購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢(xún)QQ:12401814
說(shuō)明:
目錄在給老師檢查后自己再添加一下就可以了。
謝謝?。?!
摘要:
根據(jù)老師的具體要求添加。
第一章 引言
1.1 CAD/CAM的發(fā)展現(xiàn)狀
CAD/CAM技術(shù)作為電子信息技術(shù)的重要組成部分,其應(yīng)用已遍及各個(gè)工程領(lǐng)域,是工程設(shè)計(jì)、產(chǎn)品制造業(yè)界的一場(chǎng)革命。經(jīng)過(guò)四十多年的發(fā)展,CAD/CAM技術(shù)有了長(zhǎng)足的進(jìn)步。以前CAD/CAM技術(shù)大都是在工作站平臺(tái)上運(yùn)行和開(kāi)發(fā),隨著計(jì)算機(jī)水平的大幅提高,目前CAD/CAM軟件均可以在微機(jī)上運(yùn)行。微機(jī)平臺(tái)為普及CAD的應(yīng)用創(chuàng)造了絕好的條件。在此基礎(chǔ)上,CAD/CAM軟件廠商展開(kāi)了新一輪的競(jìng)爭(zhēng)。目前CAD/CAM軟件動(dòng)態(tài)如下:
一、 AutoCAD
AutoCAD是Autodesk公司的主導(dǎo)產(chǎn)品。Autodesk公司是世界第四大PC軟件公司。目前在CAD/CAE/CAM工業(yè)領(lǐng)域內(nèi),該公司是擁有全球用戶(hù)量最多的軟件供應(yīng)商,也是全球規(guī)模最大的基于PC平臺(tái)的CAD和動(dòng)畫(huà)及可視化軟件企業(yè)。Autodesk公司的軟件產(chǎn)品已被廣泛地應(yīng)用于機(jī)械設(shè)計(jì)、建筑設(shè)計(jì)、影視制作、視頻游戲開(kāi)發(fā)以及Web網(wǎng)的數(shù)據(jù)開(kāi)發(fā)等重大領(lǐng)域。
AutoCAD是當(dāng)今最流行的二維繪圖軟件,它在二維繪圖領(lǐng)域擁有廣泛的用戶(hù)群。AutoCAD有強(qiáng)大的二維功能,如繪圖、編輯、剖面線(xiàn)和圖案繪制、尺寸標(biāo)注以及二次開(kāi)發(fā)等功能,同時(shí)有部分三維功能。在許多實(shí)際應(yīng)用領(lǐng)域(如機(jī)械、建筑、電子)中,一些軟件開(kāi)發(fā)商在AutoCAD的基礎(chǔ)上已開(kāi)發(fā)出許多符合實(shí)際應(yīng)用的軟件。
二、 SOLIDEDGE
SOLIDEDGE是真正Windows軟件。它不是將工作站軟件生硬地搬到Windows平臺(tái)上,而是充分利用Windows基于組件對(duì)象模型(COM)的先進(jìn)技術(shù)重寫(xiě)代碼。SOLIDEDGE與MicrosoftOffice兼容,與Windows的OLE技術(shù)兼容,這使得設(shè)計(jì)師們?cè)谑褂肅AD系統(tǒng)時(shí),能夠進(jìn)行Windows下字處理、電子報(bào)表、數(shù)據(jù)庫(kù)操作等。
SOLIDEDGE具有友好的用戶(hù)界面,它采用一種稱(chēng)為SmartRibbon的界面技術(shù),用戶(hù)只要按下一個(gè)命令按鈕,既可以在SmartRibbon上看到該命令的具體的內(nèi)容和詳細(xì)的步驟,同時(shí)在狀態(tài)條上提示用戶(hù)下一步該做什么。
SOLIDEDGE是基于參數(shù)和特征實(shí)體造型的新一代機(jī)械設(shè)計(jì)CAD系統(tǒng),它是為設(shè)計(jì)人員專(zhuān)門(mén)開(kāi)發(fā)的,易于理解和操作的實(shí)體造型系統(tǒng)。
三、 Unigraphics(UG、NX)
UG是UnigraphicsSolutions公司的拳頭產(chǎn)品。該公司首次突破傳統(tǒng)CAD/CAM模式,為用戶(hù)提供一個(gè)全面的產(chǎn)品建模系統(tǒng)。在UG中,優(yōu)越的參數(shù)化和變量化技術(shù)與傳統(tǒng)的實(shí)體、線(xiàn)框和表面功能結(jié)合在一起,這一結(jié)合被實(shí)踐證明是強(qiáng)有力的,并被大多數(shù)CAD/CAM軟件廠商所采用。
四、 Pro/Engineer
Pro/Engineer系統(tǒng)是美國(guó)Parametric Technology Corporation(簡(jiǎn)稱(chēng)PTC)的產(chǎn)品。PTC公司提出的單一數(shù)據(jù)庫(kù)、參數(shù)化、基于特征、全相關(guān)的概念改變了機(jī)械CAD/CAE/CAM的傳統(tǒng)觀念,這種全新的概念已成為當(dāng)今世界機(jī)械CAD/CAE/CAM領(lǐng)域的新標(biāo)準(zhǔn)。利用該概念開(kāi)發(fā)出來(lái)的第三代機(jī)械CAD/CAE/CAM產(chǎn)品Pro/Engineer軟件能將設(shè)計(jì)至生產(chǎn)全過(guò)程集成到一起,讓所有的用戶(hù)能夠同時(shí)進(jìn)行同一產(chǎn)品的設(shè)計(jì)制造工作,即實(shí)現(xiàn)所謂的并行工程。
本次畢業(yè)設(shè)計(jì)采用的是二維軟件AutoCAD2007。 AutoCAD作為CAD軟件的根基,做二維圖無(wú)疑是最好的。
!
1.2 非標(biāo)準(zhǔn)機(jī)械設(shè)計(jì)概論
(一) 非標(biāo)準(zhǔn)機(jī)械設(shè)計(jì)的特點(diǎn):
1. 單間或小批量生產(chǎn);
2. 設(shè)計(jì)難度大。缺少可以直接采用的設(shè)計(jì)計(jì)算方法、資料和實(shí)踐數(shù)據(jù);缺少加工工藝設(shè)備;缺少完整的試驗(yàn)及改進(jìn)過(guò)程;材料的選擇和熱處理的選擇受到制約。
3. 普遍采用哪個(gè)焊接結(jié)構(gòu)設(shè)計(jì)。
4. 對(duì)設(shè)計(jì)可靠性有特殊要求。
(二)非標(biāo)準(zhǔn)機(jī)械設(shè)計(jì)對(duì)工業(yè)企業(yè)發(fā)展的重要作用
1. 推動(dòng)新產(chǎn)品的開(kāi)發(fā)和加快產(chǎn)品的更新?lián)Q代。
2. 填補(bǔ)市場(chǎng)空缺及開(kāi)拓市場(chǎng)。
3. 促進(jìn)工業(yè)企業(yè)的技術(shù)改造。
(三)非標(biāo)準(zhǔn)機(jī)械設(shè)計(jì)的新趨勢(shì)
1. 適應(yīng)市場(chǎng)需要及滿(mǎn)足用戶(hù)要求已成為衡量非標(biāo)準(zhǔn)機(jī)械設(shè)計(jì)成敗的主要標(biāo)尺;
2. 普遍采用商品化的標(biāo)準(zhǔn)零配件,提升設(shè)計(jì)、制造水平;
1)提高了非標(biāo)準(zhǔn)機(jī)械的工作可靠性。
2)降低了非標(biāo)準(zhǔn)機(jī)械的制造成本。
3)提高了設(shè)計(jì)效率及縮短了制造周期。
3. 設(shè)計(jì)工作范圍日益擴(kuò)大;
4. 選用國(guó)際名牌零配件,與世界機(jī)械技術(shù)水平接軌;
5. 非標(biāo)準(zhǔn)機(jī)械產(chǎn)業(yè)走向?qū)I(yè)化;
1)標(biāo)志著非標(biāo)準(zhǔn)機(jī)械產(chǎn)業(yè)的發(fā)展已經(jīng)達(dá)到了一個(gè)新的水品。
2)提高了非標(biāo)準(zhǔn)機(jī)械的設(shè)計(jì)與制造水平。
3)減少了單件生產(chǎn)帶來(lái)的困難。
(四)非標(biāo)準(zhǔn)機(jī)械零件的合理設(shè)計(jì)
1.合理設(shè)計(jì)零件的結(jié)構(gòu)形狀和尺寸;
2.設(shè)計(jì)零件要有良好的加工藝性和裝配工藝性;
3.合理確定加工精度、配合種類(lèi)及表面加工質(zhì)量;
4.合理選擇熱處理及表面處理方法。
1.3 本論文主要內(nèi)容
本論文根據(jù)已有的牽引機(jī)的結(jié)構(gòu)圖,認(rèn)真研讀牽引機(jī)的總裝圖,了解牽引機(jī)的結(jié)構(gòu)組成,推敲其工作原理。并對(duì)牽引機(jī)中部分重要零件的結(jié)構(gòu)設(shè)計(jì)過(guò)程進(jìn)行推敲,寫(xiě)出設(shè)計(jì)過(guò)程。
第二章 -
牽引機(jī)簡(jiǎn)介
2.1 牽引機(jī)的定義
牽引機(jī)包括牽引電動(dòng)機(jī)、牽引發(fā)電機(jī)、輔助電機(jī)等。
牽引機(jī)是鐵路干線(xiàn)電力機(jī)車(chē)、工礦電力機(jī)車(chē)、電力傳動(dòng)內(nèi)燃機(jī)車(chē)和各種電動(dòng)車(chē)輛(如蓄電池車(chē)、城市電車(chē)、地下鐵道電動(dòng)車(chē)輛)上用于牽引的電機(jī)。
牽引電動(dòng)機(jī)在機(jī)車(chē)或動(dòng)車(chē)上用于驅(qū)動(dòng)一根或幾根動(dòng)輪軸的電動(dòng)機(jī)。牽引電動(dòng)機(jī)有多種類(lèi)型,如直流牽引電動(dòng)機(jī)、交流異步牽引電動(dòng)機(jī)和交流同步牽引電動(dòng)機(jī)等。直流牽引電動(dòng)機(jī),尤其是直流串勵(lì)電動(dòng)機(jī)有較好調(diào)速性能和工作特性,適應(yīng)機(jī)車(chē)牽引特性的需要,獲得廣泛應(yīng)用。
2.2 牽引機(jī)的工作原理
??? 牽引電動(dòng)機(jī)的工作原理與一般直流電動(dòng)機(jī)相同,但有特殊的工作條件:空間尺寸受到軌距和動(dòng)輪直徑的限制;在機(jī)車(chē)運(yùn)行通過(guò)軌縫和道岔時(shí)要承受相當(dāng)大的沖擊振動(dòng);大、小齒輪嚙合不良時(shí)電樞上會(huì)產(chǎn)生強(qiáng)烈的扭轉(zhuǎn)振動(dòng);在惡劣環(huán)境中運(yùn)用,雨、雪、灰沙容易侵入等。因此牽引電動(dòng)機(jī)在設(shè)計(jì)和結(jié)構(gòu)上也有許多要求,如要充分利用機(jī)體內(nèi)部空間使結(jié)構(gòu)緊湊,要采用較高級(jí)的絕緣材料和導(dǎo)磁材料,零部件需有較高的機(jī)械強(qiáng)度和剛度,整臺(tái)電機(jī)需有良好的通風(fēng)散熱條件和防塵防潮能力,要采取特殊的措施以應(yīng)付比較困難的“換向”條件以減少炭刷下的火花等。
牽引電動(dòng)機(jī)有兩種懸掛方式。一種是牽引電動(dòng)機(jī)和動(dòng)輪軸連接的懸掛方式,稱(chēng)為抱軸式懸掛或半懸掛。采用這種懸掛方式時(shí),動(dòng)輪通過(guò)軌縫和道岔所產(chǎn)生的沖擊振動(dòng)會(huì)直接傳給牽引電動(dòng)機(jī)。抱軸式懸掛適用于結(jié)構(gòu)速度低于120公里/小時(shí)的機(jī)車(chē)車(chē)輛。另一種是架承式懸掛(或稱(chēng)全懸掛)。采用這種懸掛方式時(shí)牽引電動(dòng)機(jī)固定懸掛在轉(zhuǎn)向架構(gòu)架上,在牽引電動(dòng)機(jī)軸端和小、大齒輪之間加入各種彈性連接元件,以減小沖擊振動(dòng)的影響。架承式懸掛適用于結(jié)構(gòu)速度高于120公里/小時(shí)的機(jī)車(chē)車(chē)輛。
牽引發(fā)電機(jī)專(zhuān)用于電力傳動(dòng)內(nèi)燃機(jī)車(chē),以供給牽引電動(dòng)機(jī)電力的發(fā)電機(jī),又稱(chēng)主發(fā)電機(jī)。牽引發(fā)電機(jī)有直流和交流兩種。直流牽引發(fā)電機(jī)直接向直流牽引電動(dòng)機(jī)供電。交流牽引發(fā)電機(jī)發(fā)出的三相交流電經(jīng)硅整流器整流后再向直流牽引電動(dòng)機(jī)供電。交流整流電路是三相的,整流電壓雖然有脈動(dòng),但脈動(dòng)量比較小,因此牽引電動(dòng)機(jī)還被認(rèn)為是一般的直流電動(dòng)機(jī)。
在用牽引變壓器降壓經(jīng)硅整流器或大功率晶閘管整流后供電給直流串勵(lì)牽引電動(dòng)機(jī)時(shí),加在牽引電動(dòng)機(jī)上的電壓為脈動(dòng)電壓,因此這種牽引電動(dòng)機(jī)稱(chēng)為脈流牽引電動(dòng)機(jī)。大功率脈流牽引電動(dòng)機(jī)的“換向”條件更加困難。此外,電動(dòng)機(jī)內(nèi)部還有一些附加損耗,從而引起電動(dòng)機(jī)溫升,因此,脈流牽引電動(dòng)機(jī)在設(shè)計(jì)和結(jié)構(gòu)上還要采取一定的特殊措施,以解決“換向”和溫升兩個(gè)突出的問(wèn)題。
輔助電機(jī)電力機(jī)車(chē)上的輔助電機(jī)可用直流電動(dòng)機(jī),也可用三相交流異步電動(dòng)機(jī)。用直流電動(dòng)機(jī)作為輔助電機(jī)時(shí),須由專(zhuān)用的硅整流器供電。用三相交流異步輔助電動(dòng)機(jī)時(shí),須由靜止變相、變頻裝置或?qū)S玫男D(zhuǎn)電機(jī)供給三相電源。這種專(zhuān)用的旋轉(zhuǎn)電機(jī)稱(chēng)為劈相機(jī),可以把單相交流電變?yōu)槿嘟涣麟姟?
2.3 牽引電動(dòng)機(jī)的歷史
60年代,大功率晶閘管變頻裝置的發(fā)展使異步電動(dòng)機(jī)能夠?qū)崿F(xiàn)變頻調(diào)速。現(xiàn)在各國(guó)已有較多機(jī)車(chē)和動(dòng)車(chē)采用三相交流異步變頻牽引電動(dòng)機(jī)。聯(lián)邦德國(guó)和日本在試驗(yàn)的磁懸浮高速車(chē)輛上采用直線(xiàn)異步電動(dòng)機(jī)。它的初級(jí)繞組敷設(shè)在地面導(dǎo)軌上,由地面的變頻電源供電以產(chǎn)生行波磁場(chǎng),調(diào)節(jié)供電電源頻率就可改變磁懸浮高速車(chē)輛的速度。次級(jí)繞組就是反應(yīng)板,裝在車(chē)輛的構(gòu)架上。初級(jí)行波磁場(chǎng)和次級(jí)感應(yīng)電流的相互作用,不僅產(chǎn)生使車(chē)輛前進(jìn)的推力,而且還產(chǎn)生磁拉力以懸浮車(chē)輛,并在制動(dòng)工況時(shí)起著動(dòng)力制動(dòng)的作用。
2.4 牽引電動(dòng)機(jī)的發(fā)展趨勢(shì)
??? 發(fā)展趨向?yàn)榱私鉀Q直流和脈流牽引電動(dòng)機(jī)的“轉(zhuǎn)向”問(wèn)題,有些國(guó)家已在使用晶閘管無(wú)換向器式牽引電動(dòng)機(jī)和三相交流異步變頻牽引電動(dòng)機(jī),并在試驗(yàn)以直線(xiàn)異步電動(dòng)機(jī)為動(dòng)力的磁懸浮高速車(chē)輛。晶閘管無(wú)換向器式牽引電動(dòng)機(jī)是由一臺(tái)同步電動(dòng)機(jī)和一組晶閘管逆變器組成,用晶閘管和轉(zhuǎn)子位置檢測(cè)器來(lái)代替直流牽引電動(dòng)機(jī)的換向器和炭刷結(jié)構(gòu)。這種電動(dòng)機(jī)具有直流電機(jī)的優(yōu)點(diǎn)而沒(méi)有困難的“換向”問(wèn)題。但晶閘管及其控制系統(tǒng)相當(dāng)復(fù)雜,所以電子元件直接影響電動(dòng)機(jī)的運(yùn)行可靠性。三相交流異步變頻牽引電動(dòng)機(jī)結(jié)構(gòu)簡(jiǎn)單,工作可靠,成本低廉,是比較理想的牽引電動(dòng)機(jī)。但由于需用變頻調(diào)速,它的發(fā)展和應(yīng)用一度受到限制。
2.5 牽引電動(dòng)機(jī)的特點(diǎn)
??? 牽引機(jī)主要與各種管材擠出生產(chǎn)線(xiàn)、焊管生產(chǎn)線(xiàn)配套,為整個(gè)機(jī)組提供夾持牽引力,并使生產(chǎn)線(xiàn)運(yùn)行同步并保持平穩(wěn),應(yīng)用范圍廣。
①采用氣動(dòng)系統(tǒng)夾緊裝置,夾緊壓力可測(cè)、可調(diào)、可控、管材變形??;
②采用履帶橡膠塊/皮帶/金屬夾塊,適應(yīng)各種不同材料、直徑和壁厚的管材;
③無(wú)級(jí)調(diào)速,變頻控制,同步性好,運(yùn)行平穩(wěn)不打滑;
④牽引機(jī)結(jié)構(gòu)簡(jiǎn)單、操作方便、使用壽命長(zhǎng)。
第三章 牽引機(jī)的結(jié)構(gòu)
從已有的牽引機(jī)的總裝配圖我們可以看出牽引機(jī)的主要結(jié)構(gòu)零器件有很多。設(shè)計(jì)時(shí)我們必須認(rèn)真的了解這些結(jié)構(gòu)的功能,設(shè)計(jì)原理和目的。
3.1電動(dòng)機(jī)
如圖3-1發(fā)動(dòng)機(jī)的機(jī)構(gòu)圖
圖3-1 發(fā)動(dòng)機(jī)
電動(dòng)機(jī)(Motors)是把電能轉(zhuǎn)換成機(jī)械能的設(shè)備,它是利用通電線(xiàn)圈在磁場(chǎng)中受力轉(zhuǎn)動(dòng)的現(xiàn)象制成,分布于各個(gè)用戶(hù)處,電動(dòng)機(jī)按使用電源不同分為直流電動(dòng)機(jī)和交流電動(dòng)機(jī),電力系統(tǒng)中的電動(dòng)機(jī)大部分是交流電機(jī),可以是同步電機(jī)或者是異步電機(jī)(電機(jī)定子磁場(chǎng)轉(zhuǎn)速與轉(zhuǎn)子旋轉(zhuǎn)轉(zhuǎn)速不保持同步速)。電動(dòng)機(jī)主要由定子與轉(zhuǎn)子組成。通電導(dǎo)線(xiàn)在磁場(chǎng)中受力運(yùn)動(dòng)的方向跟電流方向和磁感線(xiàn)(磁場(chǎng)方向)方向有關(guān)。電動(dòng)機(jī)工作原理是磁場(chǎng)對(duì)電流受力的作用,使電動(dòng)機(jī)轉(zhuǎn)動(dòng)。
用途應(yīng)用
各種電動(dòng)機(jī)中應(yīng)用最廣的是交流異步電動(dòng)機(jī)(又稱(chēng)感應(yīng)電動(dòng)機(jī) )。它使用方便、運(yùn)行可靠、價(jià)格低廉、結(jié)構(gòu)牢固,但功率因數(shù)較低,調(diào)速也較困難。大容量低轉(zhuǎn)速的動(dòng)力機(jī)常用同步電動(dòng)機(jī) 電動(dòng)機(jī)
(見(jiàn)同步電機(jī))。同步電動(dòng)機(jī)不但功率因數(shù)高,而且其轉(zhuǎn)速與負(fù)載大小無(wú)關(guān),只決定于電網(wǎng)頻率。工作較穩(wěn)定。在要求寬范圍調(diào)速的場(chǎng)合多用直流電動(dòng)機(jī)。但它有換向器,結(jié)構(gòu)復(fù)雜,價(jià)格昂貴,維護(hù)困難,不適于惡劣環(huán)境。20世紀(jì)70年代以后,隨著電力電子技術(shù)的發(fā)展,交流電動(dòng)機(jī)的調(diào)速技術(shù)漸趨成熟,設(shè)備價(jià)格日益降低,已開(kāi)始得到應(yīng)用 。電動(dòng)機(jī)在規(guī)定工作制式(連續(xù)式、短時(shí)運(yùn)行制、斷續(xù)周期運(yùn)行制)下所能承擔(dān)而不至引起電機(jī)過(guò)熱的最大輸出機(jī)械功率稱(chēng)為它的額定功率,使用時(shí)需注意銘牌上的規(guī)定。電動(dòng)機(jī)運(yùn)行時(shí)需注意使其負(fù)載的特性與電機(jī)的特性相匹配,避免出現(xiàn)飛車(chē)或停轉(zhuǎn)。電動(dòng)機(jī)能提供的功率范圍很大,從毫瓦級(jí)到萬(wàn)千瓦級(jí)。 電動(dòng)機(jī)的使用和控制非常方便,具有自起動(dòng)、加速、制動(dòng)、反轉(zhuǎn)、掣住等能力,能滿(mǎn)足各種運(yùn)行要求;電動(dòng)機(jī)的工作效率較高,又沒(méi)有煙塵、氣味,不污染環(huán)境,噪聲也較小。由于它的一系列優(yōu)點(diǎn),所以在工農(nóng)業(yè)生產(chǎn)、交通運(yùn)輸、國(guó)防、商業(yè)及家用電器、醫(yī)療電器設(shè)備等各方面廣泛應(yīng)用。一般電動(dòng)機(jī)調(diào)速時(shí)其輸出功率會(huì)隨轉(zhuǎn)速而變化。
3-2 工作臺(tái)
工作臺(tái)在牽引機(jī)工作的過(guò)程中其固定個(gè)零部件之間的位置,其固定支撐的作用。同時(shí)工作臺(tái)還有防振作用,好的工作臺(tái)對(duì)于加些加工和產(chǎn)品生產(chǎn)線(xiàn)的好壞有很大關(guān)系。
3-3 通氣塞
如圖3-2 通氣塞的結(jié)構(gòu)圖。
圖3-2 通氣塞
通氣塞在牽引機(jī)中起了很重要的作用,有了通氣塞牽引機(jī)工作過(guò)程中箱體內(nèi)部就可以很好的與外界進(jìn)行氣體交換,同時(shí)可以把箱體內(nèi)部產(chǎn)生的熱量通過(guò)通氣塞排出,通氣塞還可以有效地過(guò)濾去空氣中較大的雜志。
3-4 牽引輪
牽引輪的機(jī)構(gòu)如圖3-3所示:
圖3-3 牽引輪
牽引輪是本次畢業(yè)設(shè)計(jì)的重點(diǎn)和核心內(nèi)容,他在牽引機(jī)中的作用是很明顯的。牽引輪的設(shè)計(jì)的好壞在很大程度上決定了牽引機(jī)的工作是否能夠達(dá)到設(shè)計(jì)要求。
3-5 牽引機(jī)的其它組成
牽引機(jī)的機(jī)構(gòu)組成中還包括了一系列其它的零部件,如:
軸承、檢查孔蓋、蝸輪、軸、皮帶輪、箱蓋、聯(lián)軸器、螺母、螺栓、鍵、銷(xiāo) 等等
在牽引機(jī)的結(jié)構(gòu)組成中它們的作用是不容忽視的,它們?cè)谡麄€(gè)機(jī)械中也是很重要的。它們對(duì)整個(gè)牽引機(jī)的正常工作中的地位是無(wú)法取代的。
第四章 牽引輪的設(shè)計(jì)
4.1 牽引輪的設(shè)計(jì)思路
4.1.1 牽引輪的設(shè)計(jì)要求
根據(jù)目前我們所學(xué)的機(jī)械設(shè)計(jì)知識(shí)---帶傳動(dòng)。
在機(jī)械設(shè)計(jì)中牽引輪是非標(biāo)準(zhǔn)件,它的設(shè)計(jì)自然是非標(biāo)準(zhǔn)件的設(shè)計(jì)。對(duì)于非標(biāo)準(zhǔn)件的設(shè)計(jì)比較復(fù)雜,設(shè)計(jì)要求也多。因此我們想要從已學(xué)的機(jī)械設(shè)計(jì)知識(shí)來(lái)解決這一問(wèn)題。
根據(jù)帶傳動(dòng)對(duì)于輪的設(shè)計(jì)我們已經(jīng)學(xué)過(guò)的有V帶的設(shè)計(jì),而帶輪的設(shè)計(jì)又包括:V帶輪的設(shè)計(jì)和平帶輪的設(shè)計(jì)。牽引輪的傳動(dòng)設(shè)計(jì)就是介于V帶輪的傳動(dòng)和平帶輪傳動(dòng)之間的一種傳動(dòng)類(lèi)型。這樣我們就可以利用現(xiàn)有的豐富的有關(guān)帶傳動(dòng)設(shè)計(jì)的資料來(lái)對(duì)牽引輪進(jìn)行設(shè)計(jì)。
本次畢業(yè)設(shè)計(jì)我利用的是《非標(biāo)機(jī)械設(shè)計(jì)手冊(cè)》中帶傳動(dòng)的設(shè)計(jì)思路來(lái)指導(dǎo)我們對(duì)牽引輪進(jìn)行設(shè)計(jì)。
4.2 牽引輪材料的選擇
牽引輪材料的選擇與他所傳遞的速度有很大的關(guān)系。工程設(shè)計(jì)中輪的材料常用鑄鐵、鋼、鋁和工程塑料,灰鑄鐵應(yīng)用最廣。此設(shè)計(jì)中選用的是45鋼。
4.3牽引輪設(shè)計(jì)
根據(jù)已有的牽引機(jī)裝配圖我們假定電動(dòng)機(jī)為J02-71-4交流異步電動(dòng)機(jī),額定功率為22KW,轉(zhuǎn)速n1=1470r/min中心距約為3000mm。
按照寬V帶輪的設(shè)計(jì)可以對(duì)牽引輪的結(jié)構(gòu)進(jìn)行很好的設(shè)計(jì)并滿(mǎn)足設(shè)計(jì)要求。
4.3.1 牽引輪輪緣設(shè)計(jì)
1.設(shè)計(jì)功率
由《非標(biāo)機(jī)械設(shè)計(jì)手冊(cè)》表9-2-4查得工況系數(shù)由此可得設(shè)計(jì)功率:
2.帶型的選擇
根據(jù),。由《非標(biāo)機(jī)械設(shè)計(jì)手冊(cè)》圖9-2-2可選帶型為C型。
3.傳動(dòng)比
有傳動(dòng)比公式有:
4.選用小輪基準(zhǔn)直徑
由于設(shè)計(jì)中小輪的參數(shù)沒(méi)有給定而設(shè)計(jì)中也不要求進(jìn)行分析計(jì)算那么它的直徑可以進(jìn)行假設(shè)。可根據(jù)《非標(biāo)機(jī)械設(shè)計(jì)手冊(cè)》表9-2-5選擇:
5.牽引輪基準(zhǔn)直徑的確定
可選
6.軸的實(shí)際轉(zhuǎn)速
7.帶速的大小
8.所需基準(zhǔn)帶的長(zhǎng)度
由帶長(zhǎng)公式:
則有:
即
這樣可以根據(jù)《非標(biāo)機(jī)械設(shè)計(jì)手冊(cè)》表9-2-2選擇:
9.實(shí)際中心距的確定
即:
10.小輪包角
由包角公式:
即
即
說(shuō)明小輪的設(shè)計(jì)符合要求,同樣由于牽引輪的包角大于小輪的包角,說(shuō)明書(shū)牽引輪的設(shè)計(jì)也符合設(shè)計(jì)要求。
由此可以確定輪緣的基本參數(shù)
如圖4-1輪緣結(jié)構(gòu)尺寸為:
圖4-1 牽引輪輪緣
4.3.2 牽引輪的結(jié)構(gòu)設(shè)計(jì)
和帶輪的結(jié)構(gòu)相似牽引輪的結(jié)構(gòu)也可以由輪緣、輪輻、輪轂組成。
根據(jù)輪輻結(jié)構(gòu)的不同,帶輪可以分為實(shí)心式、腹板式、孔板式、輪輻式。
《機(jī)械設(shè)計(jì)手冊(cè)》有:當(dāng)牽引輪的結(jié)構(gòu)形式與基準(zhǔn)直徑有關(guān)。當(dāng)牽引輪的基準(zhǔn)直徑為時(shí),可采用實(shí)心式;當(dāng)mm時(shí)可采用腹板式;當(dāng)mm同時(shí)時(shí),可采用孔板式;當(dāng)時(shí),可采用輪輻式。
圖4-2 牽引輪總體結(jié)構(gòu)
1.軸直徑的選擇
由于設(shè)計(jì)過(guò)程中不涉及軸的設(shè)計(jì)因此在設(shè)計(jì)過(guò)程中我們應(yīng)該對(duì)牽引輪的孔徑大小進(jìn)行假設(shè)。本次設(shè)計(jì)中假定牽引輪孔徑為60mm。
既有如圖4-2:軸的直徑為 :
2.確定牽引輪尺寸。
如圖4-2
其中d為軸的直徑
因此可以定尺寸:
3.確定牽引輪小孔直徑
如圖4-2由設(shè)計(jì)公式
且滿(mǎn)足:
因此小孔直徑可選為
4.牽引輪輪轂寬度的確定
由《機(jī)械設(shè)計(jì)》設(shè)計(jì)公式:
且當(dāng)時(shí),。
因此可以選取。
5.牽引輪最大外輪廓尺寸的確定。
由圖4-1與圖4-2中的幾何約束有:
結(jié)論
根據(jù)老師的設(shè)計(jì)任務(wù)書(shū)進(jìn)行添加
致 謝
從開(kāi)學(xué)到現(xiàn)在,已經(jīng)過(guò)去幾個(gè)月了。在這幾個(gè)月里,我得到了指導(dǎo)老師和同學(xué)的極大幫助。由于目前市面上關(guān)于牽引機(jī)方面的書(shū)籍很少,他們不僅幫我們找到相關(guān)書(shū)籍資料,還為我們提供了一個(gè)良好的做畢業(yè)設(shè)計(jì)環(huán)境。在做畢業(yè)設(shè)計(jì)的這幾個(gè)月里,我學(xué)到了不少東西,不僅有與畢業(yè)設(shè)計(jì)相關(guān)的,還有一些其他專(zhuān)業(yè)知識(shí)。在此,我要衷心地對(duì)他們說(shuō)一聲:“您辛苦了,謝謝您!”
在此之前,我對(duì)AutoCAD2007這個(gè)軟件并不是很了解,通過(guò)這次學(xué)習(xí),我初步了解了軟件繪圖的知識(shí),掌握了AutoCAD的相關(guān)功能及各種繪圖方法。
在設(shè)計(jì)期間,我還通過(guò)互聯(lián)網(wǎng)了解了AutoCAD方面的市場(chǎng)前景。目前AutoCAD在中國(guó)應(yīng)用廣泛,許多公司均采用AutoCAD進(jìn)行二維繪圖。特別是在深圳、上海等發(fā)達(dá)城市,應(yīng)用更為廣泛。
最后,再次感謝指導(dǎo)老師給予我的幫助。
參考文獻(xiàn)
[1]岑軍健,趙菊初,南文海編著. 非標(biāo)準(zhǔn)機(jī)械設(shè)計(jì)手冊(cè)[M]. 國(guó)防工業(yè)出版社2008.
[2]紀(jì)名剛等.機(jī)械設(shè)計(jì)[M].北京.高等教育出版社.
[3]周良德,朱泗芳等編著[M].長(zhǎng)沙.現(xiàn)代工程圖學(xué).湖南科學(xué)技術(shù)出版社.2000.8
[4]席偉光.機(jī)械設(shè)計(jì)課程設(shè)計(jì)[M].北京.高等教育出版社.2002.9
[5]濮良貴,紀(jì)名剛. 《機(jī)械設(shè)計(jì)》[M]. 北京:高等教育出版社,2007.
[6]孫恒,陳作模,葛文杰.《機(jī)械原理》[M]. 北京:高等教育出版社,2007.
[7] 成大先.《機(jī)械設(shè)計(jì)手冊(cè)》[M]. 北京:化學(xué)工業(yè)出版社,2005.
[8]羅迎社.材料力學(xué)[M].武漢.武漢理工出版社.2000.10
[9]羅洪田.機(jī)械原理課程設(shè)計(jì)指導(dǎo)書(shū)[M].北京. 高等教育出版社.1986
[10]吳宗澤. 《機(jī)械零件設(shè)計(jì)手冊(cè)》[M]. 北京: 機(jī)械工業(yè)出版社,2006.
[11] 唐增寶等.機(jī)械設(shè)計(jì)課程設(shè)計(jì).[M].武漢. 華中理工大學(xué)出版社.1998
[12] 輝航,王德成等.彈簧手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1997.
附錄I 外文文獻(xiàn)翻譯
估計(jì)導(dǎo)致工程幾何分析錯(cuò)誤的一個(gè)正式理論
SankaraHariGopalakrishnan,KrishnanSuresh
機(jī)械工程系,威斯康辛大學(xué),麥迪遜分校,2006年9月30日
摘要:幾何分析是著名的計(jì)算機(jī)輔助設(shè)計(jì)/計(jì)算機(jī)輔助工藝簡(jiǎn)化 “小或無(wú)關(guān)特征”在CAD模型中的程序,如有限元分析。然而,幾何分析不可避免地會(huì)產(chǎn)生分析錯(cuò)誤,在目前的理論框架實(shí)在不容易量化。
本文中,我們對(duì)快速計(jì)算處理這些幾何分析錯(cuò)誤提供了嚴(yán)謹(jǐn)?shù)睦碚?。尤其,我們集中力量解決地方的特點(diǎn),被簡(jiǎn)化的任意形狀和大小的區(qū)域。提出的理論采用伴隨矩陣制定邊值問(wèn)題抵達(dá)嚴(yán)格界限幾何分析性分析錯(cuò)誤。該理論通過(guò)數(shù)值例子說(shuō)明。
關(guān)鍵詞:幾何分析;工程分析;誤差估計(jì);計(jì)算機(jī)輔助設(shè)計(jì)/計(jì)算機(jī)輔助教學(xué)
1. 介紹
機(jī)械零件通常包含了許多幾何特征。不過(guò),在工程分析中并不是所有的特征都是至關(guān)重要的。以前的分析中無(wú)關(guān)特征往往被忽略,從而提高自動(dòng)化及運(yùn)算速度。
舉例來(lái)說(shuō),考慮一個(gè)剎車(chē)轉(zhuǎn)子,如圖1(a)。轉(zhuǎn)子包含50多個(gè)不同的特征,但所有這些特征并不是都是相關(guān)的。就拿一個(gè)幾何化的剎車(chē)轉(zhuǎn)子的熱量分析來(lái)說(shuō),如圖1(b)。有限元分析的全功能的模型如圖1(a),需要超過(guò)150,000度的自由度,幾何模型圖1(b)項(xiàng)要求小于25,000個(gè)自由度,從而導(dǎo)致非常緩慢的運(yùn)算速度。
圖1(a)剎車(chē)轉(zhuǎn)子 圖1(b)其幾何分析版本
除了提高速度,通常還能增加自動(dòng)化水平,這比較容易實(shí)現(xiàn)自動(dòng)化的有限元網(wǎng)格幾何分析組成。內(nèi)存要求也跟著降低,而且條件數(shù)離散系統(tǒng)將得以改善;后者起著重要作用迭代線(xiàn)性系統(tǒng)。
但是,幾何分析還不是很普及。不穩(wěn)定性到底是“小而局部化”還是“大而擴(kuò)展化”,這取決于各種因素。例如,對(duì)于一個(gè)熱問(wèn)題,想刪除其中的一個(gè)特征,不穩(wěn)定性是一個(gè)局部問(wèn)題:(1)凈熱通量邊界的特點(diǎn)是零。(2)特征簡(jiǎn)化時(shí)沒(méi)有新的熱源產(chǎn)生; [4]對(duì)上述規(guī)則則例外。展示這些物理特征被稱(chēng)為自我平衡。結(jié)果,同樣存在結(jié)構(gòu)上的問(wèn)題。
從幾何分析角度看,如果特征遠(yuǎn)離該區(qū)域,則這種自我平衡的特征可以忽略。但是,如果功能接近該區(qū)域我們必須謹(jǐn)慎,。
從另一個(gè)角度看,非自我平衡的特征應(yīng)值得重視。這些特征的簡(jiǎn)化理論上可以在系統(tǒng)任意位置被施用,但是會(huì)在系統(tǒng)分析上構(gòu)成重大的挑戰(zhàn)。
目前,尚無(wú)任何系統(tǒng)性的程序去估算幾何分析對(duì)上述兩個(gè)案例的潛在影響。這就必須依靠工程判斷和經(jīng)驗(yàn)。
在這篇文章中,我們制定了理論估計(jì)幾何分析影響工程分析自動(dòng)化的方式。任意形狀和大小的形體如何被簡(jiǎn)化是本文重點(diǎn)要解決的地方。伴隨矩陣和單調(diào)分析這兩個(gè)數(shù)學(xué)概念被合并成一個(gè)統(tǒng)一的理論來(lái)解決雙方的自我平衡和非自我平衡的特點(diǎn)。數(shù)值例子涉及二階scalar偏微分方程,以證實(shí)他的理論。
本文還包含以下內(nèi)容。第二節(jié)中,我們就幾何分析總結(jié)以往的工作。在第三節(jié)中,我們解決幾何分析引起的錯(cuò)誤分析,并討論了擬議的方法。第四部分從數(shù)值試驗(yàn)提供結(jié)果。第五部分討論如何加快設(shè)計(jì)開(kāi)發(fā)進(jìn)度。
2. 前期工作
幾何分析過(guò)程可分為三個(gè)階段:
識(shí)別:哪些特征應(yīng)該被簡(jiǎn)化;
簡(jiǎn)化:如何在一個(gè)自動(dòng)化和幾何一致的方式中簡(jiǎn)化特征;
分析:簡(jiǎn)化的結(jié)果。
第一個(gè)階段的相關(guān)文獻(xiàn)已經(jīng)很多。例如,企業(yè)的規(guī)模和相對(duì)位置這個(gè)特點(diǎn),經(jīng)常被用來(lái)作為度量鑒定。此外,也有人提議以有意義的力學(xué)判據(jù)確定這種特征。
自動(dòng)化幾何分析過(guò)程,事實(shí)上,已成熟到一個(gè)商業(yè)化幾何分析的地步。但我們注意到,這些商業(yè)軟件包僅提供一個(gè)純粹的幾何解決。因?yàn)闆](méi)有保證隨后進(jìn)行的分析錯(cuò)誤,所以必須十分小心使用。另外,固有的幾何問(wèn)題依然存在,并且還在研究當(dāng)中。
本文的重點(diǎn)是放在第三階段,即快速幾何分析。建立一個(gè)有系統(tǒng)的方法,通過(guò)幾何分析引起的誤差是可以計(jì)算出來(lái)的。再分析的目的是迅速估計(jì)改良系統(tǒng)的反應(yīng)。其中最著名的再分析理論是著名的謝爾曼-Morrison和woodbury公式。對(duì)于兩種有著相似的網(wǎng)狀結(jié)構(gòu)和剛度矩陣設(shè)計(jì),再分析這種技術(shù)特別有效。然而,過(guò)程幾何分析在網(wǎng)狀結(jié)構(gòu)的剛度矩陣會(huì)導(dǎo)致一個(gè)戲劇性的變化,這與再分析技術(shù)不太相關(guān)。
3. 擬議的方法
3.1問(wèn)題闡述
我們把注意力放在這個(gè)文件中的工程問(wèn)題,標(biāo)量二階偏微分方程式(pde):
許多工程技術(shù)問(wèn)題,如熱,流體靜磁等問(wèn)題,可能簡(jiǎn)化為上述公式。
作為一個(gè)說(shuō)明性例子,考慮散熱問(wèn)題的二維模塊Ω如圖2所示。
圖2二維熱座裝配
熱量q從一個(gè)線(xiàn)圈置于下方位置列為Ωcoil。半導(dǎo)體裝置位于Ωdevice。這兩個(gè)地方都屬于Ω,有相同的材料屬性,其余Ω將在后面討論。特別令人感興趣的是數(shù)量,加權(quán)溫度Tdevice內(nèi)Ωdevice(見(jiàn)圖2)。一個(gè)時(shí)段,認(rèn)定為Ωslot縮進(jìn)如圖2,會(huì)受到抑制,其對(duì)Tdevice將予以研究。邊界的時(shí)段稱(chēng)為Γslot其余的界線(xiàn)將稱(chēng)為Γ。邊界溫度Γ假定為零。兩種可能的邊界條件Γslot被認(rèn)為是:(a)固定熱源,即(-kt)?n=q,(b)有一定溫度,即T=Tslot。兩種情況會(huì)導(dǎo)致兩種不同幾何分析引起的誤差的結(jié)果。
設(shè)T(x,y)是未知的溫度場(chǎng)和K導(dǎo)熱。然后,散熱問(wèn)題可以通過(guò)泊松方程式表示:
其中H(x,y)是一些加權(quán)內(nèi)核?,F(xiàn)在考慮的問(wèn)題是幾何分析簡(jiǎn)化的插槽是簡(jiǎn)化之前分析,如圖3所示。
圖3defeatured二維熱傳導(dǎo)裝配模塊
現(xiàn)在有一個(gè)不同的邊值問(wèn)題,不同領(lǐng)域t(x,y):
觀察到的插槽的邊界條件為t(x,y)已經(jīng)消失了,因?yàn)椴垡呀?jīng)不存在了(關(guān)鍵性變化)!
解決的問(wèn)題是:
設(shè)定tdevice和t(x,y)的值,估計(jì)Tdevice。
這是一個(gè)較難的問(wèn)題,是我們尚未解決的。在這篇文章中,我們將從上限和下限分析Tdevice。這些方向是明確被俘引理3、4和3、6。至于其余的這一節(jié),我們將發(fā)展基本概念和理論,建立這兩個(gè)引理。值得注意的是,只要它不重疊,定位槽與相關(guān)的裝置或熱源沒(méi)有任何限制。上下界的Tdevice將取決于它們的相對(duì)位置。
3.2伴隨矩陣方法
我們需要的第一個(gè)概念是,伴隨矩陣公式表達(dá)法。應(yīng)用伴隨矩陣論點(diǎn)的微分積分方程,包括其應(yīng)用的控制理論,形狀優(yōu)化,拓?fù)鋬?yōu)化等。我們對(duì)這一概念歸納如下。
相關(guān)的問(wèn)題都可以定義為一個(gè)伴隨矩陣的問(wèn)題,控制伴隨矩陣t_(x,y),必須符合下列公式計(jì)算〔23〕:
伴隨場(chǎng)t_(x,y)基本上是一個(gè)預(yù)定量,即加權(quán)裝置溫度控制的應(yīng)用熱源。可以觀察到,伴隨問(wèn)題的解決是復(fù)雜的原始問(wèn)題;控制方程是相同的;這些問(wèn)題就是所謂的自身伴隨矩陣。大部分工程技術(shù)問(wèn)題的實(shí)際利益,是自身伴隨矩陣,就很容易計(jì)算伴隨矩陣。
另一方面,在幾何分析問(wèn)題中,伴隨矩陣發(fā)揮著關(guān)鍵作用。表現(xiàn)為以下引理綜述:
引理3.1已知和未知裝置溫度的區(qū)別,即(Tdevice-tdevice)可以歸納為以下的邊界積分比幾何分析插槽:
在上述引理中有兩點(diǎn)值得注意:
1、積分只牽涉到邊界гslot;這是令人鼓舞的?;蛟S,處理剛剛過(guò)去的被簡(jiǎn)化信息特點(diǎn)可以計(jì)算誤差。
2、右側(cè)牽涉到的未知區(qū)域T(x,y)的全功能的問(wèn)題。特別是第一周期涉及的差異,在正常的梯度,即涉及[-k(T-t)] ?n;這是一個(gè)已知數(shù)量邊界條件[-kt]?n所指定的時(shí)段,未知狄里克萊條件作出規(guī)定[-kt]?n可以評(píng)估。在另一方面,在第二個(gè)周期內(nèi)涉及的差異,在這兩個(gè)領(lǐng)域,即T管; 因?yàn)閠可以評(píng)價(jià),這是一個(gè)已知數(shù)量邊界條件T指定的時(shí)段。因此。
引理3.2、差額(tdevice-tdevice)不等式
然而,伴隨矩陣技術(shù)不能完全消除未知區(qū)域T(x,y)。為了消除T(x,y)我們把重點(diǎn)轉(zhuǎn)向單調(diào)分析。
3.3單調(diào)性分析
單調(diào)性分析是由數(shù)學(xué)家在19世紀(jì)和20世紀(jì)前建立的各種邊值問(wèn)題。例如,一個(gè)單調(diào)定理:
"添加幾何約束到一個(gè)結(jié)構(gòu)性問(wèn)題,是指在位移(某些)邊界不減少"。
觀察發(fā)現(xiàn),上述理論提供了一個(gè)定性的措施以解決邊值問(wèn)題。
后來(lái),工程師利用之前的“計(jì)算機(jī)時(shí)代”上限或下限同樣的定理,解決了具有挑戰(zhàn)性的問(wèn)題。當(dāng)然,隨著計(jì)算機(jī)時(shí)代的到來(lái),這些相當(dāng)復(fù)雜的直接求解方法已經(jīng)不為人所用。但是,在當(dāng)前的幾何分析,我們證明這些定理采取更為有力的作用,尤其應(yīng)當(dāng)配合使用伴隨理論。
我們現(xiàn)在利用一些單調(diào)定理,以消除上述引理T(x,y)。遵守先前規(guī)定,右邊是區(qū)別已知和未知的領(lǐng)域,即T(x,y)-t(x,y)。因此,讓我們?cè)诮缍ㄒ粋€(gè)領(lǐng)域E(x,y)在區(qū)域?yàn)?
e(x,y)=t(x,y)-t(x,y)。
據(jù)悉,T(x,y)和T(x,y)都是明確的界定,所以是e(x,y)。事實(shí)上,從公式(1)和(3),我們可以推斷,e(x,y)的正式滿(mǎn)足邊值問(wèn)題:
解決上述問(wèn)題就能解決所有問(wèn)題。但是,如果我們能計(jì)算區(qū)域e(x,y)與正常的坡度超過(guò)插槽,以有效的方式,然后(Tdevice-tdevice),就評(píng)價(jià)表示e(X,Y)的效率,我們現(xiàn)在考慮在上述方程兩種可能的情況如(a)及(b)。
例(a)邊界條件較第一插槽,審議本案時(shí)槽原本指定一個(gè)邊界條件。為了估算e(x,y),考慮以下問(wèn)題:
因?yàn)橹蝗Q于縫隙,不討論域,以上問(wèn)題計(jì)算較簡(jiǎn)單。經(jīng)典邊界積分/邊界元方法可以引用。關(guān)鍵是計(jì)算機(jī)領(lǐng)域e1(x,y)和未知領(lǐng)域的e(x,y)透過(guò)引理3.3。這兩個(gè)領(lǐng)域e1(x,y)和e(x,y)滿(mǎn)足以下單調(diào)關(guān)系:
把它們綜合在一起,我們有以下結(jié)論引理。
引理3.4未知的裝置溫度Tdevice,當(dāng)插槽具有邊界條件,東至以下限額的計(jì)算,只要求:(1)原始及伴隨場(chǎng)T和隔熱與幾何分析域(2)解決e1的一項(xiàng)問(wèn)題涉及插槽:
觀察到兩個(gè)方向的右側(cè),雙方都是獨(dú)立的未知區(qū)域T(x,y)。
例(b) 插槽Dirichlet邊界條件
我們假定插槽都維持在定溫Tslot??紤]任何領(lǐng)域,即包含域和插槽。界定一個(gè)區(qū)域e(x,y)在滿(mǎn)足:
現(xiàn)在建立一個(gè)結(jié)果與e-(x,y)及e(x,y)。
引理3.5
注意到,公式(7)的計(jì)算較為簡(jiǎn)單。這是我們最終要的結(jié)果。
引理3.6 未知的裝置溫度Tdevice,當(dāng)插槽有Dirichlet邊界條件,東至以下限額的計(jì)算,只要求:(1)原始及伴隨場(chǎng)T和隔熱與幾何分析。(2) 圍繞插槽解決失敗了的邊界問(wèn)題,:
再次觀察這兩個(gè)方向都是獨(dú)立的未知領(lǐng)域T(x,y)。
4. 數(shù)值例子說(shuō)明
我們的理論發(fā)展,在上一節(jié)中,通過(guò)數(shù)值例子。設(shè)
k = 5W/m?C, Q = 10 W/m3 and H = 。
表1:結(jié)果表
表1給出了不同時(shí)段的邊界條件。第一裝置溫度欄的共同溫度為所有幾何分析模式(這不取決于插槽邊界條件及插槽幾何分析)。接下來(lái)兩欄的上下界說(shuō)明引理3.4和3.6。最后一欄是實(shí)際的裝置溫度所得的全功能模式(前幾何分析),是列在這里比較前列的。在全部例子中,我們可以看到最后一欄則是介于第二和第三列。T Tdevice T
對(duì)于絕緣插槽來(lái)說(shuō),Dirichlet邊界條件指出,觀察到的各種預(yù)測(cè)為零。不同之處在于這個(gè)事實(shí):在第一個(gè)例子,一個(gè)零Neumann邊界條件的時(shí)段,導(dǎo)致一個(gè)自我平衡的特點(diǎn),因此,其對(duì)裝置基本沒(méi)什么影響。另一方面,有Dirichlet邊界條件的插槽結(jié)果在一個(gè)非自我平衡的特點(diǎn),其缺失可能導(dǎo)致器件溫度的大變化在。
不過(guò),固定非零槽溫度預(yù)測(cè)范圍為20度到0度。這可以歸因于插槽溫度接近于裝置的溫度,因此,將其刪除少了影響。
的確,人們不難計(jì)算上限和下限的不同Dirichlet條件插槽。圖4說(shuō)明了變化的實(shí)際裝置的溫度和計(jì)算式。
預(yù)測(cè)的上限和下限的實(shí)際溫度裝置表明理論是正確的。另外,跟預(yù)期結(jié)果一樣,限制槽溫度大約等于裝置的溫度。
5. 快速分析設(shè)計(jì)的情景
我們認(rèn)為對(duì)所提出的理論分析"什么-如果"的設(shè)計(jì)方案,現(xiàn)在有著廣泛的影響。研究顯示設(shè)計(jì)如圖5,現(xiàn)在由兩個(gè)具有單一熱量能源的器件。如預(yù)期結(jié)果兩設(shè)備將不會(huì)有相同的平均溫度。由于其相對(duì)靠近熱源,該裝置的左邊將處在一個(gè)較高的溫度,。
圖4估計(jì)式versus插槽溫度圖
圖5雙熱器座
圖6正確特征可能性位置
為了消除這種不平衡狀況,加上一個(gè)小孔,固定直徑;五個(gè)可能的位置見(jiàn)圖6。兩者的平均溫度在這兩個(gè)地區(qū)最低。
強(qiáng)制進(jìn)行有限元分析每個(gè)配置。這是一個(gè)耗時(shí)的過(guò)程。另一種方法是把該孔作為一個(gè)特征,并研究其影響,作為后處理步驟。換言之,這是一個(gè)特殊的“幾何分析”例子,而擬議的方法同樣適用于這種情況。我們可以解決原始和伴隨矩陣的問(wèn)題,原來(lái)的配置(無(wú)孔)和使用的理論發(fā)展在前兩節(jié)學(xué)習(xí)效果加孔在每個(gè)位置是我們的目標(biāo)。目的是在平均溫度兩個(gè)裝置最大限度的差異。表2概括了利用這個(gè)理論和實(shí)際的價(jià)值。
從上表可以看到,位置W是最佳地點(diǎn),因?yàn)樗凶畹途殿A(yù)期目標(biāo)的功能。
附錄II 外文文獻(xiàn)原文
A formal theory for estimating defeaturing -induced engineering analysis errors
Sankara Hari Gopalakrishnan, Krishnan Suresh
Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706, United States
Received 13 January 2006; accepted 30 September 2006
Abstract
Defeaturing is a popular CAD/CAE simplification technique that suppresses ‘small or irrelevant features’ within a CAD model to speed-up downstream processes such as finite element analysis. Unfortunately, defeaturing inevitably leads to analysis errors that are not easily quantifiable within the current theoretical framework.
In this paper, we provide a rigorous theory for swiftly computing such defeaturing -induced engineering analysis errors. In particular, we focus on problems where the features being suppressed are cutouts of arbitrary shape and size within the body. The proposed theory exploits the adjoint formulation of boundary value problems to arrive at strict bounds on defeaturing induced analysis errors. The theory is illustrated through numerical examples.
Keywords: Defeaturing; Engineering analysis; Error estimation; CAD/CAE
1. Introduction
Mechanical artifacts typically contain numerous geometric features. However, not all features are critical during engineering analysis. Irrelevant features are often suppressed or ‘defeatured’, prior to analysis, leading to increased automation and computational speed-up.
For example, consider a brake rotor illustrated in Fig. 1(a). The rotor contains over 50 distinct ‘features’, but not all of these are relevant during, say, a thermal analysis. A defeatured brake rotor is illustrated in Fig. 1(b). While the finite element analysis of the full-featured model in Fig. 1(a) required over 150,000 degrees of freedom, the defeatured model in Fig. 1(b) required <25,000 DOF, leading to a significant computational speed-up.
Fig. 1. (a) A brake rotor and (b) its defeatured version.
Besides an improvement in speed, there is usually an increased level of automation in that it is easier to automate finite element mesh generation of a defeatured component [1,2]. Memory requirements also decrease, while condition number of the discretized system improves;the latter plays an important role in iterative linear system solvers [3].
Defeaturing, however, invariably results in an unknown ‘perturbation’ of the underlying field. The perturbation may be ‘small and localized’ or ‘large and spread-out’, depending on various factors. For example, in a thermal problem, suppose one deletes a feature; the perturbation is localized provided: (1) the net heat flux on the boundary of the feature is zero, and (2) no new heat sources are created when the feature is suppressed; see [4] for exceptions to these rules. Physical features that exhibit this property are called self-equilibrating [5]. Similarly results exist for structural problems.
From a defeaturing perspective, such self-equilibrating features are not of concern if the features are far from the region of interest. However, one must be cautious if the features are close to the regions of interest.
On the other hand, non-self-equilibrating features are of even higher concern. Their suppression can theoretically be felt everywhere within the system, and can thus pose a major challenge during analysis.
Currently, there are no systematic procedures for estimating the potential impact of defeaturing in either of the above two cases. One must rely on engineering judgment and experience.
In this paper, we develop a theory to estimate the impact of defeaturing on engineering analysis in an automated fashion. In particular, we focus on problems where the features being suppressed are cutouts of arbitrary shape and size within the body. Two mathematical concepts, namely adjoint formulation and monotonicity analysis, are combined into a unifying theory to address both self-equilibrating and non-self-equilibrating features. Numerical examples involving 2nd order scalar partial differential equations are provided to substantiate the theory.
The remainder of the paper is organized as follows. In Section 2, we summarize prior work on defeaturing. In Section 3, we address defeaturing induced analysis errors, and discuss the proposed methodology. Results from numerical experiments are provided in Section 4. A by-product of the proposed work on rapid design exploration is discussed in Section 5. Finally, conclusions and open issues are discussed in Section 6.
2. Prior work
The defeaturing process can be categorized into three phases:
Identification: what features should one suppress?
Suppression: how does one suppress the feature in an automated and geometrically consistent manner?
Analysis: what is the consequence of the suppression?
The first phase has received extensive attention in the literature. For example, the size and relative location of a feature is often used as a metric in identification [2,6]. In addition, physically meaningful ‘mechanical criterion/heuristics’ have also been proposed for identifying such features [1,7].
To automate the geometric process of defeaturing, the authors in [8] develop a set of geometric rules, while the authors in [9] use face clustering strategy and the authors in [10] use plane splitting techniques. Indeed, automated geometric defeaturing has matured to a point where commercial defeaturing /healing packages are now available [11,12]. But note that these commercial packages provide a purely geometric solution to the problem... they must be used with care since there are no guarantees on the ensuing analysis errors. In addition, open geometric issues remain and are being addressed [13].
The focus of this paper is on the third phase, namely, post defeaturing analysis, i.e., to develop a systematic methodology through which defeaturing -induced errors can be computed. We should mention here the related work on reanalysis. The objective of reanalysis is to swiftly compute the response of a modified system by using previous simulations. One of the key developments in reanalysis is the famous Sherman–Morrison and Woodbury formula [14] that allows the swift computation of the inverse of a perturbed stiffness matrix; other variations of this based on Krylov subspace techniques have been proposed [15–17]. Such reanalysis techniques are particularly effective when the objective is to analyze two designs that share similar mesh structure, and stiffness matrices. U