of workability is related to the amount of useful internal work necessary to produce full compaction. It should be appreciated that the necessary work again depends on the nature of the section being cast. Measurement of internal work presents many difficulties and several methods have been developed for this purpose but none gives an absolute measure of workability.
The tests commonly used for measuring workability do not measure the individual characteristics (consistency, mobility and compactability) of workability. However, they do provide useful and practical guidance on the workability of a mix. Workability affects the quality of concrete and has a direct bearing on cost so that, for example, an unworkable concrete mix requires more time and labour for full compaction. It is most important that a realistic assessment is made of the workability required for given site conditions before any decision is taken regarding suitable concrete mix proportions.
13.2 Measurement of Workability
Three tests widely used for measuring workability are the slump, compacting factor and V-B consistometer tests (figure 13.1). These are standard tests in the United Kingdom and are described in detail in BS 1881: Part 2. Their use is also recommended in CP 110: Part 1. It is important to note that there is no single relationship between the slump, compacting factor and V-B results for different concretes. In the following sections the salient features of these tests together with their merits and limitations are discussed.
Slump Test
This test was developed by Chapman in the United States in 1913. A 300 mm high concrete cone, prepared under standard conditions (BS 1881: Part 2) is allowed to subside and the slump or reduction in height of the cone is taken to be a measure of workability. The apparatus is inexpensive, portable and robustd and is the simplest of all the methods employed for measuring workability. It is not surprising that, in spite of its several limitations, the slump test has retained its popularity.
Figure 13.1 Apparatus for workability measurement: (a) slump cone, (b) compacting factor and (c) V-B consistometer
The test primarily measures the consistency of plastic concrete and although it is difficult to see any significant relationship between slump and workability as defined previously, it is suitable for detecting changes in workability. For example, an increase in the water content or deficiency in the proportion of fine aggregate results in an increase in slump. Although the test is suitable for quality-control purposes it should be remembered that it is generally considered to be unsuitable for mix design since concretes requiring varying amounts of work for compaction can have similar numerical values of slump. The sensitivity and reliability of the test for detecting variation in mixes of different workabilities is largely dependent on its sensitivity to consistency. The test is not suitable for very dry or wet mixes. For very dry mixes, with zero or near-zero slump, moderate variations in workability do not result in measurable changes in slump. For wet mixes, complete collapse of the concrete produces unreliable values of slump.
Figure 13.2 Three main types of slump
The three types of slump usually observed are true slump, shear slump and collapse slump, as illustrated in figure 13.2. A true slump is observed with cohesive and rich mixes for which the slump is generally sensitive to variations in workability. A collapse slump is usually associated with very wet mixes and is generally indicative of poor quality concrete and most frequently results from segregation of its constituent materials. Shear slump occurs more often in leaner mixes than in rich ones and indicates a lack of cohesion which is generally associated with harsh mixes (low mortar content). whenever a shear slump is obtained the test should be repeated and, if persistent, this fact should be recorded together with test results, because widely different values of slump can be obtained depending on whether the slump is of true or shear form.
The standard slump apparatus is only suitable for concretes in which the maximum aggregate size does not exceed 37.5 mm. It should be noted that the value of slump changes with time after mixing owing to normal hydration processes and evaporation of some of the free water, and it is desirable therefore that tests are performed within a fixed period of time.
Compacting Factor Test
This test, developed in the United Kingdom by Glanville et al. (1947), measures the degree of compaction for a standard amount of work and thus offers a direct and reasonably reliable assessment of the workability of concrete as previously defined. The apparatus is a relatively simple mechanical contrivance (figure 13.1) and is fully described in BS 1881: Part 2. The test requires measurement of the weights of the partially and fully compacted concrete and the ratio of the partially compacted weight to the fully compacted weight, which is always less than 1, is known as the compacting factor. For the normal range of concretes the compacting factor lies between 0.80 and 0.92. The test is particularly useful for drier mixes for which the slump test is not satisfactory. The sensitivity of the compacting factor is reduced outside the normal range of workability and is generally unsatisfactory for compacting factors greater than 0.92.
It should also be appreciated that, strictly speaking, some of the basic assumptions of the test are not correct. The work done to overcome surface friction of the measuring cylinder probably varies with the characteristics of the mix. It has been shown by Cusens (1956) that for concretes with very low workability the actual work required to obtain full compaction depends on the richness of a mix while the compacting factor remains sensibly unaffected. Thus it follows that the generally held belief that concretes with the same compacting factor require the same amount of work for full compaction cannot always be justified. One further point to note is that the procedure for placing concrete in the measuring cylinder bears no resemblance to methods commonly employed on the site. As in the slump test, the measurement of compacting factor must be made within a certain specified period. The standard apparatus is suitable for concrete with a maximum aggregate size of up to 37.5 mm.
V-B Consistometer Test
This test was developed in Sweden by Bhrner (1940) (see figure 13.1). Although generally regarded as a test primarily used in research its potential is now more widely acknowledged in industry and the test is gradually being accepted. In this test (BS 1881: Part 2) the time taken to transform, by means of vibration, a standard cone of concrete to a compacted flat cylindrical mass is recorded. This is known as the V-B time, in seconds, and is stated to the nearest 0.5 s. Unlike the two previous tests, the treatment of concrete in this test is comparable to the method of compacting concrete in practice. Moreover, the test is sensitive to change in consistency, mobility and compactability, and therefore a reasonable correlation between the test results and site assessment of workability can be expected.
The test is suitable for a wide range of mixes and, unlike the slump and compacting factor tests, it is sensitive to variations in workability of very dry and also air-entrained concretes. It is also more sensitive to variation in aggregate characteristics such as shape and surface texture. The reproducibility of results is good. As for other tests its accuracy tends to decrease with increasing maximum size of aggregate; above 19.0 mm the test results become somewhat unreliable. For concretes requiring very little vibration for compaction the V-B time is only about 3 s. Such results are likely to be less reliable than for larger V-B times because of the difficulty in estimating the time of the end point (concrete in contact withd the whole of the underside of the plastic disc). At the other end of the workability range, such as with very dry mixes, the recorded V-B times are likely to be in excess of their true workability since prolonged vibration is required to remove the entrapped air bubbles under the transparent disc. To overcome this difficulty an automatic device which records the vertical settlement of the disc with respect to time can be attached to the apparatus. This recording device can also assist in eliminating human error in judging the end point. The apparatus for the V-B test is more expensive than that for the slump and compacting factor tests, requiring an electric power supply and greater experience in handling; all these factors make it more suitable for the precast concrete industry and ready-mixed concrete plants than for general site use.
13.3 Factors Affecting Workability
Various factors known to influence the workability of a freshly mixed concrete are shown in figure 13.3. From the following discussion it will be apparent that a change in workability associated with the constituent materials is mainly affected by water content and specific surface of cement and aggregate.
Cement and Water
Figure 13.3 Factors affecting workability of fresh conrete
Typical relationships between the cement-water ratio (by volume) and the volume fraction of cement for different workabilities are shown in figure 15.5. The change in workability for a given change in cement-water ratio is greater when the water content is changed than when only the cement content is changed. In general the effect of the cement content is greater for richer mixes. Hughes (1971) has shown that similar linear relationships exist irrespective of the properties of the constituent materials.
For a given mix, the workability of the concrete decreases as the fineness of the cement increases as a result of the increased specific surface, this effect being more marked in rich mixtures. It should also be noted that the finer cements improve the cohesiveness of a mix. With the exception of gypsum, the composition of cement has no apparent effect on workability. Unstable gypsum is responsible for false set, which can impair workability unless prolonged mixing or remixing of the fresh concrete is carried out. Variations in quality of water suitable for making concrete have no significant effect on workability.
Admixtures
The principal admixtures affecting improvement in the workability of concrete are water-reducing and air-entraining agents. The extent of the increase in workability is dependent on the type and amount of admixture used and the general characteristics of the fresh concrete.
Workability admixtures are used to increase workability while the mix proportions are kept constant or to reduce the water content while maintaining constant workability. The former results in a slight reduction in concrete strength.
Air-entraining agents are by far the most commonly used workability admixtures because they also improve both the cohesiveness of the plastic concrete and the frost resistance of the resulting hardened concrete. Two points of practical importance concerning air-entrained concrete are that for a given amount of entrained air, the increase in workability tends to be smaller for concretes containing rounded aggregates or low cement-water ratios (by volume) and, in general, the rate of increase in workability tends to decrease with increasing air content. However, as a guide it may be assumed that every 1 per cent increase in air content will increase the compacting factor by 0.01 and reduce the V-B time by 10 per cent.
Aggregate
For given cement, water and aggregate contents, the workability of concrete is mainly influenced by the total surface area of the aggregate. The surface area is governed by the maximum size, grading and shape of the aggregate. Workability decreases as the specific surface increases, since this requires a greater proportion of cement paste to wet the aggregate particles, thus leaving a smaller amount of paste for lubrication. It follows that, all other conditions being equal, the workability will be increased when the maximum size of aggregate increases, the aggregate particles become rounded or the overall grading becomes coarser. However, the magnitude of this change in workability depends on the mix proportions, the effect of the aggregate being negligible for very rich mixes (aggregate-cement ratios approaching 2). The practical significance of this is that for a given workability and cement-water ratio the amount of aggregate which can be used in a mix varies depending on the shape, maximum size and grading of the aggregate, as shown in figure 13.4 and tables 13.1 and 13.2. The influence of air-entrainment (4.5 per cent) on workability is shown also in figure 13.4.
TABLE 13.1
Effect of maximum size of aggregate of similar grading zone on aggregate-cement ratio of concrete having water-cement ratio of 0.55 by weight, based on McIntosh (1964)
Maximum aggregate size
(mm)
Aggregate-cement ratio (by weight)
Low workability
Medium workability
High workability
Irregular gravel
Crushed rock
Irregular gravel
Crushed rock
Irregular gravel
Crushed rock
9.5
19.0
37.5
5.3
6.2
7.6
4.8
5.5
6.4
4.7
5.4
6.5
4.2
4.7
5.5
4.4
4.9
5.9
3.7
4.4
5.2
TABLE 13.2
Effect of aggregate grading (maximum size 19.0 mm) on aggregate-cement ratio of concrete having medium workability and water-cement ratio of 0.55 by weight, based on McIntosh (1964)
Type of aggregate
Aggregate-cement ratio
Coarse grading
Fine grading
Rounded gravel
Irregular gravel
Crushed rock
7.3
5.5
4.7
6.3
5.1
4.3
Figure 13.4 Effect of aggregate shape on aggregate-cement ratio of concretes for different workabilities, based on Cornelius (1970)
Several methods have been developed for evaluating the shape of aggregate, a subject discussed in chapter 12. Angularity factors together with grading modulus and equivalent mean diameter provide a means of considering the respective effects of shape, size and grading of aggregate (see chapter 15). Since the strength of a fully compacted concrete, for given materials and cement-water ratio, is not dependent on the ratio of coarse to fine aggregate, maximum economy can be obtained by using the coarse aggregate content producing the maximum workability for a given cement content (Hughes, 1960) (see figure 13.5). The use of optimum coarse aggregate content in concrete mix design is described in chapter 15. It should be noted that it is the volume fraction of an aggregate, rather than its weight, which is important.
Figure 13.5 A typical relationship between workability and coarse aggregate content of concrete, based on Hughes (1960)
The effect of surface texture on workability is shown in figure 13.6. It can be seen that aggregates with a smooth texture result in higher workabilities than aggregates with a rough texture. Absorption characteristics of aggregate also affect workability where dry or partially dry aggregates are used. In such a case workability drops, the extent of the reduction being dependent on the aggregate content and its absorption capacity.
Ambient Conditions
Environmental factors that may cause a reduction in workability are temperature, humidity and wind velocityd. For a given concrete, changes in workability are governed by the rate of hydration of the cement and the rate of evaporation of water. Therefore both the time interval from the commencement of mixing to compaction and the conditions of exposure influence the reduction in workability. An increase in the temperature speeds up the rate at which water is used for hydration as well as its loss through evaporation. Likewise wind velocity and humidity influence the workability as they affect the rate of evaporation. It is worth remembering that in practice these factors depend on weather conditions and cannot be controlled.
Figure 13.6 Effect of aggregate surface texture on aggregate-cement ratio of concretes for different workabilities, based on Cornelius (1970)
Time
The time that elapses between mixing of concrete and its final compaction depends on the general conditions of work such as the distance between the mixer and the point of placing, site procedures and general management. The associated reduction in workability is a direct result of loss of free water with time through evaporation, aggregate absorption and initial hydration of the cement. The rate of loss of workability is affected by certain characteristics of the constituent materials, for example, hydration and heat development characteristics of the cement, initial moisture content and porosity of the aggregate, as well as the ambient conditions.
For a given concrete and set of ambient conditions, the rate of loss of workability with time depends on the conditions of handling. Where concrete remains undisturbed after mixing until it is placed, the loss of workability during the first hour can be substantial, the rate of loss of workability decreasing with time as illustrated by curve A in figure 13.7. On the other hand, if it is continuously agitated, as in the case of ready-mixed concrete, the loss of workability is re