人教A版理科數(shù)學(xué)課時(shí)試題及解析(28)等差數(shù)列B
《人教A版理科數(shù)學(xué)課時(shí)試題及解析(28)等差數(shù)列B》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教A版理科數(shù)學(xué)課時(shí)試題及解析(28)等差數(shù)列B(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)作業(yè)(二十八)B [第28講 等差數(shù)列] [時(shí)間:35分鐘 分值:80分] 1. 數(shù)列{an}對(duì)任意n∈N*,滿足an+1=an+3,且a3=8,則S10等于( ) A.155 B.160 C.172 D.240 2. 等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a9+a11=30,那么S13的值是( ) A.65 B.70 C.130 D.260 3. 在等差數(shù)列{an}中,a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,則k=( ) A.21 B.22 C.23 D.24 4. Sn為等差數(shù)列{an}的前n項(xiàng)和,S2=S6,a4=1,則a5=________. 5. 已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足-=1,則數(shù)列{an}的公差d是( ) A. B.1 C.2 D.3 6. {an}是首項(xiàng)為1,公差為2的等差數(shù)列,令bn=a3n,則數(shù)列{bn}的一個(gè)通項(xiàng)公式是( ) A.bn=3n+2 B.bn=4n+1 C.bn=6n-1 D.bn=8n-3 7. 設(shè){an}為等差數(shù)列,公差d=-2,Sn為其前n項(xiàng)和.若S10=S11,則a1=( ) A.18 B.20 C.22 D.24 8.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=13,S3=S11,當(dāng)Sn最大時(shí),n的值是( ) A.5 B.6 C.7 D.8 9. 已知數(shù)列{an}對(duì)于任意p,q∈N*,有ap+aq=ap+q,若a1=,則a36=________. 10. 若數(shù)列{an}滿足-=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為調(diào)和數(shù)列.記數(shù)列為調(diào)和數(shù)列,且x1+x2+…+x20=200,則x5+x16=________. 11. 已知數(shù)列{an}滿足a1=t,an+1-an+2=0(t∈N*,n∈N*),記數(shù)列{an}的前n項(xiàng)和的最大值為f(t),則f(t)=________. 12.(13分) 已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn. (1)求an及Sn; (2)令bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn. 13.(12分) 設(shè)數(shù)列{an}滿足a1=0且-=1. (1)求{an}的通項(xiàng)公式; (2)設(shè)bn=,記Sn=k,證明:Sn<1. 課時(shí)作業(yè)(二十八)B 【基礎(chǔ)熱身】 1.A [解析] 由an+1=an+3,得an+1-an=3,則數(shù)列{an}是公差d=3的等差數(shù)列,由a3=8,得a1+2d=8,a1=2,所以S10=10×2+×3=155,故選A. 2.C [解析] 設(shè)等差數(shù)列{an}的公差為d,由a1+a9+a11=30,得 a1+a1+8d+a1+10d=30,即a1+6d=10, ∴S13=13a1+d=13(a1+6d)=130,故選C. 3.B [解析] 由已知,有a1+(k-1)d=7a1+d,把a(bǔ)1=0代入,得k=22,故選B. 4.-1 [解析] 由S2=S6,得2a1+d=6a1+d解得4(a1+3d)+2d=0,即2a4+d=0,所以a4+(a4+d)=0,即a5=-a4=-1. 【能力提升】 5.C [解析] 由-=1,得(3a1+3d)-(2a1+d)=1,解得d=2,故選C. 6.C [解析] 由已知,得{an}的通項(xiàng)公式為an=2n-1,則數(shù)列{bn}的前4項(xiàng)為5,11,17,23,即數(shù)列{bn}是首項(xiàng)b1=5,公差為6的等差數(shù)列,它的一個(gè)通項(xiàng)公式為bn=6n-1,故選C. 7.B [解析] 由S10=S11,得a11=S11-S10=0, ∴a1=a11+(1-11)d=0+(-10)(-2)=20.故選B. 8.C [解析] 方法1:S3=S11得a4+a5+…+a11=0,根據(jù)等差數(shù)列性質(zhì)可得a7+a8=0,根據(jù)首項(xiàng)等于13可推知這個(gè)數(shù)列遞減,從而得到a7>0,a8<0,故n=7時(shí),Sn最大. 方法2:由S3=S11可得3a1+3d=11a1+55d,把a(bǔ)1=13代入得d=-2,故Sn=13n-n(n-1)=-n2+14n,根據(jù)二次函數(shù)性質(zhì),當(dāng)n=7時(shí)Sn最大. 方法3:根據(jù)a1=13,S3=S11,這個(gè)數(shù)列的公差不等于零,說(shuō)明這個(gè)數(shù)列的和先是單調(diào)遞增的,然后單調(diào)遞減,根據(jù)公差不為零的等差數(shù)列的前n項(xiàng)和是關(guān)于n的二次函數(shù),以及二次函數(shù)圖象的對(duì)稱性,當(dāng)S3=S11時(shí),只有n==7時(shí),Sn取得最大值. 9.4 [解析] 因?yàn)閷?duì)于任意p,q∈N*,有ap+aq=ap+q,所以an+1-an=a1=,數(shù)列{an}是以a1=為首項(xiàng),公差為的等差數(shù)列,故a36=+(36-1)×=4. 10.20 [解析] 由調(diào)和數(shù)列的定義,得xn+1-xn=d,即數(shù)列{xn}是等差數(shù)列, 則x1+x20=x2+x19=…=x10+x11, ∴x1+x2+…+x20=10(x1+x20)=200, 故x5+x16=x1+x20=20. 11. [解析] 由已知an+1-an=-2,則數(shù)列{an}是公差為-2的等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn=nt+×(-2) =-n2+(t+1)n =-2+. 若t為奇數(shù),是整數(shù),則當(dāng)n=時(shí),Sn有最大值; 若t為偶數(shù),則不是整數(shù),則當(dāng)n=或n=+1時(shí),Sn有最大值. 故f(t)= 12.[解答] (1)設(shè)等差數(shù)列{an}的公差為d,因?yàn)閍3=7,a5+a7=26,所以有解得a1=3,d=2, 所以an=3+2(n-1)=2n+1, Sn=3n+×2=n2+2n. (2)由(1)知an=2n+1,所以bn===·=·, 所以Tn=· =· =, 即數(shù)列{bn}的前n項(xiàng)和Tn=. 【難點(diǎn)突破】 13.[解答] (1)由題設(shè)-=1, 即是公差為1的等差數(shù)列. 又=1,故=n. 所以an=1-. (2)證明:由(1)得 bn===-, ∴Sn=bk==1-<1. 5- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
5 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 人教 理科 數(shù)學(xué) 課時(shí) 試題 解析 28 等差數(shù)列
鏈接地址:http://www.820124.com/p-1351278.html