高中數(shù)學(xué)第3章指數(shù)函數(shù)對數(shù)函數(shù)和冪函數(shù)3.2.2對數(shù)函數(shù)第1課時(shí)對數(shù)函數(shù)及其圖象課件蘇教版.ppt
《高中數(shù)學(xué)第3章指數(shù)函數(shù)對數(shù)函數(shù)和冪函數(shù)3.2.2對數(shù)函數(shù)第1課時(shí)對數(shù)函數(shù)及其圖象課件蘇教版.ppt》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)第3章指數(shù)函數(shù)對數(shù)函數(shù)和冪函數(shù)3.2.2對數(shù)函數(shù)第1課時(shí)對數(shù)函數(shù)及其圖象課件蘇教版.ppt(32頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
第1課時(shí) 對數(shù)函數(shù)及其圖象,第3章 3.2.2 對數(shù)函數(shù),1.理解對數(shù)函數(shù)的概念. 2.初步掌握對數(shù)函數(shù)的圖象及性質(zhì). 3.會類比指數(shù)函數(shù),研究對數(shù)函數(shù)的性質(zhì).,,學(xué)習(xí)目標(biāo),知識梳理 自主學(xué)習(xí),題型探究 重點(diǎn)突破,當(dāng)堂檢測 自查自糾,,,欄目索引,,,知識梳理 自主學(xué)習(xí),知識點(diǎn)一 對數(shù)函數(shù)的概念,,答案,一般地,把函數(shù)y=logax(a>0,且a≠1)叫做對數(shù)函數(shù),其中 是自變量, 函數(shù)的定義域是 .,思考 根據(jù)對數(shù)函數(shù)的定義,你能總結(jié)出對數(shù)函數(shù)具有哪些特點(diǎn)嗎?,答 (1)底數(shù)a0,且a≠1. (2)自變量x在真數(shù)位置上,且x0. (3)在解析式y(tǒng)=logax中,logax的系數(shù)必須為1,真數(shù)必須是x.,x,(0,+∞),知識點(diǎn)二 對數(shù)函數(shù)的圖象與性質(zhì),,,答案,(0,+∞),(1,0),y<0,y>0,y>0,y<0,增函數(shù),減函數(shù),,返回,答案,知識點(diǎn)三 反函數(shù),對數(shù)函數(shù)y=logax(a>0,且a≠1)與___________________________互為反函數(shù).,指數(shù)函數(shù)y=ax(a>0,且a≠1),題型探究 重點(diǎn)突破,,解析答案,,,題型一 對數(shù)函數(shù)的概念,例1 指出下列函數(shù)哪些是對數(shù)函數(shù)? (1)y=3log2x; (2)y=log6x; (3)y=logx3; (4)y=log2x+1.,反思與感悟,,,解 (1)log2x的系數(shù)是3,不是1,不是對數(shù)函數(shù). (2)符合對數(shù)函數(shù)的結(jié)構(gòu)形式,是對數(shù)函數(shù). (3)自變量在底數(shù)位置上,不是對數(shù)函數(shù). (4)對數(shù)式log2x后又加1,不是對數(shù)函數(shù).,,反思與感悟,,反思與感悟,判斷一個(gè)函數(shù)是對數(shù)函數(shù)必須是形如y=logax(a>0且a≠1)的形式,即必須滿足以下條件: (1)系數(shù)為1. (2)底數(shù)為大于0且不等于1的常數(shù). (3)對數(shù)的真數(shù)僅有自變量x.,,答案,跟蹤訓(xùn)練1 下列函數(shù)為對數(shù)函數(shù)的是________.,①y=log1x; ②y=3log2x; ③y=log2(x+1); ④y=log2x.,④,,解析答案,題型二 對數(shù)函數(shù)的圖象,例2 如圖所示,曲線是對數(shù)函數(shù),反思與感悟,解析 在第一象限內(nèi)各圖象對應(yīng)的對數(shù)函數(shù) 的底數(shù)順時(shí)針增大,,∴c3c4c2c1,,,對數(shù)函數(shù)圖象特點(diǎn): (1)底數(shù)大于1,圖象呈上升趨勢;底數(shù)大于0小于1,圖象呈下降趨勢. (2)在第一象限,各圖象對應(yīng)的對數(shù)函數(shù)底數(shù)順時(shí)針增大.底數(shù)越小, 在第一象限圖象越靠近y軸;底數(shù)越大,在第一象限圖象越靠近x軸.,反思與感悟,,解析答案,跟蹤訓(xùn)練2 如圖,若C1,C2分別為函數(shù)y=logax和y=logbx的圖象, 則a,b,0,1的大小關(guān)系是________.,解析 兩圖象均呈下降趨勢, 所以a,b均小于1.結(jié)合第一象限圖象特征得ba, 所以0ba1.,0ba1,,解析答案,例3 函數(shù)y=loga(x+2)+1的圖象過定點(diǎn)的坐標(biāo)為________.,解析 令x+2=1,即x=-1, 得y=loga1+1=1, 故函數(shù)y=loga(x+2)+1的圖象過定點(diǎn)(-1,1).,(-1,1),反思與感悟,,求解對數(shù)型函數(shù)過定點(diǎn)問題,一般先令真數(shù)等于1,求出橫坐標(biāo)x,再求出縱坐標(biāo)值y,即可得定點(diǎn)坐標(biāo).,反思與感悟,跟蹤訓(xùn)練3 函數(shù)f(x)=loga(2x+1)+2(a0,a≠1)的圖象必過定點(diǎn)的坐標(biāo)為________.,,解析答案,解析 當(dāng)x=0時(shí),f(x)=2, 所以函數(shù)f(x)的圖象必過定點(diǎn)(0,2).,,,(0,2),題型三 對數(shù)函數(shù)的定義域,,解析答案,,,(-1,1)∪(1,+∞),反思與感悟,,求與對數(shù)函數(shù)有關(guān)的函數(shù)定義域時(shí),除遵循前面已學(xué)習(xí)過的求函數(shù)定義域的方法外,還要對這種函數(shù)自身有如下要求:一是要特別注意真數(shù)大于零;二是要注意對數(shù)的底數(shù);三是按底數(shù)的取值應(yīng)用單調(diào)性,有針對性地解不等式.,反思與感悟,跟蹤訓(xùn)練4 求下列函數(shù)的定義域:,,解析答案,,,,,解得x>2且x≠3. ∴函數(shù)的定義域?yàn)?2,3)∪(3,+∞).,(2)f(x)=log(x+1)(16-4x).,解得-1<x<0或0<x<4. ∴函數(shù)的定義域?yàn)?-1,0)∪(0,4).,,解析答案,,,,,題型四 對數(shù)函數(shù)與指數(shù)函數(shù)的反函數(shù),(2)y=log7x的反函數(shù)為________.,,,,解析 ∵對數(shù)函數(shù)y=log7x的底數(shù)為7. ∴它的反函數(shù)為指數(shù)函數(shù)y=7x.,y=7x,,解析答案,,,,,(3)點(diǎn)(4,16)在函數(shù)y=logax(a0,a≠1)的反函數(shù)的圖象上,則a=________.,解析 ∵函數(shù)y=logax(a0,且a≠1)的反函數(shù)是y=ax(a0,且a≠1), 又∵點(diǎn)(4,16)在函數(shù)y=ax(a0,且a≠1)的圖象上. ∴16=a4,∴a=2.,反思與感悟,2,,(1)同底的對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù). (2)互為反函數(shù)的兩個(gè)函數(shù)圖象關(guān)于直線y=x對稱.,反思與感悟,解析 因?yàn)辄c(diǎn)(2,4)在函數(shù)f(x)=logax的反函數(shù)圖象上, 所以點(diǎn)(4,2)在函數(shù)f(x)=logax的圖象上, 所以2=loga4,即a2=4,得a=2,,,解析答案,-1,,求解對數(shù)函數(shù)定義域考慮不全致誤,易錯(cuò)點(diǎn),,解析答案,例6 求函數(shù)y=log(x+1)(16-4x)的定義域.,錯(cuò)解 由16-4x0,解得x2,,∴函數(shù)定義域?yàn)?-∞,2).,∴函數(shù)的定義域?yàn)?-1,0)∪(0,2).,糾錯(cuò)心得 求對數(shù)函數(shù)的定義域,要滿足:(1)真數(shù)大于零; (2)底數(shù)大于零且不等于1.注意要同時(shí)滿足這兩個(gè)條件,不能漏掉其中一個(gè).,跟蹤訓(xùn)練6 求函數(shù)f(x)=log(2x-4)(10-2x)的定義域.,,解析答案,返回,,當(dāng)堂檢測,1,2,3,4,5,解析答案,1.下列函數(shù)是對數(shù)函數(shù)的是________.(填序號) ①y=loga(2x); ②y=log22x; ③y=log2x+1; ④y=lg x.,解析 ①②③中的函數(shù)都不具有“y=logax(a>0且a≠1)”的形式, 只有④符合.,④,1,2,3,4,5,,解析答案,1,2,3,4,5,,解析答案,3.函數(shù)y=ax與y=-logax(a>0,且a≠1)在同一坐標(biāo)系中的圖象形狀可能是________.(填函數(shù)序號),解析 函數(shù)y=-logax恒過定點(diǎn)(1,0),排除②; 當(dāng)a>1時(shí),y=ax是增函數(shù),y=-logax是減函數(shù), 當(dāng)0a1時(shí),y=ax是減函數(shù),y=-logax是增函數(shù), 排除③和④,①正確.,①,1,2,3,4,5,,解析答案,4.若a>0且a≠1,則函數(shù)y=loga(x-1)+1的圖象恒過定點(diǎn)坐標(biāo)為________.,解析 函數(shù)圖象過定點(diǎn),則與a無關(guān), 故loga(x-1)=0, ∴x-1=1,x=2,y=1, 所以y=loga(x-1)+1過定點(diǎn)(2,1).,(2,1),1,2,3,4,5,,解析答案,5.若函數(shù)f(x)=ax-1的反函數(shù)的圖象過點(diǎn)(4,2),則a=________.,解析 ∵f(x)的反函數(shù)圖象過(4,2), ∴f(x)的圖象過(2,4), ∴a2-1=4,∴a=4.,4,,課堂小結(jié),1.判斷一個(gè)函數(shù)是不是對數(shù)函數(shù),關(guān)鍵是分析所給函數(shù)是否具有y=logax(a>0,且a≠1)這種形式. 2.在對數(shù)函數(shù)y=logax中,底數(shù)a對其圖象直接產(chǎn)生影響,學(xué)會以分類的觀點(diǎn)認(rèn)識和掌握對數(shù)函數(shù)的圖象和性質(zhì). 3.涉及對數(shù)函數(shù)定義域的問題,常從真數(shù)和底數(shù)兩個(gè)角度分析.,,返回,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 指數(shù)函數(shù) 對數(shù) 函數(shù) 3.2 課時(shí) 及其 圖象 課件 蘇教版
鏈接地址:http://www.820124.com/p-1790127.html