購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
河南理工大學(xué)萬(wàn)方科技學(xué)院2012屆本科生畢業(yè)設(shè)計(jì)
前 言
近年來(lái)隨著我國(guó)城市基礎(chǔ)建設(shè)、房地產(chǎn)開(kāi)發(fā)業(yè)的迅猛發(fā)展,推動(dòng)了混凝土生產(chǎn)產(chǎn)量的迅速提高?;炷辽a(chǎn)是改變傳統(tǒng)的現(xiàn)場(chǎng)分散攪拌混凝土的生產(chǎn)方式,實(shí)現(xiàn)建筑工業(yè)化的一項(xiàng)重要改革。混凝土的商品化生產(chǎn)因其生產(chǎn)的高度專業(yè)化和集中化等特點(diǎn)大大提高了混凝土工程質(zhì)量,節(jié)約原材料,加快,提高勞動(dòng)生產(chǎn)率,減輕勞動(dòng)強(qiáng)度,同時(shí)也因其節(jié)省施工用地,改善勞動(dòng)條件,減少環(huán)境污染而使人類受益。
目前,在國(guó)內(nèi)外的煤炭、建材、化工、基礎(chǔ)設(shè)施建設(shè)等行業(yè)廣泛地使用著各種各樣的用來(lái)攪拌煤、混凝土及其他原料的攪拌機(jī)。從其運(yùn)動(dòng)方式及其主要結(jié)構(gòu)上來(lái)看,它們可分為兩大類型:一種形式為單運(yùn)動(dòng)的軸式傳動(dòng)軸上(有單軸和雙軸)安裝各式各樣的攪拌葉片(有長(zhǎng)錐形、螺旋形等),并利用葉片來(lái)攪拌物料;而另一類則是通過(guò)鋼齒輪傳動(dòng)帶動(dòng)某一形狀的筒體(有圓錐體、圓柱體等)的自身旋轉(zhuǎn)而使物料產(chǎn)生攪拌效果。由于這些攪拌輸送機(jī)全部都是利用單運(yùn)動(dòng)方式,因而普遍存在拌和物料不充分,攪拌效果不太理想;另外,其噪音也較大,特別是在煤炭行業(yè)的工業(yè)型煤等新工藝上使用的攪拌輸送機(jī),根本滿足不了其工藝設(shè)計(jì)要求而嚴(yán)重制約了其新技術(shù)新工藝的推廣使用,因而急需一種結(jié)構(gòu)新穎、效果明顯的全新機(jī)型的攪拌機(jī)來(lái)逐步代替舊式攪拌機(jī),并且也可廣泛地使用于其他行業(yè)。
然而,在實(shí)際生活中,我們看到的大部分混凝土攪拌機(jī),都是起攪拌作用,然后通過(guò)車載,人力等方式運(yùn)送到需要的地方。攪拌和輸送分開(kāi)進(jìn)行,既加強(qiáng)了工人的勞動(dòng)強(qiáng)度,降低了勞動(dòng)效率,造成大量原材料的浪費(fèi),又污染了環(huán)境。還有些設(shè)備是攪拌和輸送是分開(kāi)的,及用一種機(jī)器完成混凝土的攪拌作用,而用專門的機(jī)器完成混凝土的輸送。
連續(xù)式攪拌機(jī)是隨著混凝土施工工藝的改進(jìn)而逐漸發(fā)展起來(lái)的新機(jī)型。近年來(lái),攪拌機(jī)逐漸向大容量和高生產(chǎn)率方向發(fā)展。通過(guò)長(zhǎng)期的研究和探索發(fā)現(xiàn)比較完善的攪拌輸送過(guò)程。為使混凝土的攪拌和輸送變得相對(duì)容易,我采用臥式雙軸強(qiáng)制式連續(xù)混凝土攪拌機(jī)。通過(guò)對(duì)攪拌軸的葉片的設(shè)計(jì)和組合,使物料完成攪拌和輸送的工作。本機(jī)在封閉的環(huán)境中,實(shí)現(xiàn)對(duì)物料的攪拌和輸送,攪拌及輸送效果良好,對(duì)環(huán)境污染少,能夠改善施工現(xiàn)場(chǎng)施工條件,保障施工人員身心健康,降低工人的施工強(qiáng)度,提高工作效率,減少施工中對(duì)環(huán)境的破壞。
第1章 總述
1.1攪拌的作用
1.1.1混凝土的組成
混凝土作為當(dāng)今最大宗的建筑材料,廣泛地用于工業(yè)、農(nóng)業(yè)、交通、國(guó)防、水利、市政和民用等基本建設(shè)工程中,在國(guó)民經(jīng)濟(jì)中占有重要地位。一般混凝土指水泥混凝土而言,它是由水泥和砂、石集料,加水按規(guī)定的配合比,經(jīng)過(guò)攪拌、澆注和凝結(jié)而成的一種人造石材。其中,水泥和水起膠凝作用,砂、石起骨架填充作用,水泥漿包裹在砂的表面,并填充于砂的空隙成為砂漿,砂漿又包裹在石子的表面,并填充石子的空隙。當(dāng)水泥漿硬化后,就將砂、石集料顆粒牢固地粘結(jié)成一個(gè)整體,使混凝土具有一定的強(qiáng)度和其他許多重要性能。
1.1.2攪拌的任務(wù)
強(qiáng)度是混凝土最主要的力學(xué)性能,混凝土強(qiáng)度主要取決于混合料間的界面結(jié)構(gòu)。
一般認(rèn)為混凝土攪拌的主要任務(wù)是;
(l)組分均勻分布,達(dá)到宏觀及微觀上的勻質(zhì);
(2)破壞水泥粒子團(tuán)聚現(xiàn)象,使其各顆粒表麗被水浸潤(rùn),促使彌散現(xiàn)象的發(fā)展;
(3)破壞水泥粒子表面的初始水化物薄膜包裹層,促進(jìn)水泥顆粒與其他物料顆粒的結(jié)合,形成理想的水化生成物;
(4)由于集料表面常覆蓋一薄層灰塵及粘土,有礙界面結(jié)合層的形成,故應(yīng)使物料顆粒間多次碰撞和互相摩擦,以減少灰塵薄膜的影響;
(5)提高混合料各單元體參與運(yùn)動(dòng)的次數(shù)和運(yùn)動(dòng)軌跡的交叉頻率,以加速達(dá)到勻質(zhì)化。
1.1.3合理的攪拌機(jī)理
由以上分析可以給合理的攪拌機(jī)理一個(gè)解釋:應(yīng)盡可能使處在攪拌過(guò)程中的混合料各組分的運(yùn)動(dòng)軌跡在相對(duì)集中區(qū)域內(nèi)互相交錯(cuò)穿插,在整個(gè)混合料體積中最大限度地產(chǎn)生相互摩擦,盡可能提高各組分參與運(yùn)動(dòng)的次數(shù)和運(yùn)動(dòng)軌跡的交叉頻率,為混合料實(shí)現(xiàn)宏觀和微觀勻質(zhì)性創(chuàng)造最有利的條件。因此,為了獲得攪拌均勻的混凝土,混凝土攪拌機(jī)必須具備下列條件:
(l)能對(duì)混凝土各種組分均勻攪拌,并使水泥漿或?yàn)r青均勻包裹骨料表面;
(2)能將攪拌后的混凝土均勻的卸出;
(3)攪拌和出料的時(shí)間短;
(4)占地面積小;
(5)功率消耗小,符合環(huán)保要求。
而影響混凝土攪拌質(zhì)量的與攪拌機(jī)有關(guān)的主要因素有:
(1)混凝土攪拌機(jī)的結(jié)構(gòu)形式和它的攪拌速度;
(2)混凝土攪拌機(jī)出料容量與攪拌筒幾何容積的比率,即容積利用系數(shù);
(3)攪拌葉片和襯板的磨損狀況;
(4)各種混合材料的加料順序。
(5)攪拌時(shí)間。
1.2混凝土攪拌機(jī)的類型
目前生產(chǎn)的攪拌機(jī)有兩種形式,一是獨(dú)立使用的攪拌單機(jī);另一是攪拌樓(站)的配套主機(jī)。由于使用要求有所差異,兩種形式的攪拌機(jī)的配置略有不同(攪拌單機(jī)要比配套主機(jī)多上料和配水等機(jī)構(gòu)),但二者的主體機(jī)構(gòu)是一致的。為了滿足不同混凝土的攪拌要求,已發(fā)展了多種機(jī)型,各機(jī)型在結(jié)構(gòu)和性能上各具特色,可從不同角度進(jìn)行分類。就其原理而言,基本可分為自落式和強(qiáng)制式兩大類。
表1-1 混凝土攪拌機(jī)分類
分類方式
作業(yè)方式
攪拌原理
安裝方式
出料方式
攪拌筒外形
形式
周期式
連續(xù)式
自落式
強(qiáng)制式
固定式
移動(dòng)式
傾翻式
非傾翻式
梨形、錐形、鼓形、盤(pán)形、槽形、其他形
自落式攪拌機(jī)是依據(jù)物料的自落原理進(jìn)行攪拌。工作時(shí)利用拌筒內(nèi)壁固定的葉片對(duì)筒內(nèi)物料進(jìn)行分割和提升,物料則靠自身重力灑落、沖擊,從而使各部分物料的相互位置不斷進(jìn)行重新分布而獲得均勻攪拌。這種機(jī)型結(jié)構(gòu)簡(jiǎn)單、功率消耗和葉片磨損均較小,但其攪拌強(qiáng)度不夠劇烈,攪拌質(zhì)量難以保證,生產(chǎn)效率低,只適用于攪拌普通塑性混凝土,對(duì)粗骨料粒徑要求不嚴(yán)格,廣泛地應(yīng)用在中小型建筑工地。常用的這類攪拌機(jī)有,鼓式攪拌機(jī)、雙錐反轉(zhuǎn)出料攪拌機(jī)、雙錐傾翻出料攪拌機(jī)和對(duì)開(kāi)式攪拌機(jī)等。其中的鼓式攪拌機(jī)由于技術(shù)性能落后,已于1987年列為淘汰產(chǎn)品。
強(qiáng)制式攪拌機(jī)是在自落式攪拌機(jī)之后,隨著干硬性混凝土的發(fā)展而逐漸發(fā)展起來(lái)的。與自落式攪拌機(jī)不同,它不是通過(guò)重力作用進(jìn)行攪拌,而是借助旋轉(zhuǎn)的葉片對(duì)物料進(jìn)行剪切、擠壓、翻滾和拋出等強(qiáng)制攪拌作用,使物料在劇烈的相對(duì)運(yùn)動(dòng)中得到均勻攪拌。與自落式攪拌機(jī)相比,攪拌作用強(qiáng)烈,攪拌質(zhì)量好,生產(chǎn)率高,但磨損大、功耗大,而且對(duì)骨料粒徑有較嚴(yán)格的限制,適用于攪拌干硬性混凝土和輕骨料混凝土,多用于施工現(xiàn)場(chǎng)的混凝土攪拌站和混凝土預(yù)拌工廠的攪拌樓。常見(jiàn)的這類攪拌機(jī)有,立軸渦槳攪拌機(jī)、立軸行星攪拌機(jī)、單臥軸攪拌機(jī)和雙臥軸攪拌機(jī)等。
周期型攪拌機(jī)是大家可以經(jīng)常見(jiàn)到的攪拌機(jī)。這種攪拌機(jī)在進(jìn)行攪拌時(shí),需要經(jīng)常停機(jī)器,作效率較低。而連續(xù)型混凝土攪拌機(jī),由于機(jī)器在正常工作狀態(tài)時(shí),不需要停止機(jī)器。減輕了工人的勞動(dòng)強(qiáng)度,提高了勞動(dòng)生產(chǎn)率,是當(dāng)下的一種發(fā)展趨勢(shì)。
1.3國(guó)內(nèi)外混凝土攪拌機(jī)的發(fā)展?fàn)顩r
在攪拌機(jī)出現(xiàn)的時(shí)期,是以自落式攪拌的形式出現(xiàn)。隨著對(duì)混凝土要求的不斷增多,出現(xiàn)了強(qiáng)制式攪拌機(jī)。強(qiáng)制式攪拌機(jī)又可分為立軸式和臥軸式兩類。國(guó)內(nèi)幾乎都是這兩種形式的攪拌機(jī)。
立軸式攪拌機(jī),又稱渦漿式強(qiáng)制攪拌機(jī),這種攪拌機(jī)的形式是在固定放置的圓盤(pán)中央,裝有一個(gè)由減速機(jī)驅(qū)動(dòng)的轉(zhuǎn)子臂架,在臂架上裝有攪拌葉片和內(nèi)外壁鏟刮葉片,依靠各組攪拌葉片不同的安裝位置和安裝角度便能對(duì)在圓盤(pán)和轉(zhuǎn)子之間環(huán)形工作容積的物料進(jìn)行劇烈攪拌。
臥軸式攪拌機(jī)又稱圓槽式攪拌機(jī),是七十年代發(fā)展起來(lái)的一種新型攪拌機(jī),它可分為單軸式和雙軸式,這種形式的攪拌機(jī)兼有自落和強(qiáng)制兩種攪拌的機(jī)能,攪拌葉片的線速度比渦漿式小,因而耐磨性要比渦漿式小高。
單臥軸攪拌機(jī)是由德國(guó)ELBA公司研制生產(chǎn)。它具有結(jié)構(gòu)緊湊、消耗功率小、葉片襯板耐磨性好,能滿載啟動(dòng)和具有攪拌輕質(zhì)混凝土能力的優(yōu)點(diǎn)。我國(guó)也向該公司引進(jìn)了樣機(jī)。
雙臥軸攪拌機(jī)是隨著混凝土施工工藝的改進(jìn)而逐漸發(fā)展起來(lái)的新機(jī)型。國(guó)外從二十世紀(jì)四十年代后期開(kāi)始在美國(guó)和德國(guó)出現(xiàn),但因軸端密封技術(shù)的不成熟,其發(fā)展基本處于停頓狀態(tài)。直到七十年代初,由于這項(xiàng)技術(shù)得到突破,雙臥軸攪拌機(jī)在不少國(guó)家右重新發(fā)展起來(lái),目前已形成系列產(chǎn)品。我國(guó)于二十世紀(jì)八十年代初研制成功,但發(fā)展迅速,在產(chǎn)品規(guī)格和產(chǎn)品數(shù)量上,都遠(yuǎn)遠(yuǎn)超過(guò)了其它機(jī)型。
攪拌機(jī)構(gòu)是雙臥軸攪拌機(jī)的核心部分,混凝土攪拌質(zhì)量的好壞,生產(chǎn)率的高低,使用維修費(fèi)用的多少都與它有關(guān)。攪拌機(jī)構(gòu)是由水平安置的雙圓槽形伴筒、兩根按相反方向轉(zhuǎn)動(dòng)的攪拌軸和其上安裝的攪拌葉片組成的。攪拌葉片的作用半徑是相互交叉的,葉片與軸中心線成一定角度,當(dāng)攪拌軸轉(zhuǎn)動(dòng)時(shí),葉片一方面帶動(dòng)混和料在兩個(gè)拌筒內(nèi)輪番地作圓周運(yùn)動(dòng),上下翻滾,同時(shí)在攪拌葉片相遇或重疊的部分,混和料在兩軸之間的共域相互交換;另一方面推動(dòng)混和料沿著攪拌軸方向,不斷地從旋轉(zhuǎn)平面向另一個(gè)旋轉(zhuǎn)平面運(yùn)動(dòng)。
1.4本文的主要內(nèi)容和設(shè)計(jì)方法
為了使混凝土在有限的空間中,盡可能的進(jìn)行充分的攪拌,提高混凝土的硬度。而又不出現(xiàn)市場(chǎng)中攪拌機(jī)常出現(xiàn)的混凝土攪拌不足和“裹軸”現(xiàn)象。進(jìn)行的創(chuàng)新如下。首先,是葉片的選擇。根據(jù)不同的葉片具有不同的攪拌特征,選擇三種合適的葉片來(lái)完成混凝土的攪拌工作;其次,對(duì)這不同的葉片進(jìn)行有機(jī)的組合,充分發(fā)揮各種葉片的特征。為了達(dá)到該機(jī)器所能完成的目標(biāo),使混凝土的各項(xiàng)性能指標(biāo)達(dá)到要求。采用理論分析和參考資料相互結(jié)合,相互補(bǔ)充的方法。根據(jù)相關(guān)公式對(duì)一些設(shè)計(jì)參數(shù)進(jìn)行計(jì)算。同時(shí)參考已發(fā)展較為成熟的攪拌機(jī)設(shè)計(jì),從而使本設(shè)計(jì)更具合理性,并且大大降低設(shè)計(jì)成本。
第2章 總體設(shè)計(jì)方案確定及動(dòng)力元件選擇
2.1總體設(shè)計(jì)方案
連續(xù)式混凝土攪拌機(jī)主要由傳動(dòng)系統(tǒng)、攪拌輸送裝置、攪拌筒、及外供水系統(tǒng)等組成。該產(chǎn)品的主要機(jī)構(gòu)主要由一下幾部分組成。
圖2-2連續(xù)式混凝土攪拌機(jī)
1-電動(dòng)機(jī) 2-聯(lián)軸器 3-底座 4-攪拌筒 5-支架 6-攪拌軸
1.電機(jī)、減速機(jī)由聯(lián)軸器連接在一起,減速機(jī)與攪拌軸也由聯(lián)軸器連接在一起,安裝在底座上組成一個(gè)整體,它們之間用螺栓聯(lián)結(jié)以便裝卸和運(yùn)輸。
2. 攪拌系統(tǒng)由攪拌筒,攪拌軸組成,完成物料的攪拌及輸送工作。兩攪拌軸在攪拌筒內(nèi)成對(duì)稱方向布置,一個(gè)攪拌軸主要用于輸送物料,而另一個(gè)攪拌軸用來(lái)攪拌和輸送物料。
2.2電動(dòng)機(jī)的選型
由于連續(xù)式混凝土攪拌機(jī)從結(jié)構(gòu)上看,主要就是依靠電機(jī)的旋轉(zhuǎn),帶動(dòng)減速機(jī)的轉(zhuǎn)動(dòng),進(jìn)而帶動(dòng)攪拌軸的旋轉(zhuǎn)。因此,電機(jī)是整個(gè)裝置的動(dòng)力元件。由于在露天工作,工作時(shí)灰塵較多,土揚(yáng)水濺的工作場(chǎng)合。在攪拌的過(guò)程中,由于混凝土在不斷的攪拌過(guò)程中消耗動(dòng)力,因此連續(xù)式混凝土攪拌機(jī)的生產(chǎn)能力決定著電機(jī)的功率。此處電動(dòng)機(jī)選型計(jì)算不詳細(xì)涉及功率計(jì)算,而依據(jù)工作裝置轉(zhuǎn)速進(jìn)行電機(jī)選型。異步電機(jī)具有結(jié)構(gòu)簡(jiǎn)單、維修方便、工作效率高、重量較輕、成本較低、負(fù)載特性較硬等特點(diǎn),是應(yīng)用較廣、需求較多的一類電機(jī)。綜合考慮各個(gè)條件,暫選電機(jī)為Y180M-4型電機(jī)。查表知該電機(jī)功率為18.5KW。轉(zhuǎn)速為1470轉(zhuǎn)/min。效率為90%,額定轉(zhuǎn)矩為2.0 KW ,最大轉(zhuǎn)矩為2.2KW。
2.3減速器的選型
由于混凝土攪拌機(jī)在攪拌時(shí),為了使混凝土攪拌的比較均勻,攪拌軸的轉(zhuǎn)速不宜過(guò)快。但考慮到該機(jī)器的生產(chǎn)能力,攪拌軸的轉(zhuǎn)速又不可太慢。綜合考慮一下,參考其它機(jī)器的轉(zhuǎn)速,該攪拌軸的轉(zhuǎn)速在40左右。通過(guò)查表知暫選減速器的型號(hào)為ZSY224。額定功率為64KW。
(1) 機(jī)械強(qiáng)度的校核計(jì)算
式中 -減速器的計(jì)算輸入功率(KW);
-減速器的實(shí)際輸入功率(KW);
-工況系數(shù);
-與實(shí)際輸入轉(zhuǎn)速相對(duì)應(yīng)的額定輸入功率(KW)。
混凝土攪拌機(jī)屬于中等沖擊,據(jù)表查得工況系數(shù)=1.5。計(jì)算輸入功率為
=18.51.5=27.75<
該減速器滿足機(jī)械強(qiáng)度要求。
(2) 校核熱功率
式中 -計(jì)算熱功率(KW);
-額定功率利用系數(shù);
-負(fù)荷率系數(shù);
-環(huán)境溫度系數(shù);
-許用熱功率(KW)。
功率利用率=0.29,查表知額定功率利用系數(shù)=1.5;由圖知,載荷率系數(shù)=0.7;由圖知,環(huán)境溫度系數(shù)=1.3;由表知,許用熱功率=87kw。
計(jì)算熱功率為
=18.51.50.71.3
=19.5<
熱平衡校核通過(guò)。選用減速器代號(hào)為ZSY224。
2.4連軸器的選擇與計(jì)算
由于電機(jī)與減速器和減速器與攪拌軸之間需要傳遞扭矩和運(yùn)動(dòng),因此需要聯(lián)軸器來(lái)保持它們一同回轉(zhuǎn)而不脫開(kāi)。
由于凸緣聯(lián)軸器具有結(jié)構(gòu)簡(jiǎn)單,制造方便,成本較低,裝拆、維護(hù)簡(jiǎn)便,可傳遞大扭矩。因此,我們可以選擇該聯(lián)軸器作為該機(jī)器的聯(lián)軸器。由于電機(jī)和減速器已經(jīng)選定,減速器連接的軸已經(jīng)確定。因此聯(lián)軸器的基本尺寸參照機(jī)械零件設(shè)計(jì)手冊(cè),可以確定下來(lái)。然后根據(jù)安裝和配合需要的尺寸,來(lái)確定最終的加工的大小和尺寸。
第3章葉片的設(shè)計(jì)與計(jì)算
3.1原有葉片的布置
連續(xù)式攪拌機(jī)的合理結(jié)構(gòu),技術(shù)參數(shù)的確定是一項(xiàng)迫切而急需的任務(wù)。在過(guò)去,曾研究過(guò)的攪拌葉片在軸上布置對(duì)混合物均質(zhì)性的影響。對(duì)攪拌機(jī)筒體中充填性能及對(duì)機(jī)器生產(chǎn)率和攪拌過(guò)程耗電量的影響,在葉片合理布置下,葉片軸轉(zhuǎn)速對(duì)混合物均質(zhì)性的影響,在合理的葉片布置和轉(zhuǎn)速下,攪拌機(jī)筒體的安裝傾角對(duì)攪拌過(guò)程及對(duì)混凝土制件強(qiáng)度指標(biāo)的影響。
(a)
(b)
(c)
(d)
(e)
圖3-1 葉片的布置形式
圖上示出了曾研究過(guò)的攪拌機(jī)的葉片在軸上安裝的幾種布置方式(假設(shè)葉片設(shè)置在一個(gè)平面上并只標(biāo)記出安裝角度)。a—型可使物料連續(xù)順向流動(dòng)的布置圖,兩軸上葉片反向安裝,但都能確保物料朝卸料口移動(dòng)。b—型兩軸上葉片在外型上是同向布置,但一根軸的葉片把混合物推向卸料槽,而另一根軸則相反。c—型兩軸葉片在外型上是同向布置,并且筒體向卸料一側(cè)傾斜一個(gè)角度3度。d—型葉片外型上同向布置,筒體傾斜安裝,并且在靠近卸料口處,軸上裝有阻滯作用的葉片。e—型混合布置,在一根軸上安裝的葉片使物料沿著攪拌機(jī)筒體從裝料口朝卸料口流動(dòng)。在另一根軸上,使物料順著流動(dòng)的葉片與逆向流動(dòng)的葉片交替安裝,而兩根軸的卸料端都裝有阻滯作用的葉片。
評(píng)定混合物質(zhì)量的主要準(zhǔn)則可以用離析率S來(lái)表示。它說(shuō)明混合物中各成份分布不均勻性的程度。評(píng)定軸上葉片的布置時(shí),這是一個(gè)主要的依據(jù)。為了便于選取混合物試樣并進(jìn)行分析,可把攪拌機(jī)筒體的工作部分分為五個(gè)部分(五個(gè)區(qū)段)。
在表中列出了攪拌葉片在各種不同布置時(shí)的離析率S,生產(chǎn)率Q和單位電耗e的測(cè)定值。
很明顯,在外型上葉片同向布置的各種情況下,(圖c,d)耗電量e都是較高的,這說(shuō)明在攪拌和移動(dòng)混合物時(shí),由于反向葉片使物料沿著攪拌機(jī)筒體朝著與卸料方向反向移動(dòng)。因而增大了阻力。當(dāng)葉片混合布置時(shí)(圖e),耗電量e實(shí)際上與軸的轉(zhuǎn)速n無(wú)關(guān),而是很接近于兩軸上葉片反向安裝是的值。當(dāng)按圖a葉片反向安裝是,可取得最大的生產(chǎn)率Q和最小電耗e。但此時(shí),混合物的質(zhì)量比混合布置要差。
在進(jìn)行查閱已有資料后得到以下數(shù)據(jù)
表3-1 不同葉片布置情況的影響
葉片布置
軸轉(zhuǎn)速n
(r/s)
離析率S
(%)
單位電耗e
(KWh/m3)
生產(chǎn)量Q
(m/h)
a
2
5.3
0.28
14.75
b
2
7.1
0.58
6.5
c(a=3)
2
5
0.41
7.2
d(a=3)
2
4
0.8
4.67
e(a=3)
2
5.3
0.32
7.5
分析上述資料可得出結(jié)論:綜合所有參數(shù)一起看,用混合布置來(lái)安裝葉片是比較理想的。在葉片混合布置時(shí),攪拌機(jī)筒體向卸料一側(cè)傾斜a=3,可降低單位電耗和提高生產(chǎn)率。
對(duì)混凝土試樣強(qiáng)度指標(biāo)的研究得出:
葉片按混合布置可取得較均質(zhì)的混合物,同時(shí)提高葉片軸的轉(zhuǎn)速(增大單位時(shí)間內(nèi)工作機(jī)構(gòu)和混合物配料),試樣的強(qiáng)度可增大10—15%,從順向流動(dòng)布置的強(qiáng)度為12.5—15 MPa。增大到葉片混合布置時(shí)強(qiáng)度為15.8—17.2 MPa。
3.2設(shè)計(jì)葉片的布置
工作時(shí),攪拌軸帶動(dòng)攪拌葉片旋轉(zhuǎn),強(qiáng)迫物料按預(yù)定的軌跡產(chǎn)生剪切、擠壓、翻滾和揉搓等強(qiáng)制攪拌作用,使物料在劇烈的相對(duì)運(yùn)動(dòng)中得到均勻攪拌。改進(jìn)攪拌葉片的結(jié)構(gòu)和曲面形狀,對(duì)提高攪拌質(zhì)量、減小攪拌阻力和降低功率消耗具有重要的意義。
3.2.1葉片的布置
合理的葉片布置不僅可以提高混凝土的硬度和混凝土的生產(chǎn)率。而且可以減少原料的消耗,減少物料對(duì)機(jī)器的沖擊,還能延長(zhǎng)機(jī)器的壽命。由于兩軸的旋轉(zhuǎn)方向相反,兩軸間的料產(chǎn)生擠壓、翻滾和揉搓,以達(dá)到攪拌混合效果
顯然,在不破壞物料流運(yùn)動(dòng)的前提下,兩軸間物料逆流運(yùn)動(dòng)的頻次越高,揉搓和擠壓作用就越充分,攪拌效果就越好。因此,雙軸上攪拌葉片的排列應(yīng)以此作為依據(jù)。針對(duì)上述問(wèn)題,結(jié)合資料數(shù)據(jù)得到的葉片布置的優(yōu)劣。針對(duì)連續(xù)式混凝土攪拌機(jī)作出如下葉片的布置。
圖3-2 設(shè)計(jì)葉片的布置
通過(guò)對(duì)葉片相對(duì)運(yùn)動(dòng)分析可知:攪拌葉片正反排列得到的逆流次數(shù)要比攪拌葉片雙正排列得到的次數(shù)多,因此攪拌作用更強(qiáng)烈,攪拌質(zhì)量也更好。并且隨著攪拌葉片數(shù)量的增多,這種優(yōu)勢(shì)會(huì)更加明顯。但這種情形下,那么攪拌葉片的運(yùn)動(dòng)順序破壞了拌筒內(nèi)物料的大流動(dòng)。這是因?yàn)槲锪弦赃B續(xù)遞推的方式前進(jìn)。此外,在一根軸上相鄰葉片,同時(shí)參加攪拌,并且二者對(duì)物料推動(dòng)的方向相反。由于葉片的反向推動(dòng),有可能該葉片的相鄰葉片無(wú)料可攪,從而導(dǎo)致一根軸上葉片內(nèi)的物料無(wú)法推出來(lái)。
為了防止物料在機(jī)體兩端受到擠壓,應(yīng)在物料進(jìn)口端只設(shè)正向葉片,在出口端僅設(shè)反向葉片。實(shí)體面型螺旋葉片具有攪拌效率高、輸送物料性能好,因此在入料口設(shè)置這種葉片。但這種葉片容易使物料形成“裹軸”現(xiàn)象。而帶式面型螺旋葉片雖然在輸送效率上,稍差于實(shí)體面型螺旋葉片,但物料不會(huì)形成低效區(qū)。這對(duì)物料在沿軸向運(yùn)動(dòng)是比較有利的。特別物料在長(zhǎng)距離輸送時(shí),帶式面型螺旋葉片充分發(fā)揮了自己的優(yōu)點(diǎn)。
雖然攪拌葉片正反排列得到的逆流次數(shù)要比攪拌葉片雙正排列得到的次數(shù)多,因此攪拌作用更強(qiáng)烈,攪拌質(zhì)量也更好。但這種情形下,攪拌葉片的運(yùn)動(dòng)順序破壞了拌筒內(nèi)物料的整體流動(dòng)。這是因?yàn)槲锪弦赃B續(xù)遞推的方式前進(jìn)。此外,在一根軸上相鄰葉片,同時(shí)參加攪拌,并且二者對(duì)物料推動(dòng)的方向相反。由于葉片的反向推動(dòng),嚴(yán)重時(shí),可能造成該葉片的相鄰葉片無(wú)料可攪,從而可能導(dǎo)致一根軸上葉片內(nèi)的物料形成斷料現(xiàn)象。
為了避免這種情形的產(chǎn)生,根據(jù)試驗(yàn)結(jié)果,反向葉片的長(zhǎng)度一般為正向葉片的1/2~2/3較好。此外,采用螺旋槳葉片,作為反向葉片,各葉片均勻分布在軸上。這種葉片,可以承受較大的反向推力,攪拌的效率較高。螺旋槳葉片間斷的分布在軸上,不能導(dǎo)致對(duì)攪拌軸的斷料形成。
機(jī)內(nèi)的物料被正、反葉片分成兩部分,一部分向前推進(jìn),另一部分則向后推送,使物料產(chǎn)生連續(xù)不斷的軸向往復(fù)運(yùn)動(dòng),將處于不同半徑處的物料翻轉(zhuǎn),在正反葉片的共同作用下,物料在機(jī)內(nèi)反復(fù)翻動(dòng)、擴(kuò)散、攪拌、揉搓,使物料混合均勻。由于正向葉片大于反向葉片,所以物料在作軸向往復(fù)運(yùn)動(dòng)的時(shí)候,總體上是向出料口方向前進(jìn)的,因而可以滿足連續(xù)工作的要求。此外,物料由通常的單向運(yùn)動(dòng)方式改為往復(fù)運(yùn)動(dòng),使得設(shè)備在有限的長(zhǎng)度,提高物料的生產(chǎn)率和攪拌效率。
3.2.2“裹軸”現(xiàn)象
連續(xù)式混凝土攪拌輸送機(jī)由于在先前的生產(chǎn)過(guò)程中,一些問(wèn)題也暴露出來(lái)。其中,“裹軸”是比較突出的一個(gè)現(xiàn)象。
裹軸現(xiàn)象的產(chǎn)生
(l)維修清理工作沒(méi)有到位。正常情況下,雙臥軸攪拌輸送機(jī)應(yīng)該在工作8個(gè)小時(shí)以后,停機(jī)清理。但我們的客戶為了趕進(jìn)度大都是24小時(shí)在運(yùn)轉(zhuǎn)忽略了清理工作,這會(huì)給以后的攪拌埋下了隱患,導(dǎo)致理論上單盤(pán)3立方的混凝土,只能出2.8立方甚至更少的混凝土.大大降低了生產(chǎn)效率。因?yàn)橛辛说谝淮蔚摹肮S”,就會(huì)象滾雪球一樣,隨著時(shí)間的推移.軸會(huì)變得越來(lái)越粗,裹的泥漿也越來(lái)越多也給整個(gè)主機(jī)的負(fù)荷帶來(lái)了一定的影響。所以針對(duì)這點(diǎn)我們應(yīng)該定期清理主軸.有句俗話用在這里很合適:“磨刀不誤砍柴工:工欲善其事必先利其器”。
(2)攪拌機(jī)的進(jìn)料口位置不合適。有的廠家設(shè)計(jì)的攪拌輸送機(jī)的落料口正對(duì)著其中的一個(gè)主軸,這樣,很容易和噴濺的水混合在一起.形成水泥漿,久而久之就凝固在攪拌主軸上。所以.在設(shè)計(jì)落料口位置時(shí).一定讓物料恰巧豎直落在兩個(gè)主軸的中間避免和主軸接觸。因此,在進(jìn)行料口的位置應(yīng)該在中間,進(jìn)料口的寬度應(yīng)該為兩軸的距離。
(3)攪拌機(jī)的進(jìn)料順序不完美。當(dāng)落料順序設(shè)置不當(dāng)時(shí)同樣會(huì)導(dǎo)致“裹軸”。這時(shí)可以調(diào)整投料順序,使之達(dá)到最佳匹配。當(dāng)然合適的投料順序,需要操作人員或?qū)嶒?yàn)室人員試驗(yàn)摸索找到最終的適合該混凝土型號(hào)的順序。
(4)與攪拌葉片形狀有關(guān)系。
強(qiáng)制式攪拌機(jī)受限于本身結(jié)構(gòu),攪拌葉片靠近拌筒且高度有限,靠近攪拌葉片的物料運(yùn)動(dòng)速度較大,攪拌充分,而離攪拌葉片較遠(yuǎn)、靠近攪拌軸的物料流動(dòng)慢,得不到很好的攪拌,在靠近攪拌軸的環(huán)帶區(qū)域內(nèi)形成攪拌低效區(qū)甚至死區(qū),見(jiàn)圖。
圖3-3 裹軸
普通雙臥軸攪拌機(jī)的攪拌機(jī)構(gòu)見(jiàn)圖。圖中攪拌葉片靠近拌筒安裝,其附近的物料運(yùn)動(dòng)速度較快,而靠近攪拌軸的物料缺乏攪拌葉片的攪拌作用,運(yùn)動(dòng)緩慢,攪拌質(zhì)量較低。如何使靠近攪拌軸的物料得到有效的攪拌。是解決低效區(qū)問(wèn)題的關(guān)鍵。
機(jī)器在開(kāi)始進(jìn)料時(shí),大量物料在很短的時(shí)間內(nèi)很容易造成物料在進(jìn)料口堆積。因此,為使物料迅速離開(kāi)入料口,入料葉片做成實(shí)體面型螺旋葉片。這樣又很容易造成“裹軸”。因此,在其后的攪拌輸送葉片,為減少“裹軸”的危害,做成帶式面型的螺旋葉片
3.3葉片的主要參數(shù)
3.3.1輸送葉片主要參數(shù)的設(shè)計(jì)
—物料在料槽中的軸向移動(dòng)速度(m/s),在實(shí)際工作中,通常不考慮物料軸向阻滯的影響,因此物料在料槽內(nèi)的軸向移動(dòng)速度≈/60。
∴
由上式可以看出,當(dāng)物料輸送量Q確定后,可以調(diào)整螺旋外徑D、螺距S、螺旋轉(zhuǎn)速n和填充系數(shù)φ四個(gè)參數(shù)來(lái)滿足Q的要求。
所以,螺旋直徑
主要參數(shù)的確定
對(duì)于螺旋輸送葉片,其物料輸送量可按下式計(jì)算:
式中 Q———螺旋輸送攪拌機(jī)輸送量(t/h)
F———料槽內(nèi)物料層橫截面積()
(φ為填充系數(shù))
r———物料的單位容積質(zhì)量()
c———傾斜輸送系數(shù);
令 , 所以
式中 K———物料綜合特性系數(shù)。
物料綜合特性系數(shù)為經(jīng)驗(yàn)數(shù)值。一般說(shuō)來(lái),根據(jù)物料的性質(zhì),
查表取K=0.0573
為填充系數(shù)—取值為0.3
C=傾斜輸送系數(shù)。該攪拌機(jī)的傾斜角度為,查表取值為1
代入數(shù)據(jù)得
D= =480.9 mm。
為方便生產(chǎn),一般把計(jì)算出來(lái)的D值應(yīng)盡量圓整成下列標(biāo)準(zhǔn)直徑(mm):150,200,250,300,400,500,600,700,800……所以D=500 mm。
3.3.2主軸的轉(zhuǎn)速的確定
隨著主軸的轉(zhuǎn)動(dòng),使得混凝土產(chǎn)生一個(gè)附加的繞軸旋轉(zhuǎn)的循環(huán)流。主軸一定的轉(zhuǎn)數(shù)范圍內(nèi),這種附加的循環(huán)流對(duì)混凝土的影響并不顯著。但是,一定的轉(zhuǎn)數(shù)時(shí),混凝土就會(huì)產(chǎn)生垂直于輸送方向的跳躍翻滾,這時(shí)主軸將主要起攪拌而不再起軸向的推進(jìn)作用。這不僅會(huì)降低物料的輸送效率,加速設(shè)備構(gòu)件的磨損,而且會(huì)降低生產(chǎn)率。因此,為了避免這種現(xiàn)象的產(chǎn)生,主軸的轉(zhuǎn)速不得超過(guò)它的臨界轉(zhuǎn)速。
為了保證位于主軸附近的混凝土不會(huì)因?yàn)殡x心力的作用而產(chǎn)生垂直于輸送方向的徑向運(yùn)動(dòng),它所受的離心力不能大于其自身重力,而葉片外徑處的混凝土所受的離心力最大,因此混凝土所受離心力的最大值與其自身重力之間應(yīng)有如下關(guān)系:
式中 —主軸最大轉(zhuǎn)速, 即臨界轉(zhuǎn)速,;
—螺旋葉片外徑,;
—重力加速度,;
—物料綜合特性系數(shù)。
令,則式可轉(zhuǎn)化為:
式中 —物料綜合特性系數(shù),查表知:A=37
代入數(shù)據(jù)得=52.3
因此把它初始設(shè)置在38是合理的。
對(duì)于標(biāo)準(zhǔn)的輸送葉片,通常螺距為(0.8~1)D。當(dāng)傾斜布置時(shí)S≤0.8D,該攪拌機(jī)的傾斜角度為。取S=400 mm。
攪拌輸送機(jī)中,對(duì)物料攪拌與輸送的高低主要取決于螺旋葉片的選擇一對(duì)螺旋葉片
圖3-4 螺旋葉片
當(dāng)該軸的轉(zhuǎn)速為n轉(zhuǎn)時(shí),在葉片推進(jìn)面邊k質(zhì)點(diǎn)處粉料受到N、F力的作用而運(yùn)動(dòng)達(dá)到混合目的。為直觀起見(jiàn),將其中一螺距上的螺旋葉片展開(kāi),如圖所示。
圖3-5 運(yùn)動(dòng)軌跡
這樣葉片的旋轉(zhuǎn)運(yùn)動(dòng)就變成了垂直于軸向的平移運(yùn)動(dòng),K質(zhì)點(diǎn)處物料在被推進(jìn)過(guò)程中,不斷偏離質(zhì)點(diǎn),又有新物料不斷補(bǔ)充。在物料運(yùn)動(dòng)主方向是從A處指向B處,在此平移過(guò)程中物料除了質(zhì)點(diǎn)還作自身旋轉(zhuǎn)運(yùn)動(dòng),完成物料剪切與擴(kuò)散的混合。由圖示幾何關(guān)系求得K質(zhì)點(diǎn)處物料周向運(yùn)動(dòng)累計(jì)距離為:
=
軸向運(yùn)動(dòng)累計(jì)距離為:
=
其合成總運(yùn)動(dòng)累計(jì)距離為:
根據(jù)攪拌輸送機(jī)的每次所需混合量,估算出攪拌輸送機(jī)的筒體尺寸,螺旋葉片中徑也由此被確定。這樣,其螺距完全隨螺旋角而發(fā)生變化。
現(xiàn)查表知物料與葉片的摩擦系數(shù)=0.4。則。
那么以上三式就變?yōu)?
作圖如下
圖3-6 運(yùn)動(dòng)路線
1. 求極值點(diǎn)
∴ =。
∴ =。
∴ =。
2. 求拐點(diǎn)
。∴ =。
?!唷?。
∴ =。
表3-2 四條線弧的主要特征列表
+
0
_
_
_
_
_
_
_
_
_
0
+
+
+
+
+
+
0
_
_
+
0
_
_
_
_
_
從圖中一目了然,太大或太小,其攪拌軸的軸向運(yùn)動(dòng)都會(huì)減弱,對(duì)流混合效率降低。尤其對(duì)于偏大的情況,則對(duì)圓周運(yùn)動(dòng)、軸向運(yùn)動(dòng)均不利,不宜采用。要使對(duì)流輸送作用顯著,值應(yīng)取在()左右,我取的為。要使攪拌作用顯著,攪拌葉片的值應(yīng)取小值為宜。
攪拌葉片的螺旋角的設(shè)計(jì):
由于筒內(nèi)充滿了物料,其擴(kuò)散作用使在環(huán)筒(d2-d1)內(nèi)的物料偏離輸送實(shí)體。而周圍的物料又來(lái)補(bǔ)充,組成新的輸送實(shí)體,連續(xù)不斷,循環(huán)往復(fù)。為不使物料在攪拌筒內(nèi)堆積和截?cái)唷]斔腿~片旋轉(zhuǎn)一周輸出的物料應(yīng)與攪拌葉片旋轉(zhuǎn)一周輸出的物料一致。
由公式
式中:
Q: 料流量()
:螺旋葉片軸向投影面積 ()
:葉片旋轉(zhuǎn)一周被推料的軸向運(yùn)動(dòng)距離()
:葉片軸的轉(zhuǎn)速 ()
要滿足物料的連續(xù)性,有公式
=
其中
把其余數(shù)據(jù)代入得:
由葉片的性質(zhì)知,帶式螺旋葉片的螺旋節(jié)距與螺旋葉片的直徑大致相同,再根據(jù)下述關(guān)系知
=463.8 mm
考慮到該軸上還有一些反轉(zhuǎn)的葉片,的值適當(dāng)取的大一些,所以?。?80 mm。
3.4螺旋葉片的加工
用于連續(xù)型混凝土攪拌機(jī)的工作螺旋是由旋轉(zhuǎn)軸和許多螺旋葉片彼此焊接而成。螺旋葉片的制造無(wú)疑是整個(gè)螺旋輸送機(jī)制造中的關(guān)鍵。制造螺旋葉片雖有多種方法,但由于螺旋輸送機(jī)屬小批生產(chǎn),故用模具壓形來(lái)制造螺旋葉片乃是質(zhì)量可靠而又切實(shí)可行的辦法。
3.4.1、葉片螺旋面的成形
葉片的螺旋面是以垂直于軸的一段直線作母線繞軸作勻速旋轉(zhuǎn)并同時(shí)作勻速軸向移動(dòng)而形成的。是母線繞軸旋轉(zhuǎn)360“所形成的螺旋葉片,此時(shí)母線軸向移動(dòng)的距離稱為螺距S。
3.4.2、坯料形狀的選擇
所示螺旋葉片的坯料形狀示于下圖所視,顯然坯料有一小塊扇形面積未被使用。盡管如此,但生產(chǎn)中往往選用這種形狀的坯料壓制出正好一個(gè)螺距的螺旋葉片。若將坯料修改成開(kāi)有剪縫的整圓環(huán)狀,就能壓制出多于一個(gè)螺距的螺旋葉片,達(dá)到充分利用材料的目的,還可減少工作螺旋中葉片間的焊縫。這樣做的另一優(yōu)點(diǎn)是使構(gòu)成工作螺旋的各螺旋葉片的接頭處的各焊縫錯(cuò)開(kāi)而不在同一軸向平面內(nèi),從而改善螺旋輸送機(jī)工作的平穩(wěn)性。
3.4.3、整圓坯料尺寸的確定
經(jīng)紅壓驗(yàn)證,尺寸可按以下公式確定:
實(shí)體面型的螺旋葉片
根據(jù)設(shè)計(jì)的尺寸可知:D=140 mm,S=400 mm,B=180 mm。
圖3-7 實(shí)體面型螺旋葉片
(1) 內(nèi)螺旋線投影長(zhǎng)=3.14140=440 mm。
(2) 外螺旋線投影長(zhǎng)=3.14500=1570 mm。
(3) 螺旋線實(shí)長(zhǎng)
==594.6 mm。
==1620.2 mm。
(4) 葉片內(nèi)沿展開(kāi)半徑
mm。
(5) 葉片外沿展開(kāi)半徑
=104.5+180=284.5 mm。
(6) 展開(kāi)料缺口夾角
==
(7) 展開(kāi)料缺口外螺旋線旋長(zhǎng) A=
==164.7 mm。
帶式面型的螺旋葉片
根據(jù)設(shè)計(jì)的尺寸可知:D=300 mm,S=480 mm,B=100 mm。
圖3-8 帶式面型螺旋葉片
(1)內(nèi)螺旋線投影長(zhǎng)=3.14300=942 mm。
(2)外螺旋線投影長(zhǎng)=3.14500=1570 mm。
(3)螺旋線實(shí)長(zhǎng)
==1057 mm。
==1642 mm。
(4)葉片內(nèi)沿展開(kāi)半徑
mm。
(5)葉片外沿展開(kāi)半徑
=101+100=280.7 mm。
(6)展開(kāi)料缺口夾角
==
(7) 展開(kāi)料缺口外螺旋線旋長(zhǎng) A=
==120 mm。
3.4.4、壓模主要尺寸的確定
1.構(gòu)成模塊螺旋面母線的旋轉(zhuǎn)角度
葉片在成形過(guò)程中存在著復(fù)雜的變形。對(duì)多種規(guī)格的葉片測(cè)量得知其外徑處螺旋展長(zhǎng)度與整圓坯料的外徑展開(kāi)長(zhǎng)度基本一致,故取
式中 D1-坯料外徑;D-葉片外徑。
2.模塊螺旋面的螺距t
考慮到工件材料的彈性變形和溫度收縮的影響,經(jīng)實(shí)踐驗(yàn)證可取:
壓模定位軸外徑等于葉片內(nèi)孔下限尺寸。
壓模外徑等于葉片外徑。
3.5螺旋葉片的制造工藝
螺旋葉片的制造工藝過(guò)程如下:
切割下料—車外圓、內(nèi)孔—開(kāi)剪縫一加熱—手工初拉成形—模具紅壓成形。
加熱后的平板坯料必須迅速手工初拉成形并放入下模,拉形使放置在下模中的工件不致過(guò)于傾斜,此時(shí)工件在下模中的徑向位置憑目測(cè)估計(jì)。在模壓過(guò)程中,隨著工件的軸向尺寸逐漸伸長(zhǎng),徑向尺寸則逐漸縮小。同時(shí)工件在壓模中作徑向游動(dòng)。當(dāng)壓模閉合時(shí),工件的螺旋孔壁纏繞在壓模定位軸外圓上,即工件軸線與壓模軸線重合,此時(shí)工件模壓成螺旋葉片,而坯料外徑D:縮小成葉片外徑D,坯料內(nèi)徑d,縮小成葉片內(nèi)徑d。。
3.6螺旋葉片的校核
校核葉片
葉片的材料采用16Mn的鋼
查表知道葉片的=420 MPa。=253 MPa。
圖3-9 物料葉片上運(yùn)動(dòng)圖
物料顆粒M在p力作用下,在料槽中進(jìn)行著一個(gè)復(fù)合運(yùn)動(dòng),即沿軸向移動(dòng),又沿徑向旋轉(zhuǎn),如圖所示,既有軸向速度V1,又有圓周速度V2,其合速度為V。當(dāng)螺旋體以角速度W繞軸回轉(zhuǎn)時(shí),若在螺旋葉片任一半徑r的O點(diǎn)處有一物料顆粒M,則物料顆粒M的運(yùn)動(dòng)速度可由圖的速度三角形求解。葉片上O點(diǎn)的線速度.就是物料顆粒M牽連運(yùn)動(dòng)的速度,可用矢量OA表示,方向?yàn)檠豋點(diǎn)回轉(zhuǎn)的切線方向;物料顆粒M相對(duì)于螺旋面相對(duì)滑動(dòng)的速度,平行于O點(diǎn)的螺旋線切線方向,可用矢量AB表示。當(dāng)不考慮葉片摩擦?xí)r,則物料顆粒M絕對(duì)運(yùn)動(dòng)的速度Vn應(yīng)是螺旋面上O點(diǎn)的法線方向,可用矢量OB表示。由于物料與葉片有摩擦,物料顆粒M自O(shè)點(diǎn)的運(yùn)動(dòng)速度V的方向應(yīng)與法線偏轉(zhuǎn)—摩擦角ρ。現(xiàn)對(duì)V進(jìn)行分解,則可得到物料顆粒自O(shè)點(diǎn)移動(dòng)的軸向速度V1和圓周速度V2。因此,V1就是料槽中物料的輸送方向,而V2則是對(duì)物料輸送的阻滯和干擾。
根據(jù)物料顆粒M運(yùn)動(dòng)速度圖的分析,物料軸向移動(dòng)的速度為:
由于,
所以
而
所以
由于
所以又可寫(xiě)成
同理可得:
。
式中 S———螺旋螺距(mm)
n———螺旋轉(zhuǎn)速(r/min)
f———物料與葉片間的摩擦系數(shù),f=tanρ,ρ是與物料的摩擦角(°)
α———螺旋面升角(°)。
據(jù)此,可得出物料在料槽內(nèi)軸向移動(dòng)速度V1和圓周速度V2隨半徑r而變化的曲線圖。
圖3-10 物料軸向運(yùn)動(dòng)與圓周運(yùn)動(dòng)
由圖3-10可見(jiàn), 對(duì)帶狀葉片,V2在半徑長(zhǎng)度范圍內(nèi)是變化的。在葉片邊緣處,沿軸向運(yùn)動(dòng)的速度最大。
。代入數(shù)據(jù)知
=285.3 mm/s
=0.29 m/s。
=
=164.2 mm/s
=0.16 m/s。
現(xiàn)在假設(shè)物料均是在最大速度上進(jìn)行運(yùn)動(dòng),在軸旋轉(zhuǎn)一周時(shí)的時(shí)間內(nèi),在水平方向上,由動(dòng)量守恒定律得
t=mv1
代入數(shù)據(jù)得
=24.3 N。
在豎直方向上,由動(dòng)量守恒定律得
t=mv2
代入數(shù)據(jù)得
=7.4N。
=0.3mg=
=1366.6 N。
葉片在葉邊緣所受的力為F===1366.5 N。
葉片在沿軸向看去為一圓環(huán),由公式對(duì)y軸的慣性矩
葉片彎曲時(shí),最大正應(yīng)力發(fā)生在彎矩最大的截面上
由公式
=
=0.075 MPa<<
對(duì)實(shí)體葉片,V2在半徑長(zhǎng)度范圍內(nèi)是變化的。在葉片邊緣處,沿軸向運(yùn)動(dòng)的速度最大。
。代入數(shù)據(jù)知
=225.6 mm/s =0.2256 m/s。
=
=129.8 mm/s =0.130 m/s。
在水平方向上,由動(dòng)量守恒定律得
t=mv1
代入數(shù)據(jù)得
=21.7 N。
在豎直方向上,由動(dòng)量守恒定律得
t=mv2
代入數(shù)據(jù)得
=7.2N。
=0.3mg=
=1590.3 N。
葉片在葉邊緣所受的力為F===1597.8 N。
葉片在沿軸向看去為一圓環(huán),由公式對(duì)y軸的慣性矩
葉片彎曲時(shí),最大正應(yīng)力發(fā)生在彎矩最大的截面上
由公式
=
=0.033 MPa<<
由于物料在剛接觸葉片時(shí),瞬間速度發(fā)生了較大的變化,對(duì)葉片來(lái)說(shuō)有一個(gè)很大的力的沖擊,在這個(gè)瞬間,葉片要承受較大的沖擊。由于由上式計(jì)算出的結(jié)果可知遠(yuǎn)小于,葉片不會(huì)發(fā)生彎折的情形??梢哉J(rèn)為這種沖擊對(duì)葉片來(lái)說(shuō)也是安全的。
螺旋槳式螺旋葉片
螺旋槳式螺旋葉片在連續(xù)式混凝土攪拌機(jī)當(dāng)中,主要是用來(lái)使混凝土反向運(yùn)動(dòng),使混凝土攪拌得更均勻,達(dá)到一定的硬度。然而由于葉片的作用,使混凝土在反向運(yùn)動(dòng),而物料在運(yùn)動(dòng)的過(guò)程中突然受阻,葉片受到的阻力將突然增強(qiáng)。因此,葉片受到很強(qiáng)的推力,容易發(fā)生彎折。
在水平方向上,由動(dòng)量守恒定律得
t=mv1-mv2
代入數(shù)據(jù)得
=14.5 N。
在豎直方向上,由動(dòng)量守恒定律得
t=mv2
代入數(shù)據(jù)得
=4.8N。
=0.3mg=
=1883.25 N。
葉片在葉邊緣所受的力為F===1883.4 N。
葉片在沿軸向看去為一圓環(huán),由公式對(duì)y軸的慣性矩
葉片彎曲時(shí),最大正應(yīng)力發(fā)生在彎矩最大的截面上
由公式
=
=0.24 MPa<<
參考一些其它的焊接方法,對(duì)于實(shí)體攪拌葉片有很長(zhǎng)的焊縫,。我采用交錯(cuò)斷續(xù)角焊縫。焊角尺寸為5 mm,相鄰焊縫的間距為30 mm,焊縫段數(shù)為10段,每段焊縫長(zhǎng)度為50 mm。對(duì)于帶狀葉片來(lái)說(shuō),主要是對(duì)葉片加強(qiáng)板兩端的焊接。分別采用角焊縫,焊角尺寸為5 mm。
第4章 軸的設(shè)計(jì)與計(jì)算
4.1與聯(lián)軸器聯(lián)接的左軸的校核
—電機(jī)的功率;
—聯(lián)軸器效率;
—減速器效率
已知電機(jī)的功率是18.5KW。查表得聯(lián)軸器的效率是0.99。減速器的效率是0.91代入公式得=17.59 KW。
4.1.1、初步估算軸的直徑
選取45號(hào)鋼作為軸的材料,調(diào)質(zhì)處理。查表得=640N/mm2,由表查得材料許用應(yīng)力=60N/mm2。
由公式 mm
—軸所傳遞的功率,KW;
n—軸的轉(zhuǎn)速,r/min。
A-取決于軸材料的許用扭矩切應(yīng)力的系數(shù),其值查表知A=115
計(jì)算軸的最小直徑并加大3%以考慮鍵槽的影響。
則=91.6 mm。
在軸的最細(xì)的部分軸的直徑取值為100 mm。
圖4-1 左軸結(jié)構(gòu)
4.1.2軸的結(jié)構(gòu)設(shè)計(jì)
確定各軸段直徑和長(zhǎng)度
(1)段 根據(jù)圓整(GB5014-85),并由T和n,根據(jù)減速器選擇聯(lián)軸器型號(hào)為(Q/ZB121-73),比轂孔長(zhǎng)度稍短,因此(1)段的長(zhǎng)度選擇為160 mm。
(2)段 為使聯(lián)軸器定位,軸肩應(yīng)有一定高度,且符合標(biāo)準(zhǔn)密封內(nèi)徑和滾動(dòng)軸承型號(hào),因此(2)段的直徑為110 mm。取端蓋寬度為20 mm。查GB/T281-1994,暫選圓柱孔調(diào)心球軸承2322,其寬度為80 mm。軸承座的寬度為40 mm。筒左壁厚度為27 mm??紤]到端蓋與聯(lián)軸器之間有距離,(2)段總的長(zhǎng)度為187 mm。
(3)段 為了和軸套配合,(3)段的直徑為116 mm。軸套與軸連接用的是銷軸,考慮到銷軸成對(duì)使用,(3)段長(zhǎng)度不宜過(guò)短,因此設(shè)計(jì)選(3)段長(zhǎng)度為200 mm。
4.1.3左軸機(jī)械加工工藝過(guò)程卡
材料為45,熱處理
表4-1 工藝卡片
`工序號(hào)
工序名稱
工序內(nèi)容
工藝裝備
10
下料
(棒料)
20
熱處理
調(diào)質(zhì)處理40—45HRC
30
粗車
夾一端,車斷面,見(jiàn)平即可,鉆中心孔
CA6140
40
粗車
掉頭裝夾,車端面,保證總長(zhǎng)547mm,鉆中心孔。
CA6140
50
粗車
以中心孔定位裝夾工作,粗車外圓各部,留加工余量2 mm。
CA6140
60
精車
以兩中心孔定位裝夾工作,精車各部尺寸,留磨削余量0.4 mm。
CA6140
70
磨
以兩中心孔定位裝夾工作,粗、精磨外圓中間部分至圖樣尺寸。
M1432
80
劃線
劃mm鍵槽線
90
銑
一夾一頂裝夾工作,銑鍵槽mm,保證尺寸mm。
X5020
100
鉆
以外圓為基準(zhǔn),鉆銷軸孔
T618
110
檢
檢查各部尺寸
120
入庫(kù)
入庫(kù)
4.1.4軸承的強(qiáng)度校核
攪拌軸與殼體的連接,根據(jù)軸的直徑,選用調(diào)心球軸承2322。
查設(shè)計(jì)手冊(cè),2322軸承的主要性能參數(shù)(GB/T—288--1994)為:
C=215000 N, Co=942000 N , e=0.39 ,YI=1.6, Y2=2.5 , Yo=1.7
計(jì)算軸承支反力
設(shè)螺旋為標(biāo)準(zhǔn)的等螺距、等直徑、螺旋面升角α的單頭螺旋。以距離螺旋軸線r處的物料顆粒M作為研究對(duì)象,進(jìn)行運(yùn)動(dòng)分析旋轉(zhuǎn)螺旋面作用在物料顆粒M上的力為P,由于物料與葉片的摩擦關(guān)系,P力方向與螺旋面的法線方向偏離了β角。β角的大小由物料對(duì)螺旋面的摩擦角ρ及螺旋面的表面粗糙程度決定, 板拉制的螺旋面,可忽略其表面粗糙程度對(duì)β角的影響,可認(rèn)為β≈ρ。P力可分解為法向分力P1和徑向分力P2。
圖3-2 受力分析
從圖上知,對(duì)任一個(gè)葉片來(lái)說(shuō),
=1597.8sin(71.236)=1506 N。
=1597.8 cos(71.236)=511.6 N。
對(duì)對(duì)整根軸來(lái)說(shuō) =511.69=4604.6 N 。
因?yàn)?=0.34
收藏