購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
無錫職業(yè)技術學院畢業(yè)設計說明書
第一章 緒 論
汽車舉升機是現(xiàn)代汽車維修作業(yè)中必不可少的設備,它的主要作用就是為發(fā)動機、底盤、變速器等養(yǎng)護和維修提供方便。舉升機的從上世紀20年代開始使用,發(fā)展至今經(jīng)歷了許多的變化改進,種類也比較多,一般有柱式、剪式,其驅動方式有鏈條傳動,液壓傳動,氣壓傳動等。本章就從舉升機的產(chǎn)生、發(fā)展以及制造工藝等方面進行簡單的介紹。
1.1 舉升機的發(fā)展簡史
汽車舉升機在世界上已經(jīng)有了70年歷史。1925年在美國生產(chǎn)的第一臺汽車舉升機,它是一種由氣動控制的單柱舉升機,由于當時采用的氣壓較低,因而缸體較大;同時采用皮革進行密封,因而壓縮空氣驅動時的彈跳嚴重且又不穩(wěn)定。直到10年以后,即1935年這種單柱舉升機才在美國以外的其它地方開始采用。
1966年,一家德國公司生產(chǎn)出第一臺雙柱舉升機,這是舉升機設計上的又一突破性進展,但是直到1977這種舉升機才在德國以外的其它國家出現(xiàn)。現(xiàn)在雙柱舉升機在市場上以占據(jù)牢固的地位,其銷量還在持續(xù)增長。它和四柱舉升機相比,既有優(yōu)點,也有缺點,以下將作一簡要說明。
我們所見到的絕大多數(shù)舉升機均采用固定安裝方式。在舉升前汽車必須駛上舉升機。在移動式舉升機方面也有幾項成功設計,如剪式舉升機、菱架式舉升機等。但這類舉升機仍存在兩個主要問題,接近汽車下部較難;在車間移動舉升機時難逾越地面上的障礙物。當然,可移動性是這類舉升機的突出優(yōu)點。現(xiàn)在固定安裝的單柱、雙柱、四柱舉升機已在維修現(xiàn)場廣泛采用,而移動式舉升機卻相對要少得多。
最初設計單柱舉升機外,車輛較大,其底盤也能明顯辨認,因而汽車檢修區(qū)遠遠大于舉升器件。而今絕大多數(shù)汽車均為“緊湊型”或“半緊湊型”,導致汽車檢修區(qū)域接近主要舉升機器件而不便操作。但在南美洲卻屬例外,那里仍然采用較大的車輛,這可能是單柱舉升機在該地區(qū)的市場上仍然受到歡迎的重要原因。單柱舉升機有兩大優(yōu)點:當其下降后,不致成維修車間的障礙物;汽車可在舉升機上轉動。但美國卻受到了責難,主要是舉升機的旋轉會帶來撞擊操作人員的危險。單柱舉升機的主要缺點是:第一,它需要在車間的地面挖掘一個相當大的坑穴后才能安裝;其次,它只能為使用提供車輪支撐方式;第三,使用時難于接近汽車下部的一些重要檢修區(qū)域。舉升用的油缸潛藏在地下也給維修帶來兩大問題:第一是檢修這些零部件頗為困難;其次是由于油缸所處的環(huán)境條件差,容易生銹,特別是地下水位較高時更是如此。
雙柱舉升機(包括液壓式或機械式),均具有以下優(yōu)點:第一,檢修汽車下部具有很高的可接近性(幾乎達到100%);其次,采用車輪自由型的方式支撐汽車,因而拆卸車輪時不需要其它輔助性的舉升措施;第三,結構緊湊,占地面小。雙柱舉升機的缺點是:第一為確保安全,安置舉升機時要求非常嚴格,否則在舉升過程中容易搖晃或顛覆;第二,由于舉升機常采用車輪自由型的方式支撐汽車,如需采取車輪支撐型的方式維修汽車則甚感不便,如檢查懸掛系統(tǒng)、檢查轉向機構間隙或進行車輪定位檢驗等;第三,由于舉升臂和立柱承受懸臂或載荷所產(chǎn)生的巨大應力,其承力件易于磨損,因而雙柱舉升機的安全工作壽命一般要比四柱舉升機低。
四柱舉升機有四根立柱、兩根橫梁、用于支撐汽車的兩個臺板。舉升前,汽車很容易正確無誤地駛上四柱舉升機的臺板。由于臺板內側設備有凸緣,當汽車駛上臺板時也不致墜入其間的空隙中。車輪支撐型四柱舉升機的優(yōu)點是:第一,舉升機裝載汽車時勿需較高的技術,操作也很簡便;第二,承載時非常穩(wěn)定;第三,支撐載荷受力簡單,應力較低,從而延長了設備的使用壽命;第四,由于具有較高的使用價值,從經(jīng)濟上來看也是合算的;第五,易于維修;第六,在車間現(xiàn)場進行安裝也較方便,只要地面平坦,其混凝土厚度能夠固牢立柱的地腳螺栓即可。四柱舉升機的缺點是:和雙柱舉升機相比,戰(zhàn)地面積教大,對汽車檢修區(qū)域可接近性較差。
解放后,特別是改革開放以來,我國的汽車維修行業(yè)有了很大的發(fā)展,為之服務的汽車維修設備行業(yè)已成為我國的新興行業(yè)不斷發(fā)展壯大。各種舉升機設備如雨后春筍,不斷涌現(xiàn),質量不斷提高,銷量逐年增加。
有人說,對于汽車維修企業(yè)來說,汽車舉升機可能是除廠房而外的最重要的投資,因為它具有至關重要和不可替代的作用,甚至直接影響到汽車維修業(yè)務的興衰。汽車舉升機是汽車維修設備行業(yè)的支柱設備之一,讓我們生產(chǎn)出更多、更好、更受用戶歡迎的汽車舉升機,為汽車維修企業(yè)服務。
1.2 汽車舉升機的設計特點
(1)舉升機臺板降到下位時,與地面應盡可能在同一平面上,為達到此目的,雖然可在地面上挖掘凹坑,但需增加投資費用,也破壞了車間地面的平整性。為此,在保證強度和剛度的前提下,應盡可能降低舉升機臺板和橫梁的高度;這樣,既便于汽車駛上舉升機,又使駛上臺板的斜面長度盡可能短,節(jié)約車間的占地。在條件許可時,舉升機臺板(或橫梁)應選擇專用型鋼或用鋼板拆彎成形。
(2)正確選擇傳動方式。采用機械傳動(螺母、螺桿)或液壓傳動(油缸),均
用電動機驅動。機械傳動的成本較高,耗能較多,但安全性較好。經(jīng)驗證明:機械傳動的能耗為液壓傳動所需能耗的兩倍(在舉升載荷、舉升時間均相同的條件下)。機械式舉升機的螺母、螺栓磨損較快,而液壓式舉升機的維修量卻相對要小些。雖然液壓式舉升機的技術難度較大,但多數(shù)零部件(液壓泵、液壓缸、閥門、密封元件等)均可外購或外協(xié),當然一定要選用優(yōu)資產(chǎn)品。
(3)絲繩的選擇。為了減少滑輪直徑從而縮小寄生機立柱的斷面尺寸,應該選用高柔度的鋼絲繩。鋼絲繩應有較高的安全系數(shù),一般應達8。為此,應增加鋼絲繩鋼絲的數(shù)目。如英國某公司3t系列的舉升機所采用的鋼絲繩的直徑為9mm,兩根并列,每根37股,每股6根鋼絲?;喭ǔS娩摬闹瞥?,而該公司采用玻璃纖維與尼龍混合制成(50%的玻璃纖維、50%的尼龍)。這樣,不僅價格便宜,還能減輕鋼絲繩的磨損,延長其使用壽命。
1.3 汽車舉升機的安全保證措施
今天全世界都對在危險作業(yè)環(huán)境下工作的人們的安全寄予極大的關注。汽車舉升機具有潛在的危險,因為人們要在其下面工作;當其升降時如不小心,也會碰傷手足。近年來不少國家還制定了專門性法規(guī),以防止或至少使安全事故的可能性降低到最低限度。
汽車舉升機的安全保證措施主要從兩方面著手:一方面從設計制造方面采取措施,好提高汽車舉升機的安全技術特性;另一方面則應在使用維修過程中遵循嚴格的操作規(guī)程,保證汽車舉升機能在良好的技術狀態(tài)下正確地運行?,F(xiàn)分別說明與后。
1.3.1 設計制造方面的安全保證措施
當今世界上的許多先進技術,如自動控制\光電開關等,已廣泛應用到各種安全裝置的設計領域,因而在設計制造舉升機時,應結合產(chǎn)品的特點,積極采用先進可靠實用的現(xiàn)代安全技術。以下僅列舉多數(shù)舉升機普遍采用的安全措施。
(1)舉升機應能經(jīng)受超負荷試驗(包括舉升和支撐),一般應為最大舉升能力的125%此時舉升機的構件不得有任何永久性的變形和損壞。
(2)所有的操作控制機構均采用“雙重保險”,以防誤操作,即舉升機運行前必需操作兩個控制機構(或按鈕開關)后才能驅動。
(3)所有的控制電路均采用失效保護,即任何單個元件失效,也不會使舉升機墜或上升所造成非常危險的局面。
(4)所有的舉升機器件均應有第二支撐系統(tǒng)。原有的提升系統(tǒng)失效時,它能自動進行有效的支撐。
(5)所有的柔性提升手段,如鋼絲繩,鏈條等,均應有足夠的安全系數(shù),并在制造廠設置的保護罩內傳動。
(6)所有的運動零件均應有防護裝置,以免撞擊操作人員的任何部位,特別是手,足,衣服等。
(7)所有舉升機的設計均應把舉升重物滑移的可能性降低到最低限度。
1.3.2 使用維護方面的安全保證措施
使用維護方面的安全保證措施涉及的范圍很廣,包括舉升機有使用前的準備工作,舉升汽車時應該注意的事項,承載時的穩(wěn)定性,降下汽車時的注意事項,日常和定期維修檢查工作等。雖然汽車舉升機已有70年的歷史,其設計原理并無多大改變;但如果忽視安全要求,超載使用,疏忽大意,仍然會造成嚴重事故,甚至發(fā)生人身傷亡。因此安全問題一定要引起使用單位和操作人員的高度重視。首先,應選購那些安全性能良好的汽車舉升機,另外,還應認真學習和理解說明書中的各項安全注意事項并認真貫切執(zhí)行。這里僅就使用維護舉升機時普遍應當注意的事項說明于后。
(1)使用中的舉升機每天都應進行檢查。發(fā)現(xiàn)有效故障或零部件損壞時,不得再使用。維修時應采用該舉升機的制造廠所提供的配件,不得隨意代替或自制。
(2)舉升機不得超載使用。每臺舉升機的額定載荷均注明在設備的銘牌上。特別要注意防止偏載,即整機雖未超載而某一舉升臂確已超過允許的額定載荷。故欲舉升那些前后軸載荷嚴重分配不均的汽車時應特別注意,能滿足要求的才能裝載使用。
(3)安置汽車和使用舉升機均應由經(jīng)過培訓并經(jīng)考核合格的人員操作。
(4)舉升汽車時,車內不得有人。舉升機升降和使用時,顧客和無關人員應遠離舉升機。
(5)舉升機區(qū)域內不得有任何障礙物,如油脂、廢物、瓦礫等。
(6)當汽車駛上舉升機前,應清除通道,不得駛過或撞擊舉升臂,連接器,車軸支撐器等,以防損壞舉升機或汽車。
(7)在舉升機上承載汽車時應仔細操作。將舉升機的支撐器安置到汽車制造廠推薦的舉升機逞力接觸點。只有當支撐器與汽車上的承力點接觸嚴密后才能將舉升機升起;對其接觸的嚴密性進行認真檢查后,才能將汽車舉升到需要的工作高度。
(8)要注意某些汽車上的零部件由于移動或安裝位置的不同會引起重心的急劇變化,從而導致舉升汽車時的不穩(wěn)定。
(9)舉升機降下前,應將汽車下面的工具箱,臺架及其它設備全部移開。要降下舉升機前,還必須松開鎖緊裝置。
注意:如欲在汽車下面進行維修作業(yè)時,應將舉升機提升到足夠的高度,以便鎖緊裝置嚙合。
第2章 剪叉式升降臺的應用及其受力分析的討論
2.1剪叉式升降平臺的三種結構形式
本討論的目的通過分析氣液動類的剪叉式升降平臺機構特點,論述了設計時應注意的問題及其應用范圍。氣液動剪叉式升降平臺具有制造容易、價格低廉、堅實耐用、便于維修保養(yǎng)等特點。在民航、交通運輸、冶金、汽車制造等行業(yè)逐漸得到廣泛應用。本設計中主要側重于小型家用液壓式的升降平臺。在設計氣液動剪叉式升降平臺的過程中,一般我們會考慮如下三種設計方案,如簡圖2-1所示:
圖2-1 三種剪叉式升降臺結構簡圖
圖中表示氣液動剪叉式升降平臺的三種結構形式。長度相等的兩根支撐桿AB和MN鉸接于二桿的中點E,兩桿的M、A端分別鉸接于平板和機架上,兩桿的B、N端分別與兩滾輪鉸接,并可在上平板和機架上的導向槽內滾動。圖中的三種結構形式的不同之處在于驅動件液壓缸的安裝位置不同。
圖a中的驅動液壓缸的下不固定在機架上,上部的活塞桿以球頭與上平板球窩接觸。液壓缸通過活塞桿使上平板鉛直升降。
圖b中的臥式液壓缸活塞桿與支撐桿MN鉸接于N處。液壓缸驅動活塞桿控制平臺鉛直升降。
圖c中的液壓缸缸體尾部與機架鉸接于G處,活塞桿頭部與支撐桿AB鉸接于F處。液壓缸驅動活塞桿可控制平臺鉛直升降。
按照液壓缸的安裝形式,稱圖a的形式為直立固定剪叉式結構,圖b的形式為水平固定剪叉式,圖c的形式為雙鉸接剪叉式結構。
直立固定剪叉式結構,液壓缸的行程等于平臺的升降行程,整體結構尺寸龐大,且球鉸鏈加工負載,在實際種應用較少。
水平固定剪叉式機構,通過分析計算可知,平臺的升降行程大于液壓缸的行程,在應用過程中可以實現(xiàn)快速控制升降的目的,但不足之處是活塞桿受到橫向力的作用,影響密封件的使用壽命。而且活塞桿所承受的載荷力要比實際平臺上的載荷力要大的多。所以實際也很少采用。
雙鉸接剪叉式結構避免了上述缺點。結構比較合理,平臺的升降行程可以達到液壓缸行程的二倍以上。因此,在工程實際中逐漸得到廣泛的應用。本設計就重點對雙鉸接剪叉式結構形式加以分析、論述。
2.2 雙鉸接剪叉式升降平臺機構的位置參數(shù)計算
由圖2-2可知
圖2-2位置參數(shù)示意圖
(1)
(2)
上式中:
H——任意位置時升降平臺的高度;
C——任意位置時鉸接點F到液壓鉸接點G的距離;
L——支撐桿的長度;
——支撐桿固定鉸支點A到鉸接點F的距離;
T——機架長度(A到G點的距離);
——活塞桿與水平線的夾角。
以下相同。
將(2)式代入(1)式,并整理得
。 (3)
設代入(3)式得
。 (4)
在(4)式中,
——升降平臺的初始高度;
——液壓缸初始長度。
雙鉸接剪叉式升降平臺機構的運動參數(shù)計算:
圖2-3 運動參數(shù)示意圖
圖中,是F點的絕對速度;是B點絕對速度;是AB支撐桿的速度;
是液壓缸活塞平均相對速度;是升降平臺升降速度。由圖2-3可知:
(5)
在(5)式中,
——液壓缸活塞平均相對運動速度;
——升降平臺升降速度;
——支撐桿與水平線的夾角。
以下相同。
2.3 雙鉸接剪叉式升降平臺機構的動力參數(shù)計算
圖2-4動力參數(shù)示意圖
圖中,P是由液壓缸作用于活塞桿上的推力,Q是升降平臺所承受的重力載荷。通過分析機構受力情況并進行計算(過程省略)得出:
升降平臺上升時
; (6)
升降平臺下降時
(6)、(7)式中,
P——液壓缸作用于活塞桿的推力;
Q——升降平臺所承受的重力載荷;
f——滾動摩擦系數(shù);
b——載荷Q的作用線到上平板左鉸支點M的水平距離。
由于滾動輪與導向槽之間為滾動摩擦,摩擦系數(shù)很?。╢=0.01),為簡化計算,或忽略不計,由(6)、(7)式簡化為:
。 (8)
2.4 剪叉式升降平臺機構設計時應注意的問題
由式(5)和(8)可知:當、增大時,值隨之減??;當、減小時,P/Q值隨之增大。在確定整體結構值隨之減??;當、減小時,P/Q值隨之增大,在液壓缸行程不變的情況下,升降平臺升降行程會減??;反之,則會使液壓缸行程受力增大。因此設計時應綜合考慮升降行程與液壓缸受力兩個因素。在滿足升降行程及整體結構尺寸的前提下,選取較高的、初始值。而且在整個機構中AB支撐桿是主要受力桿件,承受有最大的彎矩,所以應重點對其進行強度校核。
液壓缸可采用單作用缸也可以采用雙作用缸,不過要看具體情況。一般我們都采用單作用柱塞缸,因為采用這樣的缸比較經(jīng)濟,而且總體泄漏量少,密封件壽命長。采用單作用柱塞缸時考慮到在空載荷時,上平板的自重應能克服液壓缸活塞與缸體間的密封阻力。否則,會導致升降平臺降不下來。
2.5 針對性比較小實例:
如某自動生產(chǎn)線上, 需設計一種升降平臺,要求升降平臺最大升降行程應大于620mm,升降平臺面最低高度應小于300mm,最大承重載荷0050kg
根據(jù)實際使用要求,我們選取了單作用柱塞缸式液壓缸。液壓缸初始長度=595mm;最大行程=320mm。升降太機構尺寸:升降臺面最低高度=281mm;機架長度T=1 200;支撐桿長度L=1 230.5mm.
按照上述尺寸,結合以上公式分別對雙鉸接剪叉式和水平固定剪叉式兩種結構形式進行了計算。計算結果見表1、表2和統(tǒng)計圖2-5(其中滾動摩擦忽略不計)。水平固定剪叉式結構公式如下:
其中,S——液壓缸的實際行程,T——機架長度(A點到G點的距離)。
表1 雙鉸接剪叉式結構計算結果 mm
s
H
h
P/Q
h/s
0
13.18
14.20
281
0
4.08
40
19.67
19.83
414.8
133.8
2.85
2.35
80
24.83
23.46
517.6
236.6
2.34
2.96
120
29.38
26.05
604.7
323.7
2.04
2.70
160
33.59
27.96
681.8
400.8
1.82
2.51
200
37.56
29.93
751.3
470.3
1.66
2.35
240
41.39
30.45
814.9
533.9
1.52
2.22
280
45.11
31.21
873.2
592.2
1.40
2.12
320
48.77
31.74
926.8
645.8
1.29
2.02
表中: S - 液壓缸的實際行程.
H – 升降臺實際行程,以下相同.
表2 水平固定剪叉式結構計算結果 mm
S
H
H
P/Q
h/s
0
13.8
281
0
4.27
40
19.74
416.4
135.4
2.79
3.39
80
24.67
514.4
233.4
2.18
2.92
120
28.80
593.8
312.8
1.82
2.61
160
32.45
661.3
380.3
1.57
2.37
200
35.77
720.4
439.4
1.39
2.20
240
38.84
772.9
491.9
1.24
2.05
280
41.71
820.1
539.1
1.12
1.93
320
44.44
862.9
581.9
1.02
1.82
從計算結果可以看出:在整體結構尺寸相同、液壓缸行程相同的前提下,作用在液壓缸活塞桿上的最大推力,水平固定剪叉式結構大于雙鉸接剪叉式結構;升降臺最大行程,雙鉸接剪叉式結構大于水平固定剪叉式結構。
由于采用了雙鉸接剪叉式結構液壓升降平臺,在設備安裝時避免了挖地坑,不僅節(jié)省了費用,還給以后了設備維護和檢修帶來方便。
綜上所述,氣液動雙鉸接剪叉式結構液壓升降平臺整體尺寸較小,結構簡單、緊湊,節(jié)省投資;可獲得缸體二倍以上的升降形成;非常適合于空間尺寸小、升降行程大的場合,是一種值得推薦使用的升降機構。
圖2-5 兩種結構計算結果對比
2.6雙鉸接剪叉式升降平臺機構中兩種液壓缸布置方式的分析比較
剛剛我們已經(jīng)簡單的分析并討論了雙鉸接剪叉式液壓升降平臺機構與其他兩種機構的區(qū)別以及在實際應用中所存在的利和弊,但是在考慮各方面條件如單作用柱塞式液壓缸、雙鉸連接、雙支撐桿、相同的升降平臺等都不改變的基礎之上,能否將設計進行進一步的優(yōu)化呢?
為證明這一點,我們可以從該機構的布置方式考慮,將結構略改動一下。
從直觀的角度分析考慮,如下圖2-6所示:
圖2-6液壓缸工作示意圖
我們可以從圖上看出,液壓缸的尾部是連接在右側支撐桿活動的區(qū)域的,液壓缸的頭部是連接在桿1的右端(偏向桿1的活動鉸連接)。因此,我們針對實際升降臺剪叉機構中液壓缸常用的布置方式存在的問題,提出了另一種相對布置方式,將液壓缸布置在與之相對稱的左側,即與剪叉機構的固定支點在同一側,來進一步分析討論。利用瞬時速度中心法和虛位移原理,推導出這兩種布置方式液壓缸活塞運動速度與臺面升降速度的關系式及活塞推力與臺面荷重的關系式,并對兩種布置方式進行了分析比較,指出了它們各自的優(yōu)缺點以及適用場合。根據(jù)升降臺剪叉機構的工程實例做了幾何、運動和動力參數(shù)的對比計算和液壓缸結構參數(shù)的合理選擇。
2.6.1問題的提出:
液壓缸驅動的剪叉機構再各種升降臺中廣泛應用,因安裝的空間不同,其折合后的高度也必然就不同,所以液壓缸在剪叉機構內的布置要受到折合后高度的約束。根據(jù)文獻[4]的有關液壓缸驅動剪叉機構的運動學及動力學分析一章,得知在這種布置方式的情況下,如圖2-7:
圖2-7 液壓缸布置在左側
液壓缸活塞運動速度與臺面升降速度的關系式為
(1)
活塞推力與臺面荷重的關系式為
(2)
式中,
以上兩式的推導基于工程中常用的液壓缸布置方式,即液壓缸下支點與剪叉機構的固定支點在同一側,如上圖2-7。這種布置方式的優(yōu)點是液壓缸的有效行程比較短,這在臺面升程范圍比較大的場合較為適用。存在的問題是在剪叉機構折合后的高度h較小的情況下(即角較?。?,所需液壓缸的推力將大大增加。在液壓缸最高工作壓力限定的情況下,這將使得所用的液壓缸的直徑增大,以致在折合后的剪叉機構中難以布置;或采用兩個直徑較小的液壓缸取代一個大直徑的液壓缸,不過這將增加一對液壓缸的支座,同時帶來機械加工、液壓缸安裝以及液壓系統(tǒng)的復雜性,加大了整個裝置的成本。
2.6.2兩種布置方式的分析和比較:
為了解決以上提出的問題,可考慮將液壓缸反向布置(即采用第一種設計方案),計算一下該方案的有關參數(shù)再將兩者作以比較。
如圖2-8:
圖2-8液壓缸布置在右側
這里仍用瞬時速度中心法來求解活塞運動速度。桿FD上D點、A點的瞬時轉動中心為F點,D點、A點的速度為:
臺面升降速度:
A點的運動速度:
活塞運動速度:
(3)
式中,
依據(jù)虛位移原理有:
(4)
由圖2分析可得:
經(jīng)變分后:
代入式(4),整理后得活塞推力:
(5)
式(3)和式(5)的正確性可以用機械能守恒原理來證明,即
將式(5)與式(2)進行比較,再各參數(shù)都相同的條件下,顯然,液壓缸布置再右側時的推力較液壓缸布置在左側時?。欢剑ǎ常┡c式(1)比較,則液壓缸布置在右側時的活塞速度較液壓缸布置在左側時高。可見,活塞推力的減小是以活塞速度的提高為代價換來的。
液壓缸布置在剪叉機構的右側,使得液壓缸的活塞推力減小,這就可以選用直徑較小的液壓缸,有利于液壓缸在剪叉機構中的布置;帶來的問題是液壓缸的有效行程較長,如果臺面升程范圍不大,液壓缸行程的增加也是有限的。
2.6.3實例計算
根據(jù)以上分析結果,結合實例進行對比計算,實例結構簡圖如圖2-9所示,其中左右兩側分別為兩種布置情況。
圖2-9剪叉機構實例結構簡圖
剪叉機構的結構尺寸:
h=400~1 200mm,=2 000mm,=535mm,=770mm,=3210mm.兩種布置方式主要參數(shù)計算結果見下表2-1:
表2-1兩種布置方式主要參數(shù)計算結果
參 數(shù)
液壓缸布置在左側
液壓缸布置在右側
桿FD傾角
液壓缸傾角
起始角/()
5.739
5.739
起始角/()
20.236
20.236
起始活塞速度
0.185
0.279
起始活塞推力
5.42W
3.58W
終止角/()
17.458
17.458
終止角/()
50.473
22.262
活塞有效行程L/mm
253
365
從統(tǒng)計表中的數(shù)值比較可以看出,液壓缸在剪叉機構中的布置方式對其運動參數(shù)和動力參數(shù)有著較明顯的差異。當起始角為最小值、時,活塞推力為最大值。在臺面荷重W相同的情況下,液壓缸布置在右側時的推力明顯小于液壓缸布置在左側時的情況,兩者的比值為0.66,而活塞的有效行程L則是液壓缸布置在右側時較長,比在左側時增加了112mm。如果載荷量不是很大的話(即載荷量W<1.5kN),這時可以考慮采用左側的布置方案,因為這樣可以縮短液壓缸的伸長長度。如果伸長度過大的話,不僅在材料上會有所浪費,而且在長期承受載荷的同時也會相應的增大液壓缸及活塞部分的彎曲應力。綜合以上考慮,可以初步設想采用液壓缸布置在左側的方案。而在該方案中活塞起始的速度小于液壓缸布置在右側時的速度,兩者比值=0.66。為了彌補在速度方面的不足,以及減小舉升及整體的體積,可以考慮采用雙級支撐桿共同舉升平臺以達到提升速度的目的。如圖2-10所示:
圖2-10 機構各項參數(shù)
其轉換過程如圖2-11所示,將兩根支撐桿的右側部分折合到左側,產(chǎn)生四根相對比較短的支撐桿,即可達到目的。
圖2-11 參數(shù)轉化過程
那么首先我們就要計算一下這樣的設計方案所采用的液壓缸的各項參數(shù),然后再根據(jù)已求得的各項參數(shù)來具體確定一下此方案是否合理。
下面按照本設計的基本要求,進一步選擇合適的布置方案。為了使舉升機使用范圍廣泛,載荷更具有代表性,本設計首先建立了一個轎車模型,它的有關參數(shù)是:車自重1.5t, 寬1.42m,高1.4m,軸距2.4m。在載荷方面沒有超出允許的范圍內,是可以采用該方案的。為了工作安全起見,要求舉升機在各高度上工作時都應自鎖,完工后可原速或緩速下降,在空載時也可實現(xiàn)快速下降,這在下面的液壓系統(tǒng)回路分析中會探討到。
為了便于維修人員在升降臺底部維修,不僅要在升降高度方面要加以合理化,還要留有維修人員站立維修的位置。為此,可以選擇采用雙升降臺同步舉升并采用共同底板的方式以滿足要求,此布置方案需要兩個液壓缸,16根支撐桿舉升。為了增強其安全可靠性,可以設其總承載量為,則平均每個升降臺的承載量為。由于這樣平均每個液壓缸承受的臺面載荷僅為9800N,所以采用左側布置液壓缸是完全可以的。
第三章 液壓傳動系統(tǒng)的設計計算
3.1明確設計要求 制定基本方案:
設計之前先確定設計產(chǎn)品的基本情況,再根據(jù)設計要求制定基本方案。以下列出了本設計——剪式液壓升降臺的一些基本要求:
1) 主機的概況:主要用途用于家用小型重型設備的起升,便于維修,占地面積小,適用于室外,總體布局簡潔;
2) 主要完成起升與下降重物的動作,速度較緩,液壓沖擊??;
3) 最大載荷量定為2噸,采用單液壓缸控制聯(lián)接組合叉桿機構進行升降動作。最大起升高度略大于一人高度;
4) 運動平穩(wěn)性好;
5) 人工控制操作,按鈕啟動控制升降;
6) 工作環(huán)境要求:不宜在多沙石地面、木板磚板地面等非牢固地面進行操作,不宜在有坡度或有坑洼的地面進行操作,不宜在過度寒冷的室外進行操作;
7) 性能可靠,成本低廉,便于移動,無其他附屬功能及特殊功能;
3.2制定液壓系統(tǒng)的基本方案
3.2.1確定液壓執(zhí)行元件的形式
液壓執(zhí)行元件大體分為液壓缸或液壓泵。前者實現(xiàn)直線運動,后者完成回轉運動,二者的特點及適用場合見下表3-1:
對于本設計實現(xiàn)單純并且簡單直線及回轉運動的機構,可以采用齒輪式液壓泵及雙活塞桿液壓缸,這樣不僅簡化液壓系統(tǒng)降低設備成本,而且能改善運動機構的性能和液壓執(zhí)行元件的載荷狀況。
表3-1 各執(zhí)行元件的特點
名 稱
特 點
適 用 場 合
雙活塞桿液壓缸
雙向對稱
雙作用往復運動
單活塞桿液壓缸
有效工作面積大、雙向不對稱
往返不對稱的直線運動,差動連接可實現(xiàn)快進,A1=2A2往返速度相等
柱塞缸
結構簡單
單向工作,靠重力或其他外力返回
擺動缸
單葉片式轉角小于360度
雙葉片式轉角小于180度
小于360度的擺動
小于180度的擺動
齒輪泵
結構簡單,價格便宜
高轉速低扭矩的回轉運動
葉片泵
體積小,轉動慣量小
高轉速低扭矩動作靈敏的回轉運動
擺線齒輪泵
體積小,輸出扭矩大
低速,小功率,大扭矩的回轉運動
軸向柱塞泵
運動平穩(wěn)、扭矩大、轉速范圍寬
大扭矩的回轉運動
徑向柱塞泵
轉速低,結構復雜,輸出大扭矩
低速大扭矩的回轉運動
注:A1——無桿腔的活塞面積 A2——有桿腔的活塞面積
常用的擴程機構有如下圖3-1二種形式:
(a) (b)
圖3-1擴程機構
它們同時也可以實現(xiàn)增速,常用于電梯的升降、高低位升降臺等液壓設備。還有一種運動轉換機構,小角度的回轉運動用液壓缸來實現(xiàn),其運動比較平穩(wěn),長行程的直線運動可以用液壓馬達來完成。本設計要完成的剪叉式液壓升降臺綜合了擴程、回轉這兩種工作形式。
3.2.2 確定液壓缸的類型
工程液壓缸主要用于工程機械、重型機械、起重運輸機械及礦山機械的液壓系統(tǒng)。根據(jù)主機的運動要求,按表37-7-5選擇液壓缸的類型為:直線運動單活塞桿雙作用緩沖式液壓缸。其特點:活塞雙向運動產(chǎn)生推、拉力。活塞行程終了時減速制動,減速值不變。
3.2.3 確定液壓缸的安裝方式
工程液壓缸均為雙作用單活塞式液壓缸,安裝方式多采用耳環(huán)型。由于本設計中液壓缸在作用過程中是一端固定,一端在垂直面上自由擺動的形式,因此根據(jù)表37-7-6選擇液壓缸的安裝方式為:尾部耳環(huán)聯(lián)接。
3.2.4 缸蓋聯(lián)接的類型
按缸蓋與缸體的聯(lián)接方式,可分為外螺紋聯(lián)接式、內卡鍵聯(lián)接式及法蘭聯(lián)接式三種。這里采用法蘭聯(lián)接。型號說明:P37-180
3.2.5擬訂液壓執(zhí)行元件運動控制回路
液壓執(zhí)行元件確定之后,其運動方向和運動速度的控制是擬訂液壓回路的核心問題。方向控制用換向閥或是邏輯控制單元來實現(xiàn)。對于一般中小流量的液壓系統(tǒng),大多數(shù)通過換向閥的有機組合實現(xiàn)所要求的動作。對于高壓大流量的液壓系統(tǒng),現(xiàn)多采用插裝閥于先導控制閥的組合來實現(xiàn)。本設計剪叉式液壓升降臺其特點:起升壓力大,運行緩慢、平穩(wěn),能人工控制起升至某一固定高度時并保持該高度自鎖。
3.2.6液壓源系統(tǒng)
液壓系統(tǒng)的工作介質完全由液壓源提供,液壓源的核心是液壓泵。在無其他輔助油源的情況下,液壓泵的供油量要大于系統(tǒng)的需油量,多余的油經(jīng)過溢流閥回油箱,溢流閥同時起到開展并穩(wěn)定油源壓力的作用。容積調速系統(tǒng)多數(shù)是用變量泵供油,用安全閥限定系統(tǒng)的最高壓力。
為節(jié)省能源并提高效率,液壓泵的供油量要盡量于系統(tǒng)所需流量相匹配。對在工作循環(huán)各階段中系統(tǒng)所需油量相差較大的情況下,則采用多泵供油或變量泵供油。對于本設計,由于工作周期短,循環(huán)次數(shù)少,供油量可以適當減少以節(jié)省能源,采用單泵供油即可,不需蓄能器儲存能量。
對于油液的凈化:油液的凈化裝置在液壓源中是必不可少的。一般泵的入口要裝有粗濾油器,進入系統(tǒng)的油液根據(jù)被保護元件的要求,通過相應的精濾油器再次過濾。為防止系統(tǒng)中雜質流回油箱,可在回油路上設置磁過濾或其他形式濾油器。根據(jù)液壓設備所處環(huán)境及對溫升的要求,還要考慮加熱、冷卻等措施。
3.3確定液壓系統(tǒng)的主要參數(shù)
液壓系統(tǒng)的主要參數(shù)是壓力和流量,它們是設計液壓系統(tǒng),選擇液壓元件的主要依據(jù)。壓力決定于外載荷。流量取決于液壓執(zhí)行元件的運動速度和結構尺寸。
3.3.1載荷的組成與計算:
首先,需要確定液壓缸處于最大工作壓力時的位置,通過上述的討論,得知當液壓缸與地面夾角為最小值時,也即支撐桿與地面夾角為最小值時,液壓缸處于最大的工作壓力狀態(tài)下。根據(jù)軸距2.4m,將支撐桿的長度選定2.1m/根。當液壓缸下降至最低高度時(設此時支撐桿與地面夾角=)=,根據(jù)上述公式得=。
圖3-2機構各參數(shù)
現(xiàn)在值還是一個未知量,但值的大小必須在之內,初步設定。根據(jù)活塞推力與臺面荷重量關系式得出P=13.3W。若設的話,就得出P=11.6W。通過二者比較,時,活塞的最大推力P要小于時。即在值不變的條件下,與P是成反比的。但考慮到活塞桿與支撐桿的鉸接點A又不能太靠近兩支撐桿的鉸接點B,否則將會在兩處鉸接點產(chǎn)生很大的應力集中,以致降低疲勞強度。因此,應選比較合適。這時將代入公式得 ,
當平臺處于最低位置時,液壓缸荷重P最大,P=11.6W=11.69800=113680N。下面就根據(jù)載荷量來選取合適的液壓缸。
圖3-3液壓缸
圖3-3表示一個以液壓缸為執(zhí)行元件的液壓系統(tǒng)計算簡圖。各有關參數(shù)標注于圖上,其中是作用在活塞桿上的外部載荷, 是活塞與缸壁以及活塞桿與導向套之間的密封阻力。作用在活塞桿是的外部載荷包括工作載荷 ,導軌的摩擦力和由于速度變化而產(chǎn)生的慣性力。
(1)工作載荷
常見的工作載荷有作用于活塞桿上軸線的重力、切削力、擠壓力等,這些作用力的方向與活塞的運動方向相同為負,相反為正。在實際工作過程中,由于載荷量較大,活塞自身的重力可以忽略不計,切削力與擠壓力共同組成的外力即為工作載荷,在圖3中,=P。由于本設計按最大載荷量定為2噸來計算,所以每個液壓缸=P=113680N。
(2)導軌摩擦載荷
對于直動型安裝的液壓缸一般都附有活塞導軌以固定其運動方向,導軌摩擦相對于總載荷可以忽略不計,因此=0。
(3)慣性載荷
,。
——速度變化量m/s
——起動或制動時間,s。一般機械=0.1~0.5s,對輕度載荷低速運動部件取小值,對重載荷高速部件取大值。行走機械一般取=0.5~1.5s
——加速度
初步選定速度變化量=0.16m/s,=0.6s,則==0.27,
以上三種載荷之和稱為液壓缸的外載荷, 。
起動加速時 , 穩(wěn)態(tài)運動時 , 減速制動時 。
工作載荷并非每階段都存在,如該階段沒有工作,則=0。但在計算和校核時,應按照最大值取。
除了外載荷外,作用于活塞上的載荷F還包括液壓缸密封處的摩擦阻力,由于各種液壓缸的密封材質和密封形式不同,密封阻力難以精確計算,一般估算為 式中——液壓缸的機械效率,一般取0.90~0.95,這里取0.95,
3.3.2初選系統(tǒng)壓力
液壓缸的選擇要遵循系統(tǒng)壓力的大小,要根據(jù)載荷的大小和設備類型而定。還要考慮執(zhí)行元件的裝配空間、經(jīng)濟條件及元件供應情況等限制。在載荷一定的情況下,工作壓力低,勢必要加大執(zhí)行元件的結構尺寸,對某些設備來說,尺寸要受到限制,從材料消耗角度看也不是很經(jīng)濟;反之,壓力選的太高,對泵、缸、閥等元件的材質、密封、制造精度也要求很高,必然要提高設備成本。一般來說,對于固定尺寸不太受限的設備,壓力可選低一些,行走機械重載設備壓力要選的高一些。按下表3-2初步選取15Mpa。
表3-2 各種機械常用的系統(tǒng)工作壓力
機械類型
機 床
農(nóng)業(yè)機械小型工程機械建筑機械
液壓機大中型挖掘機重型機械
磨床
組合
機床
龍門
刨床
拉床
工作壓力MPa
0.8~0.2
3~5
2~8
8~10
10~18
20~32
3.3.3計算液壓缸的主要結構尺寸
⑴液壓缸的相關參數(shù)和結構尺寸
液壓缸有關的設計參數(shù)見圖3-4所示:
圖3-4 液壓缸設計參數(shù)
圖a為液壓缸活塞桿工作在受壓狀態(tài),圖b表示活塞桿受拉狀態(tài)。
活塞桿受壓時
活塞桿受拉時
式中
——無桿腔活塞有效工作面積
——有桿腔活塞有效工作面積
——液壓缸工作腔壓力 Pa
——液壓缸回油腔壓力 Pa,其值根據(jù)回路的具體情況而定,一般可以按照下表3-3估算
D——活塞直徑 m
d——活塞桿直徑 m
表3-3 執(zhí)行元件背壓力表
系 統(tǒng) 類 型
背 壓 力 MPa
簡單系統(tǒng)或輕載節(jié)流調速系統(tǒng)
0.2~0.5
回油帶調速閥的系統(tǒng)
0.4~0.6
回油路設置有背壓閥的系統(tǒng)
0.5~1.5
用補油泵的閉式回路
0.8~1.5
回油路較復雜的工程機械
1.2~3
回油路較短,可直接回油路
可忽略不計
在這里我們取背壓力值
在本設計中,液壓缸不存在受拉的狀態(tài),所以只考慮其收壓。一般液壓缸在收壓狀態(tài)下工作時,其活塞面積為:
用運此公式須事先確定與的關系,或是活塞桿徑d與活塞直徑D的關系,令桿徑比=d/D,其比值可按下表選取。
按工作壓力選取d/D
工作壓力MPa
5.0
5.0~7.0
7.0
d/D
0.5~0.53
0.62~0.7
0.7
按速度比要求確定d/D
()
1.25
1.33
1.46
0.161
2
d/D
0.4
0.5
0.55
0.62
0.71
注:速度比 ,為活塞兩側有效面積與之比。即
如按工作壓力應選取d/D=0.7,則相應的速度比=2,由于活塞不受拉力作用,所以活塞桿收縮時可以適當提高其速度, =2也是完全可以的。
運用直徑求法公式
,可以求出d=71.8mm。液壓缸的直徑D和活塞桿徑d的計算值要按國家標準規(guī)定的液壓缸的有關標準進行圓整,如與標準液壓缸參數(shù)相近,最好選用國產(chǎn)液壓缸,免于自行設計加工。按照機械手冊中工程液壓缸的技術規(guī)格表37-7-7可以選擇圓整后的參數(shù):缸徑100mm,活塞桿70mm,速度比=2,工作壓力16Mpa,推力125.66kN。
⑵計算活塞桿的行程
當平臺處于最低位置時,此時活塞桿應處于完全收縮狀態(tài),液壓缸的長度為最小值,=1320mm。平臺的高度。
再計算一下平臺上升的最大高度,這里設上升至最大高度的,計算得出最大高度H=2.1m。此時活塞桿伸長至。
當活塞桿處于完全收縮狀態(tài)時,液壓缸的長度就等于,選定液壓缸長度為1320mm。計算其行程: 。
,查表37-7-9可以查得液壓缸長度不得小于,實際長度滿足要求。
3.3.4確定液壓泵的參數(shù)
⑴確定液壓泵的最大工作壓力 Pa,
式中——液壓缸最大工作壓力,根據(jù)可以求出
——從液壓泵出口到液壓缸入口之間的總的管路損失。初算可按經(jīng)驗數(shù)據(jù)選?。汗苈泛唵巍⒘魉俨淮蟮娜?.2~0.5Mpa;管路復雜,進油口有調速閥的,取0.5~1.5 Mpa。這里取0.5Mpa。
即
⑵確定液壓泵的流量
K——系統(tǒng)泄漏系數(shù),一般取1.1~1.3,這里取1.2
——液壓缸的最大流量,對于在工作中用節(jié)流調速的系統(tǒng),還需加上溢流閥的最小溢流量,一般取
在前面已經(jīng)初步選定臺面速度變化量=0.16m/s, 我們就設定臺面起升的最大速度,則活塞的運動速度應用公式
,(這是在臺面剛剛起升狀態(tài)時,)
所以
⑶選擇液壓泵的規(guī)格
根據(jù)以上求得的和值,按系統(tǒng)中擬訂的液壓泵的形式,從手冊中選擇相應的液壓泵產(chǎn)品。為使液壓泵油一定的壓力儲備,所選泵的額定壓力一般要比最大工作壓力大25~60%。
查找手冊P37-135選擇CB-型齒輪泵,其參數(shù)如下表3-4
表3-4 CB-型齒輪泵的各參數(shù)值
型號
排量
壓 力
轉 速
特點
生產(chǎn)廠
額定
最高
額定
最高
CB-
10~40
16
20
1800
2400
鋁合金殼體,可作雙聯(lián)泵
榆次液壓件廠
⑷確定液壓泵的驅動功率
在工作中,如果液壓泵的壓力和流量比較恒定,則
,其中——液壓泵的總效率,參考下表3-5選擇=0.7
表3-5 各液壓泵的總效率
液壓泵類型
齒輪泵
螺桿泵
葉片泵
柱塞泵
總效率
0.6~0.7
0.65~0.80
0.60~0.75
0.80~0.85
則,據(jù)此可選擇合適的電機型號。
3.3.5管道尺寸的確定
在液壓、氣壓傳動及潤滑的管道中常用的管子有鋼管、銅管、膠管等,鋼管能承受較高的壓力,價廉,但安裝時的彎曲半徑不能太小,多用在裝配位置比較方便的地方。這里我們采用鋼管連接。
管道內徑計算
m
式中 Q——通過管道內的流量
v——管道內允許流速 ,取值見下表3-6:
允許流速推薦值
表3-6 允許流速推薦值
油液流經(jīng)的管道
推薦流速 m/s
液壓泵吸油管道
0.5~1.5,一般取1以下
液壓系統(tǒng)壓油管道
3~6,壓力高,管道粘度小取大值
液壓系統(tǒng)回油管道
1.5~2.6
取=0.8m/s,=4m/s, =2m/s.分別應用上述公式得=20.2mm,=10.7mm,=15.2mm。根據(jù)內徑按標準系列選取相應的管子。按表37-9-1經(jīng)過圓整后分別選取=20mm,=10.7mm, =15mm。對應管子壁厚。
3.3.6油箱容量的確定
在確定油箱尺寸時,一方面要滿足系統(tǒng)供油的要求,還要保證執(zhí)行元件全部排油時,油箱不能溢出,以及系統(tǒng)最大可能充滿油時,油箱的油位不低于最低限度。初設計時,按經(jīng)驗公式 選取。
式中——液壓泵每分鐘排出壓力油的容積
——經(jīng)驗系數(shù),按下表3-7取 =4:
表3-7 各系統(tǒng)經(jīng)驗系數(shù)
系統(tǒng)類型
行走機械
低壓系統(tǒng)
中壓系統(tǒng)
鍛壓系統(tǒng)
冶金機械
1~2
2~4
5~7
6~12
10
則。
3.4液壓缸主要零件結構、材料及技術要求
3.4.1缸體
1. 缸體端部聯(lián)接模式
采用簡單的焊接形式,其特點:結構簡單,尺寸小,重量輕,使用廣泛。缸體焊接后可能變形,且內徑不易加工。所以在加工時應小心注意。主要用于柱塞式液壓缸。
2. 缸體的材料(45號鋼)
液壓缸缸體的常用材料為20、35、45號無縫鋼管。因20號鋼的機械性能略低,且不能調質,應用較少。當缸筒與缸底、缸頭、管接頭或耳軸等件需要焊接時,則應采用焊接性能比較號的35號鋼,粗加工后調質。一般情況下,均采用45號鋼,并應調質到241~285HB。
缸體毛坯可采用鍛剛,鑄鐵或鑄鐵件。鑄剛可采用ZG35B等材料,鑄鐵可采用HT200~HT350之間的幾個牌號或球墨鑄鐵。特殊情況可采用鋁合金等材料。
3. 缸體的技術要求
⑴缸體內徑采用H8、9配合。表面粗糙度:當活塞采用橡膠密封圈時,Ra為0.1~0.4,當活塞用活塞環(huán)密封時,Ra為0.2~0.4。且均需衍磨。
⑵缸體內徑D的圓度公差值可按9、10或11級精度選取,圓柱度公差值應按8級精度選取。
⑶缸體端面T的垂直度公差可按7級精度選取。
⑷當缸體與缸頭采用螺紋聯(lián)接時,螺紋應取為6級精度的公制螺紋。
⑸當缸體帶有耳環(huán)或銷軸時,孔徑或軸徑的中心線對缸體內孔軸線的垂直公差值應按9級精度選取。
⑹為了防止腐蝕和提高壽命,缸體內表面應鍍以厚度為30~40的鉻層,鍍后進行衍磨或拋光。
3.4.2活塞
1. 活塞與活塞桿的聯(lián)接型式見下表3-8
表3-8 活塞與活塞桿的聯(lián)接型式
聯(lián)接方式
備注說明
整體聯(lián)接
用于工作壓力較大而活塞直徑又較小的情況
螺紋聯(lián)接
常用的聯(lián)接方式
半環(huán)聯(lián)接
用于工作壓力、機械振動較大的情況下
這里采用螺紋聯(lián)接。
2. 活塞與缸體的密封結構,隨工作壓力、環(huán)境溫度、介質等條件的不同而不同。常用的密封結構見下表3-9
表3-9 常用的密封結構
密封形式
備注說明
間隙密封
用于低壓系統(tǒng)中的液壓缸活塞的密封
活塞環(huán)密封
適用于溫度變化范圍大,要求摩擦力小、壽命長的活塞密封1
O型密封圈密封
密封性能好,摩擦系數(shù)??;安裝空間小,廣泛用于固定密封和運動密封
Y型密封圈密封
用在20MPa下、往復運動速度較高的液壓缸密封
結合本設計所需要求,采用O型密封圈密封比較合適。
3. 活塞的材料
液壓缸常用的活塞材料為耐磨鑄鐵、灰鑄鐵(HT300、HT350)、鋼及鋁合金等,這里采用45號鋼。
4. 活塞的技術要求
⑴活塞外徑D對內孔的徑向跳動公差值,按7、8級精度選取。
⑵端面T對內孔軸線的垂直度公差值,應按7級精度選取。
⑶外徑D的圓柱度公差值,按9、10或11級精度選取。畫圖
3.4.3活塞桿
1. 端部結構
活塞桿的端部結構分為外螺紋、內螺紋、單耳環(huán)、雙耳環(huán)、球頭、柱銷等多種形式。根據(jù)本設計的結構,為了便于拆卸維護,可選用內螺紋結構外接單耳環(huán)。
2. 端部尺寸
如圖,為內螺紋聯(lián)接簡圖。查表37-7-4,按照本設計要求,選用直徑螺距-螺紋長=。
3. 活塞桿結構
活塞桿有實心和空心兩種,如下圖。實心活塞桿的材料為35、45號鋼;空心活塞桿材料為35、45號無縫鋼管。本設計采用實心活塞桿,選用45號鋼。
4. 活塞桿的技術要求
⑴活塞桿的熱處理:粗加工后調質到硬度為229~285HB,必要時,再經(jīng)過高頻淬火,硬度達HRC45~55。在這里只需調質到230HB即可。
⑵活塞桿的圓度公差值,按9~11級精度選取。這里取10級精度。
⑶活塞桿的圓柱度公差值,應按8級精度選取。
⑷活塞桿的徑向跳動公差值,應為0.01mm。
⑸端面T的垂直度公差值,則應按7級精度選取。
⑹活塞桿上的螺紋,一般應按6級精度加工(如載荷較小,機械振動也較小時,允許按7級或8級精度制造)。
⑺活塞桿上工作表面的粗糙度為Ra0.63, 為了防止腐蝕和提高壽命,表面應鍍以厚度約為40的鉻層,鍍后進行衍磨或拋光。
3.4.4活塞桿的導向、密封和防塵
1. 導向套
⑴導向套的導向方式、結構見下表3-10:
表3-10導向套的導向方式
導向方式
備注說明
缸蓋導向
減少零件數(shù)量,裝配簡單,磨損相對較快
導向套導向
管通導套
可利用壓力油潤滑導向套,并使其處于密封狀態(tài)
可拆導向套
容易拆卸,便于維修。適用于工作條件惡劣、經(jīng)常更換導向套的場合
球面導向套
導向套自動調整位置,磨損比較均勻
由于本設計——舉升機,主要用于車輛的維修,在工作過程中液壓缸伸縮的次數(shù)相對較少,所以磨損程度也相對較少。為了減少零件數(shù)量,降低成本可以采用缸蓋導向的導向方式。
⑵導向套材料
導向套的常用材料為鑄造青銅或耐磨鑄鐵。由于選用的是和缸蓋一體的導向套,所以材料和缸蓋也是相同的,都選用耐磨鑄鐵。
⑶導向套的技術要求
導向套的內徑配合一般取為H8/f9,其表面粗糙度則為Ra0.63~1.25。
2. 活塞桿的密封與防塵
這里仍采用O型密封圈,材料選擇薄鋼片組合防塵圈,防塵圈與活塞桿的配合可按H9/f9選取。薄鋼片厚度為0.5mm
3.4.5液壓缸的排氣裝置
排氣閥用于排除液壓缸內的空氣,使其工作穩(wěn)定。通常將排氣閥安裝在液壓缸的端部,雙作用液壓缸應安裝兩個排氣閥。常用的排氣閥結構尺寸如圖3-5
圖3-5排氣閥結構
3.4.6液壓缸安裝聯(lián)接部分的型式及尺寸
1. 液壓缸進出油口接頭的聯(lián)接螺紋尺寸,按表37-7-8選取標準值,公稱直徑螺距數(shù)量=
2. 液壓缸為單耳環(huán)型安裝的主要尺寸為(按P37-231選?。篊D=50,MR=50,EW=60,Y=60。
單耳環(huán)不帶襯套式
3. 柱塞式液壓缸端部型式及尺寸
根據(jù)所選擇的液壓缸的缸徑,按照表37-7-59確定液壓缸缸蓋端部的尺寸(均為對應的標準尺寸)。
4. 缸蓋的材料
液壓缸的缸蓋可選用35、45號鍛鋼或ZG35、ZG45鑄鋼或HT200、HT300、HT350鑄鐵等材料。在這里選擇ZG45鑄鋼。缸蓋按9、10或11級精度選取。
3.4.7繪制液壓系統(tǒng)原理圖
整機的液壓系統(tǒng)圖油各自擬訂好的控制回路及液壓源組合而成。各回路相互組合時去掉重復多余的元件,力求系統(tǒng)結構簡單。注意各元件間的聯(lián)鎖關系,避免誤動作發(fā)生。要盡量減少能量損失環(huán)節(jié),提高系統(tǒng)的工作效率。
為了便于液壓系統(tǒng)的維護和監(jiān)測,在系統(tǒng)中的主要路段要裝設有必要的監(jiān)測元件,如壓力表,溫度計等。
在設計中可以考慮在關鍵部位,附設備用件,以便意外事件發(fā)生時能迅速更換,保證主機連續(xù)工作。
各液壓元件采用國產(chǎn)標準件,在圖中按國家標準規(guī)定的液壓元件職能符號的常態(tài)位置繪制。對于自行設計的非標準元件可用結構原理圖繪制。
在系統(tǒng)圖中注明了各液壓執(zhí)行元件的名稱和動作、各液壓元件的序號以及各電磁鐵的代號,并附有相關說明。
首先考慮,在升降臺回落時,可以有兩種驅動方式,一是采用液壓缸加壓回落,這種方式一般是在液壓缸平放,而且活塞桿一端在回落時沒有施加外力的情況下采用;另一種是由活塞桿的自重和一端施加的外力使液壓缸回油,活塞桿回落。在這里我們采用第二種方式,可以省去很多功率,略去很多的機械設備,符合我們的設計原則。其次,由于采用柱塞式液壓缸在下降時依靠本身的重量,在使用過程中,會出現(xiàn)過升降機處于某個位置時,向上或向下漂移的現(xiàn)象(如下圖3-6),
主要原因是在滑閥處于中位時,A、P、B、T口雖均不相通,但實際上存在著內泄漏量(約3ml/min),久而久之,會產(chǎn)生不同程度的向上或向下漂移。當P口有向上的壓力時,會產(chǎn)生上移現(xiàn)象;當P口無壓時,由于自重會產(chǎn)生下移現(xiàn)象。而且在長期這種高壓沖擊下會逐漸加劇這種現(xiàn)象,這增加了設備不安全的因素,此種布局需要加以改進。
圖3-6改進前的液壓系統(tǒng)
改進后如下圖3-7所示,液壓系統(tǒng)所做的改變包括:變換向閥的中位機能O為Y型;換向閥的B口節(jié)控制油路到液控單向閥的液控口。這樣當升降機下降到最低位置時,由于換向閥的A口(柱塞缸)與T口相通,如果T口又與油