【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見壓縮包內(nèi)的文件及預(yù)覽,所見才能所得,請(qǐng)細(xì)心查看有疑問可以咨詢QQ:414951605或1304139763
本科畢業(yè)設(shè)計(jì)(論文)
題目:高效風(fēng)能增速機(jī)
系 別: 機(jī)電信息系
專 業(yè): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
班 級(jí):
學(xué) 生:
學(xué) 號(hào):
指導(dǎo)教師:
2013年 5月
摘 要
隨著化石燃料的日益減少,能源問題已成為關(guān)系國(guó)民經(jīng)濟(jì)發(fā)展和人類生存的重要問題,對(duì)可再生能源的開發(fā)和利用迫在眉睫。風(fēng)能是一種干凈的、儲(chǔ)量非常豐富的可再生能源,它不會(huì)隨著其本身的轉(zhuǎn)化和利用而減少,可以說是一種取之不盡、用之不竭的能源。由于風(fēng)力發(fā)電其環(huán)境效益好,風(fēng)電場(chǎng)建設(shè)周期短,占地面積小,廣泛受到各國(guó)的關(guān)注,我國(guó)也正在大力研究風(fēng)力發(fā)電技術(shù)。
本文主要做了以下幾方面的工作:首先,確定增速箱的機(jī)械結(jié)構(gòu)。采用一級(jí)行星加上兩級(jí)圓柱齒輪傳動(dòng)綜合行星齒輪傳動(dòng)的小型化和圓柱齒輪的大傳動(dòng)比,按照所給定的工作環(huán)境變量確定齒輪副參數(shù)和傳動(dòng)部件的結(jié)構(gòu)其次,利用回差分析理論分析側(cè)隙對(duì)回差的影響和齒輪傳動(dòng)中可能出現(xiàn)的三類回差來源(齒輪本身的固有誤差,裝置誤差,其它誤差),并詳細(xì)計(jì)算了各級(jí)傳動(dòng)中的回差的大小,檢驗(yàn)結(jié)構(gòu)精度分配的正確性,提出減小回差的措施。應(yīng)用三維軟件Pro/E建立增速系統(tǒng)模型,利用ANSYS有限元軟件對(duì)關(guān)鍵零件進(jìn)行強(qiáng)度分析。
關(guān)鍵詞:風(fēng)力發(fā)電;增速系統(tǒng);行星傳動(dòng);回差;接觸分析
IV
Abstract
With the fossil fuel is reduced, the energy issue has become the development of national economy and the important problems of human survival, development and utilization of renewable energy imminent. Wind energy is a clean, abundant reserves of renewable energy, it will not be reduced with its own transformation and use, can be said to be an inexhaustible, be inexhaustible energy. Because of its environmental benefits of wind power, wind farm construction cycle short, covers an area of small, widely concerned by the whole world, our country also is to study the wind power generation technology.
This paper has done the following work : first, determine the mechanical structure of the speed increasing box. Large transmission adopts miniaturization and cylindrical gear planetary plus comprehensive planet two cylindrical gear transmission gear ratio, according to the given work environment variables determine the gear parameters and the transmission part structure secondly, using the return difference analysis possible effects of backlash on the return difference and gear in the three kinds of error sources ( inherent error, the error of gear device, other errors), and detailed calculations of the levels of transmission of the return difference size, validate the structure accuracy allocation, is proposed to decrease the error measures. Application of 3D software Pro\/E to establish the growth model of the system, analyze the strength of key parts by using the finite element software ANSYS.
Keywords:wind power generation system;growth;planetary transmission;hysteresis;contact analysis
目 錄
摘 要 I
Abstract II
目 錄 III
1 緒論 1
1.1課題背景 1
1.2研究的目的和意義 1
1.3風(fēng)力發(fā)電在國(guó)內(nèi)外的研究現(xiàn)狀 1
1.3.1國(guó)外風(fēng)力發(fā)電機(jī)的發(fā)展現(xiàn) 1
1.3.2我國(guó)風(fēng)力發(fā)電現(xiàn)狀 2
1.4風(fēng)力發(fā)電機(jī)系統(tǒng) 3
1.4.1風(fēng)力發(fā)電機(jī)簡(jiǎn)介 3
1.5風(fēng)力發(fā)電機(jī)的結(jié)構(gòu)簡(jiǎn)介 3
1.6風(fēng)力發(fā)電機(jī)增速系統(tǒng)簡(jiǎn)介 4
1.7課題研究的主要內(nèi)容 4
2 增速裝置的結(jié)構(gòu)設(shè)計(jì) 6
2.1傳動(dòng)方案的確定 6
2.23Z(II)型行星齒輪增速器裝置設(shè)計(jì) 8
2.3設(shè)計(jì)計(jì)算 8
2.3.1選取行星齒輪傳動(dòng)的傳動(dòng)類型和傳動(dòng)簡(jiǎn)圖 8
2.3.2配齒計(jì)算 8
2.3.3初步計(jì)算齒輪的主要參數(shù) 9
2.3.4嚙合參數(shù)計(jì)算 9
2.3.5幾何尺寸計(jì)算 12
2.3.6裝配條件的計(jì)算 14
2.3.7傳動(dòng)效率的計(jì)算 15
2.3.8結(jié)構(gòu)設(shè)計(jì) 16
2.3.9齒輪強(qiáng)度驗(yàn)算 19
3齒輪傳動(dòng)的回差分析 24
3.1側(cè)隙與回差的關(guān)系及來源 24
3.1.1側(cè)隙的分類 24
3.1.2不同側(cè)隙的關(guān)系 25
3.3本章小結(jié) 26
4 中心輪和行星輪齒面接觸分析 27
4.1齒輪接觸有限元算法 27
4.2接觸分析 28
4.2.1齒輪接觸有限元模型 28
4.2.2齒輪副齒面接觸應(yīng)力求解 29
4.2.3ABAQUS三維接觸分析結(jié)果 29
4.3本章小結(jié) 30
5 總結(jié) 32
參考文獻(xiàn) 33
致 謝 34
畢業(yè)設(shè)計(jì)(論文)知識(shí)產(chǎn)權(quán)聲明 35
畢業(yè)設(shè)計(jì)(論文)獨(dú)創(chuàng)性聲明 36
1 緒論
1 緒論
1.1課題背景
從能源發(fā)展戰(zhàn)略來看,由于化石燃料的有限性和使用化石燃料發(fā)點(diǎn)對(duì)環(huán)境產(chǎn)生的污染,人類必須尋找一條可持續(xù)發(fā)展的能源道路,因此開發(fā)利用純凈的新能源和可再生能源日益收到各國(guó)政府的重視,此時(shí)正是我們利用自然資源為人類謀福利的打好時(shí)機(jī)風(fēng)能作為最有開發(fā)利用前景和技術(shù)最成熟的一種可再生的清潔能源,越來越受到重視。我國(guó)的風(fēng)能資源非常豐富,利用風(fēng)能發(fā)電成本比較低,而且風(fēng)電技術(shù)也日趨成熟,適合大規(guī)模開發(fā)和利用,因此利用風(fēng)力發(fā)電能夠改善能源結(jié)構(gòu)、減少環(huán)境污染和保護(hù)生態(tài)環(huán)境。
本課題是為了響應(yīng)世界可持續(xù)發(fā)展計(jì)劃中應(yīng)對(duì)能源及環(huán)境保護(hù)的要求在我國(guó)更好的實(shí)施,也為了適應(yīng)我國(guó)風(fēng)發(fā)電技術(shù)的不斷更新及風(fēng)電廠建設(shè)的逐步擴(kuò)大而設(shè)立的。齒輪增速箱是風(fēng)力達(dá)電機(jī)組中主要的傳動(dòng)部件,因此,齒輪箱的設(shè)計(jì)便是風(fēng)力發(fā)電機(jī)組能否建立成功的關(guān)鍵部分。[1]
1.2研究的目的和意義
風(fēng)力發(fā)電是清潔的、無污染可再生能源。的優(yōu)勢(shì)已被人們所認(rèn)識(shí)。但是風(fēng)力發(fā)電成本與常規(guī)能源相比仍不具有優(yōu)勢(shì)。別是我國(guó),力發(fā)電成本還難于同常規(guī)能源相競(jìng)爭(zhēng),制約了我國(guó)風(fēng)電事業(yè)的發(fā)展。因此,面地研究我國(guó)風(fēng)力發(fā)電成本、研究影響風(fēng)力發(fā)電成本的因素、找到降低風(fēng)力發(fā)電成本的途徑對(duì)促進(jìn)我國(guó)風(fēng)電事業(yè)的發(fā)展、改進(jìn)我國(guó)能源結(jié)構(gòu)、治理我國(guó)的環(huán)境污染具有重要的現(xiàn)實(shí)意義。
1.3風(fēng)力發(fā)電在國(guó)內(nèi)外的研究現(xiàn)狀
1.3.1國(guó)外風(fēng)力發(fā)電機(jī)的發(fā)展現(xiàn)
國(guó)際能源研究報(bào)告表明,如果各國(guó)采取有力措施,風(fēng)力發(fā)電到2010年可提供世界電力需求的10%,創(chuàng)造170萬個(gè)就業(yè)機(jī)會(huì),并在全球范圍內(nèi)減少100多億噸二氧化碳廢氣。風(fēng)能將成為發(fā)展最快的能源,到2010年風(fēng)電總裝機(jī)容量達(dá)到40.00GW,2020年達(dá)到0.1TW,到2010年德國(guó)新增500萬千瓦,西班牙新增520萬千瓦,年生產(chǎn)能力將達(dá)到800萬千瓦,可滿足全國(guó)電力需求的10%。美國(guó)和加拿大是北美利用風(fēng)能最好的國(guó)家。在美國(guó)的50個(gè)州中,大約有30個(gè)州已經(jīng)開始利用風(fēng)能資源。在1998-2004年期間,美國(guó)風(fēng)力發(fā)電的總裝機(jī)容量已經(jīng)超過6740MW,可以滿足160萬個(gè)中等家庭的日常用電需求。隨著技術(shù)的進(jìn)步和規(guī)模
39
的擴(kuò)大,風(fēng)電發(fā)電成本繼續(xù)下降,估計(jì)10年后它完全可以和清潔的燃煤電廠競(jìng)爭(zhēng)。風(fēng)電技術(shù)開發(fā)的趨勢(shì)是大容量和變轉(zhuǎn)速運(yùn)行。更大單機(jī)容量的機(jī)組仍在繼續(xù)研制。隨著風(fēng)電容量在電力系統(tǒng)中的比例越來越大,對(duì)系統(tǒng)的影響日益明顯。人們已經(jīng)開始利用天氣預(yù)報(bào)的技術(shù)預(yù)測(cè)風(fēng)電場(chǎng)功率輸出,以優(yōu)化運(yùn)行速度。由于600kw級(jí)大型風(fēng)力發(fā)電機(jī)組技術(shù)成熟,正在大批量生產(chǎn),2000kw級(jí)風(fēng)力發(fā)電機(jī)組不久將投入商業(yè)運(yùn)行,風(fēng)力發(fā)電的造價(jià)由現(xiàn)在的1000美元/kw有可能下降為600-800美元/kw,發(fā)電成本從現(xiàn)在的4-5美分/(kwh),下降到3-4美分/(kwh),風(fēng)力發(fā)電規(guī)模經(jīng)濟(jì)效益更加明顯,可以和火電、水電、核電相競(jìng)爭(zhēng),這也是其它新能源所無法比擬的。由于風(fēng)力發(fā)電是可再生潔凈能源,其環(huán)境效益也十分明顯,隨著風(fēng)力發(fā)電技術(shù)的日益成熟,發(fā)電成本的進(jìn)一步降低,風(fēng)力發(fā)電會(huì)越來越被更多的人認(rèn)識(shí)和接受。這也是全世界很多國(guó)家都熱衷風(fēng)力發(fā)電的主要原因。風(fēng)力發(fā)電的迅猛發(fā)展也使那些本地能源短缺的發(fā)展中國(guó)家收益,如巴西、阿根廷、摩洛哥、埃及和哥斯達(dá)黎加等國(guó)是發(fā)展中國(guó)家風(fēng)力發(fā)電的佼佼者。中國(guó)、印度也在積極發(fā)展風(fēng)電。
1.3.2我國(guó)風(fēng)力發(fā)電現(xiàn)狀
我國(guó)幅員遼闊,陸疆總長(zhǎng)2萬多千米,海岸線1.8萬多千米,是一個(gè)風(fēng)力資源豐富的國(guó)家,全國(guó)約有2/3的地帶為多風(fēng)帶。風(fēng)能總儲(chǔ)量為32.26億千瓦,實(shí)際可開發(fā)的風(fēng)能儲(chǔ)量為2.53億千瓦,為可再生能源和新能源利用技術(shù)提供了強(qiáng)大的資源條件。兩大風(fēng)能地帶——西北、華北、東北和東南沿海為風(fēng)能資源豐富區(qū),跨全國(guó)21個(gè)省、市、自治區(qū)。到1999年底已開發(fā)微小戶用型風(fēng)力發(fā)電機(jī)16萬臺(tái),并網(wǎng)型風(fēng)電場(chǎng)24座,總裝機(jī)容量26萬千瓦,其中絕大多數(shù)機(jī)組是從丹麥、德國(guó)、美國(guó)、比利時(shí)、瑞典引進(jìn)的,最大單機(jī)容量為600kw。毫無疑問,中國(guó)風(fēng)能等可再生能源的利用受到一系列因素的限制,其中包括資金和技術(shù)資源供應(yīng)的不足、政策的不相配套等。和常規(guī)資源相比,它會(huì)缺乏競(jìng)爭(zhēng)力。但從可持續(xù)發(fā)展的目的出發(fā),從中央到地方的各級(jí)政府已對(duì)這些資源的開發(fā)給予了關(guān)注。目前,我國(guó)國(guó)產(chǎn)化機(jī)組產(chǎn)量仍然偏小,遠(yuǎn)未達(dá)到規(guī)模效益,使得零部件采購(gòu)價(jià)格偏高,利潤(rùn)空間很小。因此,我國(guó)的風(fēng)力發(fā)電裝備市場(chǎng)至今仍由國(guó)外風(fēng)力發(fā)電機(jī)組占據(jù)。這一現(xiàn)實(shí)要求我國(guó)的風(fēng)力發(fā)電設(shè)備制造企業(yè)應(yīng)加快適合中國(guó)國(guó)情的新型風(fēng)力發(fā)電裝備的研制進(jìn)度。盡快提高大型風(fēng)力發(fā)電裝備的設(shè)計(jì)和制造技術(shù),加大風(fēng)力發(fā)電裝備國(guó)產(chǎn)化進(jìn)程。還應(yīng)注意穩(wěn)定產(chǎn)品質(zhì)量,提高國(guó)產(chǎn)機(jī)組可靠性,以取得風(fēng)電場(chǎng)建設(shè)者的認(rèn)可,逐步加大市場(chǎng)份額。據(jù)相關(guān)資料報(bào)道,到2020年,預(yù)計(jì)我國(guó)將新增發(fā)電能力500GW,其中121GW為可再生能源。2010年以前,我國(guó)計(jì)劃新建20座風(fēng)力發(fā)電場(chǎng),每座風(fēng)場(chǎng)的發(fā)電能力達(dá)到100MW以上,且達(dá)到4000MW的風(fēng)力發(fā)電總目標(biāo),并要求風(fēng)力發(fā)電設(shè)備本土化。
1.4風(fēng)力發(fā)電機(jī)系統(tǒng)
1.4.1風(fēng)力發(fā)電機(jī)簡(jiǎn)介
風(fēng)力發(fā)機(jī)組室友兩大部分組成的,即風(fēng)力機(jī)和發(fā)電機(jī)。其中,風(fēng)力機(jī)的功能是將風(fēng)能轉(zhuǎn)換為機(jī)械;而發(fā)電機(jī)的功能是將機(jī)械能轉(zhuǎn)換為電能。。因此風(fēng)力發(fā)電機(jī)裝備的類型歸屬需要可以從兩個(gè)角度規(guī)劃。本文只從機(jī)械角度介紹風(fēng)力發(fā)電機(jī)。
(1) 垂直軸風(fēng)輪按形成轉(zhuǎn)矩的機(jī)理分為阻力型和升力型。阻力型的氣動(dòng)力效率遠(yuǎn)小于升力型,故當(dāng)今大型并網(wǎng)型垂直軸風(fēng)力機(jī)的風(fēng)輪全部為升力型。
(2) 水平軸風(fēng)力發(fā)電機(jī)組還可分為上風(fēng)向及下風(fēng)向兩種機(jī)型,上風(fēng)向機(jī)組其風(fēng)輪面對(duì)風(fēng)向,安置在塔架前方。上風(fēng)向機(jī)組需要主動(dòng)調(diào)向機(jī)構(gòu)以保證風(fēng)輪能隨時(shí)對(duì)準(zhǔn)風(fēng)向。下風(fēng)向機(jī)組其風(fēng)輪背對(duì)風(fēng)向安置在塔架后方。當(dāng)前大型并網(wǎng)風(fēng)力發(fā)電機(jī)幾乎都是水平軸上風(fēng)向型。
(3) 下風(fēng)向風(fēng)力發(fā)電機(jī),只在中、小功率機(jī)型中出現(xiàn)過。
(4) 水平軸上風(fēng)向三葉片風(fēng)力發(fā)電機(jī)是當(dāng)代大型風(fēng)力發(fā)電機(jī)的主流;兩葉片的產(chǎn)品也比較多見。
1.5風(fēng)力發(fā)電機(jī)的結(jié)構(gòu)簡(jiǎn)介
由于本文只對(duì)風(fēng)力發(fā)的增速系統(tǒng)的傳動(dòng)齒輪箱進(jìn)行設(shè)計(jì)分析,所以這里只簡(jiǎn)單的介紹風(fēng)力機(jī)。風(fēng)力機(jī)的作用是把風(fēng)能轉(zhuǎn)化為機(jī)械能,它的結(jié)構(gòu)包括風(fēng)輪(包括葉片和輪轂)、傳動(dòng)裝置、增速齒輪箱、制動(dòng)結(jié)構(gòu)、偏航裝置(或稱對(duì)風(fēng)裝置)變槳距機(jī)構(gòu)以及附屬部件。圖1.1為風(fēng)力機(jī)的總體結(jié)構(gòu)示意圖,其組成:1為輪轂,驅(qū)動(dòng)法蘭面與機(jī)艙中齒輪箱的主軸用螺栓進(jìn)行固定連接,三個(gè)外伸端(夾角為120°)用延長(zhǎng)節(jié)和葉片保持連接;2為傳動(dòng)軸;3為塔架,它的主要作用是支撐葉輪和機(jī)艙;4為偏航裝置;5為風(fēng)速風(fēng)向儀;6為發(fā)電機(jī),它是將風(fēng)能轉(zhuǎn)化為電能的設(shè)備;7為剎車系統(tǒng);8為增速齒輪箱,因?yàn)榘l(fā)電機(jī)的轉(zhuǎn)速高而風(fēng)輪轉(zhuǎn)速低,需要在風(fēng)輪軸與發(fā)電機(jī)軸之間設(shè)一個(gè)增速器;9為變槳距機(jī)構(gòu),作用是控制葉片槳距角的變化。
圖1.1風(fēng)力機(jī)結(jié)構(gòu)示意圖
1.6風(fēng)力發(fā)電機(jī)增速系統(tǒng)簡(jiǎn)介
風(fēng)力發(fā)電機(jī)組中的齒輪箱是一個(gè)重要的機(jī)械部件,其主要功用是將風(fēng)輪在風(fēng)力作用下所產(chǎn)生的動(dòng)力傳遞給發(fā)電機(jī)并使其得到相應(yīng)的轉(zhuǎn)速。通常風(fēng)輪的轉(zhuǎn)速很低,遠(yuǎn)達(dá)不到發(fā)電機(jī)發(fā)電所要求的轉(zhuǎn)速,必須通過齒輪箱齒輪副的增速作用來實(shí)現(xiàn),故也將齒輪箱稱之為增速箱。根據(jù)機(jī)組的總體布置要求,有時(shí)將與風(fēng)輪輪轂直接相連的傳動(dòng)軸(俗稱大軸)與齒輪箱合為一體,也有將大軸與齒輪箱分別布置,其間利用脹緊套裝置或聯(lián)軸節(jié)連接的結(jié)構(gòu)。為了增加機(jī)組的制動(dòng)能力,常常在齒輪箱的輸入端或輸出端設(shè)置剎車裝置,配合葉尖制動(dòng)(定漿距風(fēng)輪)或變漿距制動(dòng)裝置共同對(duì)機(jī)組傳動(dòng)系統(tǒng)進(jìn)行聯(lián)合制動(dòng)。
1.7課題研究的主要內(nèi)容
1、選擇確定傳動(dòng)方案 傳動(dòng)方案的確定包括傳動(dòng)類型和傳動(dòng)簡(jiǎn)圖的確定。此次設(shè)計(jì)的增速器傳動(dòng)比達(dá)到134,只有通過不斷地比較和分析去合理的選擇一種傳動(dòng)方案,盡量降低增速器的體積和重量。
2、設(shè)計(jì)計(jì)算 每級(jí)傳動(dòng)機(jī)構(gòu)的設(shè)計(jì)計(jì)算,都大致包括:傳動(dòng)比的分配,傳動(dòng)系統(tǒng)運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)計(jì)算,傳動(dòng)零件的設(shè)計(jì),軸的設(shè)計(jì)計(jì)算與校核,軸的選擇與計(jì)算,鍵連接的選擇與計(jì)算,箱體的設(shè)計(jì),潤(rùn)滑與密封的選擇和傳動(dòng)裝置。
水平軸風(fēng)力機(jī)主要由以下幾部分組成:風(fēng)輪、傳動(dòng)結(jié)構(gòu)(增速箱)、發(fā)電機(jī)、機(jī)座、塔架、調(diào)速器或限速器、調(diào)向器、停車制動(dòng)器等。其結(jié)構(gòu)簡(jiǎn)圖2.2所示:
圖2-3風(fēng)力發(fā)電機(jī)組的結(jié)構(gòu)圖
本課題中主要研究是該裝置系統(tǒng)中的傳動(dòng)裝置,也就是圖2-3中的部3的設(shè)計(jì)。經(jīng)過方案的比較,本文中的機(jī)組傳動(dòng)方式采用的是一級(jí)行星加上兩級(jí)圓柱齒輪傳動(dòng)方式,它的主要特點(diǎn)有:低速級(jí)為行星傳動(dòng),傳動(dòng)效率高,體積小,重量輕,結(jié)構(gòu)簡(jiǎn)單,制造方便,傳遞功率范圍大,使用功率分流,合理使用了內(nèi)嚙合,軸向尺寸小,采用無多余約束浮動(dòng),浮動(dòng)效果好;末兩級(jí)為平行軸圓柱齒輪傳動(dòng),可合理分配增速比,提高傳動(dòng)效率。該結(jié)構(gòu)合理有效的綜合利用了行星齒輪的小型化和圓柱齒輪傳動(dòng)的大傳動(dòng)比,從而降低了成本,提高了傳動(dòng)效率,節(jié)約了能源。
2 增速裝置的結(jié)構(gòu)設(shè)計(jì)
2 增速裝置的結(jié)構(gòu)設(shè)計(jì)
動(dòng)裝置是機(jī)器重要組成部分,它起到的作用有減速(或增速)、調(diào)速、改變運(yùn)動(dòng)形式、增大轉(zhuǎn)矩、動(dòng)力和運(yùn)動(dòng)的傳遞和分配功能。應(yīng)用于變速的方式主要有帶傳動(dòng)、鏈傳動(dòng)、齒輪傳動(dòng)、蝸桿傳動(dòng)。齒輪傳動(dòng)由于具有瞬時(shí)傳動(dòng)比恒定,傳動(dòng)效率高(可達(dá)98~99%),工作可靠,使用壽命長(zhǎng),結(jié)構(gòu)緊湊,使用范圍大。傳遞功率范圍大等優(yōu)點(diǎn)應(yīng)用最廣泛。齒輪傳動(dòng)的種類多種多樣,以適應(yīng)對(duì)傳動(dòng)的不同要求。按照工作條件不同可以分為開式、半開式和閉式傳動(dòng);按照齒輪硬度的不同可以分為軟齒面、中硬齒面及硬齒面?zhèn)鲃?dòng)。
風(fēng)電系統(tǒng)中用的增速裝置一般也采用齒輪傳動(dòng),目前我國(guó)300KW的風(fēng)機(jī)主要應(yīng)用于運(yùn)輸和安裝條件不理想的沿海地區(qū),600KW的風(fēng)機(jī)主要應(yīng)用于地形平坦、運(yùn)輸條件和安裝條件較好的、內(nèi)蒙以及沿海地區(qū),兆瓦(1000KW~2000KW)的風(fēng)機(jī)技術(shù)還不成熟,在實(shí)際生產(chǎn)中應(yīng)用很少。
2.1傳動(dòng)方案的確定
風(fēng)力發(fā)電機(jī)齒輪箱的種類多種多樣,按照傳統(tǒng)類型可分為圓柱齒輪箱、行星齒輪箱以及它們相互組合起來的齒輪箱;按照傳動(dòng)的級(jí)數(shù)分為單級(jí)和多集齒輪箱;按照傳動(dòng)的布置形式可以分為展開式、分流式和同軸式以及混合式。[2]
表2.1常用的齒輪傳動(dòng)形式
名稱
傳動(dòng)方式簡(jiǎn)圖
傳動(dòng)特點(diǎn)
展開式
結(jié)構(gòu)簡(jiǎn)單、但齒輪相對(duì)于軸承的位置不對(duì)稱,因此要求軸有很大的剛度。
分流式
結(jié)構(gòu)復(fù)雜、但由于齒輪相對(duì)于軸承對(duì)稱分布,載荷沿齒寬分布均勻、軸承受載均勻。
同軸式
橫向尺寸小、軸向尺寸和重量較大,且中間軸較長(zhǎng),剛度差,沿齒寬受載分布不均勻。
分流同軸式
每對(duì)嚙合齒僅傳遞全部載荷的一半,輸入和輸出軸只承受扭矩,中間軸只承受全部載荷的一半,軸頸尺寸小。
單級(jí)NGW
尺寸小、重量輕、但制造精度要求高,結(jié)構(gòu)較復(fù)雜。
兩級(jí)NGW
尺寸小、重量輕、但制造精度要求高,結(jié)構(gòu)復(fù)雜。
2.23Z(II)型行星齒輪增速器裝置設(shè)計(jì)
設(shè)計(jì)某風(fēng)力發(fā)電裝置所需配用的行星齒輪增速器,已知該行星傳動(dòng)的輸入功率P1=22KW,輸入轉(zhuǎn)速n1=1500r/min,傳動(dòng)比ip=134,允許的傳動(dòng)比偏差△ip=0.01;且要求該行星齒輪傳動(dòng)結(jié)構(gòu)緊湊、外廓尺寸較小和傳動(dòng)功率較高。
2.3設(shè)計(jì)計(jì)算
2.3.1選取行星齒輪傳動(dòng)的傳動(dòng)類型和傳動(dòng)簡(jiǎn)圖
根據(jù)上述要求:短期間斷,傳動(dòng)比大,結(jié)構(gòu)緊湊和外輪廓尺寸較小。據(jù)《行星齒輪傳動(dòng)設(shè)計(jì)》傳動(dòng)類型的工作特點(diǎn)可知,3Z型適用于短期間斷的工作方式,結(jié)構(gòu)緊湊,傳動(dòng)比大。為了裝配方便,結(jié)構(gòu)更加緊湊,適用具有單齒圈行星齒輪的3Z(II)型行星齒輪傳動(dòng)較合理,其傳動(dòng)簡(jiǎn)圖如圖1所示。[3]
圖2.13Z(II)型行星齒輪增速傳動(dòng)
2.3.2配齒計(jì)算
根據(jù)3Z(II)型行星傳動(dòng)的傳動(dòng)比ip值和按其齒輪計(jì)算公式可求得內(nèi)齒輪b,e和行星齒輪c的齒數(shù)zb,ze和zc??紤]到該行星齒輪傳動(dòng)的外輪廓尺寸較小,故選擇中心輪的齒數(shù)za=15和行星齒輪數(shù)目np =3。為了使內(nèi)齒輪b與e的齒數(shù)差盡可能小,即應(yīng)取ze -zb=np。再將za,np和ip值代入公式,則的內(nèi)齒輪b的齒數(shù)Zb為:
Zb=
按以下公式可得內(nèi)齒輪e的齒數(shù)Ze為:
Ze=Zb+np=69+3=72
因Ze-Za=72-15=57為奇數(shù),應(yīng)按如下公式求得行星輪c的齒數(shù)Zc為:
zc=(ze-za)-0.5=(72-15)-0.5=28
再按傳動(dòng)比驗(yàn)算公式驗(yàn)算其實(shí)際的傳動(dòng)比為:
ibae===134.4
其傳動(dòng)比誤差為:
===0.003<
故滿足傳動(dòng)比誤差的要求,即得該行星齒輪傳動(dòng)實(shí)際的傳動(dòng)比為=134.4,最后確定該行星傳動(dòng)各齒的齒數(shù)為Za=15,Zb=69,Ze=72和Zc=28。另外,也可根據(jù)傳動(dòng)比i=134.4查表[4]直接可得上述各輪的齒數(shù)。
2.3.3初步計(jì)算齒輪的主要參數(shù)
齒輪材料和熱處理的選擇:中心輪a和行星輪c均采用20CrMnTi,滲碳淬火,齒面硬度58-62HRC,取=1400N/mm和=340N/mm,中心輪a和行星齒輪c的加工精度6級(jí);內(nèi)齒輪b和e均采用42CrMo,調(diào)質(zhì)硬度217-259HB,取=780N/mm 和=260N/mm,內(nèi)齒輪b和e的加工精度7級(jí)。
按彎曲強(qiáng)度的初計(jì)算公式計(jì)算齒輪的模數(shù)m為:
m=Km
現(xiàn)已知Z1=15,=340N/mm
小齒輪名義轉(zhuǎn)矩:T1=9549=9549×=46.68N·M;
取算式系數(shù)Km=12.1;查表取使用系數(shù)KA=1.5;取綜合系數(shù)KFΣ=1.8;去接觸強(qiáng)度計(jì)算的行星輪見在和分布不據(jù)黁系數(shù)KHp=1.2。
由公式可得KFp=1+1.5(KHp-1)=1+1.5(1.2-1)=1.3
查得齒形系數(shù)YFa1=2.67;查得齒寬系數(shù)Фd=0.6。則的齒輪模數(shù)為:
m==2.57 mm
取齒輪模數(shù)m=3mm。
2.3.4嚙合參數(shù)計(jì)算
在三個(gè)嚙合齒輪副a-c、b-c和e-c中,其標(biāo)準(zhǔn)中心距a為:
(mm)
(mm)
(mm)
由此可見,三個(gè)齒輪副的標(biāo)準(zhǔn)中心距不相等,且有。因此,此行星齒輪傳動(dòng)不能滿足非變位的同心條件。為了使該行星齒輪既能滿足給定的傳動(dòng)比=134.4的要求,又能滿足嚙合傳動(dòng)的同心條件,即應(yīng)使各齒輪副的嚙合中心距相等,則必須對(duì)該3Z(II)型行星傳動(dòng)進(jìn)行角度變位。
根據(jù)各標(biāo)準(zhǔn)中心距之間的關(guān)系,取選取其嚙合中心距為==66mm作為各齒輪副的中心距值。
已知+=43,-=41和-=44,m=3mm,=66mm及壓力角20?,按公式計(jì)算該3Z(II)型行星傳動(dòng)角度變位的嚙合參數(shù)。對(duì)各齒輪副的嚙合參數(shù)計(jì)算結(jié)果見表2.2。
表2.23Z(II)型行星傳動(dòng)嚙合參數(shù)計(jì)算
項(xiàng)目
計(jì)算公式
a-c齒輪副
b-c齒輪副
e-c齒輪副
中心距變動(dòng)系數(shù)
=
=1.5
嚙合角
=
=
變位系數(shù)和
=
齒頂高變動(dòng)系數(shù)
=
重合度
確定各齒輪的變位系數(shù):
(1)a-c齒輪副在a-c齒輪副中,由于中心輪a的齒數(shù)z=15
2=34和中心距=64.5mm<=66mm。由此可知,該齒輪副的變位目的是避免小齒輪a產(chǎn)生根切、湊合中心距和改善嚙合性能。其變位方式應(yīng)采用角度變位的正傳,即
當(dāng)齒頂高系數(shù)=1,壓力角時(shí),避免根切的最小變位系數(shù)為:
===0.1176
按如下公式可求得中心論a的變位系數(shù)為:
=0.5
=0.5
=0.2732>=0.1176
按如下公式可得到行星齒輪c的變位系數(shù):
==0.5377-0.2732=0.2645
(2)b-c齒輪在b-c齒輪副中,=28>=17,=41>2=34和=61.5mm<=66mm。據(jù)此可知,該齒輪副的變位目的是為了湊合中心距和改善嚙合性能。故其能變位方式也應(yīng)采用角度變位的正傳動(dòng),即。
現(xiàn)已知其變位系數(shù)和和則可得內(nèi)齒輪b的變位系數(shù)為=。
(3)e-c齒輪副 在e-c齒輪副中,>,-=44>2=34和mm 。由此可知,該齒輪副的變位目的是為改善嚙合性能和修復(fù)嚙合齒輪副。故其變位方式應(yīng)采用高度變位,即。則可得內(nèi)齒輪e的變位系數(shù)為0.2645。
2.3.5幾何尺寸計(jì)算
對(duì)于該3Z(II)型行星齒輪傳動(dòng)可按下面計(jì)算公式進(jìn)行其幾何尺寸的計(jì)算。各齒輪副的幾何尺寸的計(jì)算結(jié)果見表2.3。
表2.33Z(II)型行星齒輪傳動(dòng)幾何尺寸計(jì)算
項(xiàng)目
計(jì)算公式
a-c齒輪副
b-c齒輪副
e-c齒輪副
變位系數(shù)
=
=0.2732
=0.2645
=0.2645
=2.1022
=0.2645
=0.2645
分度圓直徑
=
=
=45
=207
=84
=207
=84
=216
基圓直徑
=
=
=42.2862
=78.9342
=78.9342
=194.5164
=78.9342
=202.9736
節(jié)圓直徑
=
=
=46.0465
=85.9535
=90.1463
=222.1463
=84
=216
齒頂圓直徑
外嚙合
52.413
91.3608
內(nèi)嚙合
-
齒根圓直徑
外嚙合
內(nèi)嚙合
用插齒刀加工
78.087
224.7126
78.087
225.0204
關(guān)于用插齒刀加工內(nèi)齒輪,起齒根圓直徑的計(jì)算:
已知模數(shù)=3mm,插齒刀齒數(shù)=25,齒頂高系數(shù)=1.25,變位系數(shù)=0(中等磨損程度)。試求被插制內(nèi)齒輪的齒根圓直徑。
齒根圓直徑按下式計(jì)算,即
=+2
式中:—插齒刀的齒頂圓直徑;
—插齒刀與被加工內(nèi)齒輪的中心距。
==325=82.5(mm)
現(xiàn)對(duì)內(nèi)嚙合齒輪副b-c和e-c分別計(jì)算如下。
(1)b-c內(nèi)嚙合齒輪副(,=69)
==0.049683
查表得=
=
加工中心距為
=(mm)
按一下公式計(jì)算內(nèi)齒輪b齒根圓直徑為
=82.5+271.1063=224.7126mm
(2)e-c內(nèi)嚙合齒輪副(,=72)
===0.019001
查表得=
==
=(mm)
則得內(nèi)齒輪e的齒根圓直徑為:
mm
2.3.6裝配條件的計(jì)算
對(duì)于所設(shè)計(jì)的上述行星輪傳動(dòng)應(yīng)滿足如下的裝配條件:
按如下公式驗(yàn)算其鄰接條件,即
將已知的、和值代入上式,則得:
91.3608mm<266=114.3154mm
即滿足鄰接條件。
按如下公式驗(yàn)算該3Z(II)型行星傳動(dòng)的同心條件,即
各齒輪副的嚙合角為、、和;且知、、和。代入上式,即得
=46.82
按以下公式驗(yàn)算其安裝條件,即得
所以,滿足其安裝條件。
2.3.7傳動(dòng)效率的計(jì)算
由查[6]表得到的幾何尺寸計(jì)算結(jié)果可知,內(nèi)齒輪b的節(jié)圓直徑222.1463mm大于內(nèi)齒輪e的節(jié)圓直徑mm,即>,故該3Z(II)行星傳動(dòng)的傳動(dòng)功率可采用如下公式進(jìn)行計(jì)算,即
=
已知和=69/15=4.6
其嚙合損失系數(shù):
和可按如下公式計(jì)算,即有
=2.3
=2.3
取齒輪的嚙合摩擦因數(shù),且將、和代入上式,可得
=2.3
=2.3
即有=0.00488+0.00502=0.0099
所以,其傳動(dòng)效率為
=
可見,該行星齒輪傳動(dòng)的效率較高,可以滿足短期間斷工作方式的使用要求。
2.3.8結(jié)構(gòu)設(shè)計(jì)
根據(jù)3Z(II)行星傳動(dòng)的工作特點(diǎn)、傳遞功率的大小和轉(zhuǎn)速的高低等情況,對(duì)其進(jìn)行具體的結(jié)構(gòu)設(shè)計(jì)。首先應(yīng)確定中心輪a的結(jié)構(gòu),因?yàn)樗闹睆絛較小,所以,輪a應(yīng)該采用齒輪軸的結(jié)構(gòu)型式;既將中心輪a與輸出軸連成一個(gè)整體。且按該行星的輸入功率P和轉(zhuǎn)速n的初步估算輸入軸的直徑,同時(shí)進(jìn)行軸的結(jié)構(gòu)設(shè)計(jì)。為了便于軸上零件的裝拆,通常將軸制成階梯形??傊跐M足使用要求的情況下,軸的形狀和尺寸應(yīng)力求簡(jiǎn)單,以便于加工制造。
=112=27mm
按照3﹪-5﹪增大,試取為30mm,帶有單鍵槽的輸入軸直徑確定為30mm,再過臺(tái)階d1為36mm滿足密封元件的孔徑要求。軸環(huán)用于軸承的軸向定位和固定。可知d2為45mm,寬度為135mm。根據(jù)軸承的選擇確定軸肩d3為52mm,d4為38 mm。
=112=50mm
帶有單鍵槽,與齒輪e同體相連作為輸出軸。取d1為57mm,選擇16X10的鍵槽。
(1)內(nèi)齒輪b采用緊固螺釘與箱體連接起來,從而可以將其固定。其尺寸如上已算出。
(2)內(nèi)齒輪e采用齒輪軸設(shè)計(jì),既將輪e與輸出軸連成一個(gè)整體。且按該輪的輸入功率P和轉(zhuǎn)速n的初步估算輸出軸的直徑,同時(shí)進(jìn)行軸的結(jié)構(gòu)設(shè)計(jì)??傊跐M足使用要求的情況下,軸的形狀和尺寸應(yīng)力求簡(jiǎn)單,以便于加工制造。
一個(gè)結(jié)構(gòu)合理的轉(zhuǎn)臂x應(yīng)是外廓尺寸小,質(zhì)量小,具有足夠的強(qiáng)度和剛度,動(dòng)平衡性好,能保證行星齒輪間的載荷分布均勻,而且具有良好的加工和裝配工藝。對(duì)于3Z(II)型中的轉(zhuǎn)臂x不承受外力矩的作用,也不是行星傳動(dòng)的輸入或輸出構(gòu)件(此時(shí)它不是基本構(gòu)件),故采用雙側(cè)板整體式轉(zhuǎn)臂(其側(cè)板兩端無凸緣)。雙側(cè)板整體式轉(zhuǎn)臂,可采用連接板將兩塊側(cè)板連接在一起。整體式轉(zhuǎn)臂的毛皮是采用鍛造或焊接的范式得到的,即在其毛坯上已將兩側(cè)板與連接板制成一個(gè)整體。轉(zhuǎn)臂x中所需連接板得數(shù)目一般應(yīng)等于行星齒輪數(shù)。壁厚為=mm取壁厚為15,其中為實(shí)際嚙合中心距。溝槽寬度為80mm。外圓直徑2=168mm,取外圓直徑170mm。
轉(zhuǎn)臂X1上各行星齒輪軸孔與轉(zhuǎn)臂軸線的中心極限偏差fa可按公式計(jì)算:
已知高速級(jí)的嚙合中心距a=66mm,則得
0.0323(mm)
取=32.3
各行星齒輪軸孔的孔距相對(duì)偏差按公式計(jì)算,即
取0.0300=30
轉(zhuǎn)臂X1的偏心誤差為孔距相對(duì)偏差的,即=15
先已知低速級(jí)的嚙合中心距a=66mm,則得
=0.0323mm
取=32.3
各行星齒輪軸孔的孔距相對(duì)偏差按公式計(jì)算,即
取0.0300=30
轉(zhuǎn)臂X1的偏心誤差為孔距相對(duì)偏差的,即
按照行星傳動(dòng)的安裝類型的不同,則該行星減速器選用臥式不剖分機(jī)體,為整體鑄造機(jī)體,其特點(diǎn)是結(jié)構(gòu)簡(jiǎn)單,緊湊,能有效多用于專用的行星齒輪傳動(dòng)中,鑄造機(jī)體應(yīng)盡量的避免壁厚突變,應(yīng)設(shè)法減少壁厚差,以免產(chǎn)生疏散等鑄造缺陷。材料選為灰鑄鐵[7]。
壁厚:
其中:Kt—機(jī)體表面的形狀系數(shù),取1
Kd—與內(nèi)齒輪直徑有關(guān)的系數(shù),取2.6
Td—作用在機(jī)體上的轉(zhuǎn)矩。
螺釘?shù)倪x擇:大多緊固螺釘選擇六角螺釘。吊環(huán)的設(shè)計(jì)參照標(biāo)準(zhǔn)。通氣塞的設(shè)計(jì)參照設(shè)計(jì)手冊(cè)自行設(shè)計(jì)[7]。以及油標(biāo)的設(shè)計(jì)根據(jù)GB1161-89的長(zhǎng)形油標(biāo)的參數(shù)來設(shè)計(jì)。
行星齒輪c采用帶有內(nèi)孔的結(jié)構(gòu),它的齒寬b應(yīng)當(dāng)加大;以便保證該行星齒輪c與中心輪a 的嚙合良好,同時(shí)還應(yīng)保證其與內(nèi)齒輪b和e相嚙合。在每個(gè)行星輪的內(nèi)孔中,可以安裝兩個(gè)滾動(dòng)軸承來支撐著。而行星齒輪軸在安裝到轉(zhuǎn)臂x的側(cè)板上之后,還采用了矩形截面的彈性擋圈來進(jìn)行軸向固定。
由于該3Z型行星傳動(dòng)的轉(zhuǎn)臂x不承受外力矩,也不是行星傳動(dòng)的輸入或輸出構(gòu)件;而且還具有個(gè)行星輪。因此,其轉(zhuǎn)臂x采用了雙側(cè)板整體式的結(jié)構(gòu)型式。該轉(zhuǎn)臂x可以采用兩個(gè)向心球軸承支承在中心輪a的軸上。
轉(zhuǎn)臂x上各行星輪軸孔與轉(zhuǎn)臂軸線的中心距極限偏差可按如下公式計(jì)算?,F(xiàn)已知嚙合中心距mm,則得:
(mm)
取
各行星輪軸孔的孔距先對(duì)偏差可按以下公式計(jì)算,即
取=0.030mm=30m
轉(zhuǎn)臂x的偏心誤差約為孔距相對(duì)偏差的1/2,即
=15m
在對(duì)所設(shè)計(jì)的行星齒輪傳動(dòng)進(jìn)行了其嚙合參數(shù)和幾何尺寸計(jì)算,驗(yàn)算其裝配條件,且進(jìn)行了結(jié)構(gòu)設(shè)計(jì)之后,便可以繪制該行星齒輪傳動(dòng)結(jié)構(gòu)圖。
2.3.9齒輪強(qiáng)度驗(yàn)算
由于3Z(II)型行星齒輪齒輪傳動(dòng)具有短期間間斷的工作特點(diǎn),且具有結(jié)構(gòu)緊湊、外輪廓尺寸較小和傳動(dòng)比大的特點(diǎn)。針對(duì)其工作特點(diǎn),只需按其齒根彎曲應(yīng)力的強(qiáng)度條件公式進(jìn)行校核計(jì)算,即
首先按以下公式計(jì)算齒輪的齒根應(yīng)力,即
其中,齒根應(yīng)力的基本值可按以下公式計(jì)算,即
=
許用齒根應(yīng)力可按以下公式計(jì)算,即
=
現(xiàn)將該3Z(II)行星傳動(dòng)按照三個(gè)齒輪副a-c、b-c和e-c分別驗(yàn)算如下。
① 名義切向力。
中心輪a的切向力=可按如下公式計(jì)算;已知N·m,和mm。則得
(N)
② 有關(guān)系數(shù)。
a.使用系數(shù),使用系數(shù)按中等沖擊查表得=1.5
b.動(dòng)載荷系數(shù),先按下式計(jì)算輪a相對(duì)于轉(zhuǎn)臂x的速度,即
其中(m/s)
所以(m/s)
已知中心輪a和行星齒輪c的精度為6級(jí),即精度系數(shù)C=6;再按下公式計(jì)算動(dòng)載荷系數(shù),即
=
式中:B=0.25=
A=50+56
則得
=
因此中心輪a和行星輪c的動(dòng)載荷系數(shù)=1.06
c.齒向載荷分布系數(shù),齒向載荷分布系數(shù)可按下式計(jì)算,即=1+,查表得。
=
查表得,代入上式,則得
=1+(1.3-1)1=1.3
d.齒間載荷分配系數(shù)。齒間載荷分配系數(shù)查表得,=1.1。
e.行星輪間載荷分配系數(shù)。
行星輪間載荷分配系數(shù)按下式計(jì)算,即=1+1.5,已取,則得=1+1.5=1.3
f.齒形系數(shù)。齒形系數(shù)查得,
g.應(yīng)力修正系數(shù)。應(yīng)力修正系數(shù)查得,。
h.重合度系數(shù)。重合度系數(shù)可按下式計(jì)算,即
==0.25+
i.螺旋角系數(shù)。
螺旋角系數(shù)查得=1。
因行星輪c不僅與中心論a嚙合,且同時(shí)與內(nèi)齒輪b和e相嚙合,故取齒寬b=60mm。
③ 計(jì)算齒根彎曲應(yīng)力。
按下式計(jì)算齒根彎曲應(yīng)力,即
=
=(N/mm2)
(N/mm2)
取彎曲應(yīng)力=110N/mm2
④ 計(jì)算許用齒根應(yīng)力。
按以下公式計(jì)算許用齒根應(yīng)力,
即=
已知齒根彎曲疲勞極限=340 N/mm2,由查表[9]得最小安全系數(shù)。
式中各系數(shù)、、、和取值如下。
應(yīng)力系數(shù),按所給定的區(qū)域圖取時(shí),取=2。
壽命系數(shù)由下式計(jì)算,即
=
式中應(yīng)力循環(huán)次數(shù)由表相應(yīng)公式計(jì)算,且可按照每年工作300天,每天工作16小時(shí),即
=6060=1.06
則得==0.89
齒根圓角敏感系數(shù)查得=1。
先對(duì)齒根表面狀況系數(shù)按表中對(duì)應(yīng)公式計(jì)算,即
=1.674-0.529
取齒根表面微觀不平度=12.5m,代入上式得
=1.674-0.529=0.98
尺寸系數(shù)按表中相對(duì)應(yīng)公式計(jì)算,即
=1.05-0.01=1.05-0.01=1.02
代入下公式可得許用齒根應(yīng)力為:
=378(N/mm2)
因齒根應(yīng)力=110N/mm2小于許用齒根應(yīng)力=378N/mm2,即<。所以,a-c齒輪副滿足齒根彎曲強(qiáng)度條件。
在內(nèi)嚙合齒輪副b-c中只需要校核內(nèi)齒輪b的齒根彎曲強(qiáng)度,即仍按公式計(jì)算其齒根彎曲應(yīng)力及按公式計(jì)算許用齒根應(yīng)力。已知,=260 N/mm2。
a.使用系數(shù)。使用系數(shù)按中等沖擊查表得=1.11
b.動(dòng)載荷系數(shù)。先按下式計(jì)算輪a相對(duì)于轉(zhuǎn)臂x的速度,即
其中(m/s)
所以(m/s)
已知中心輪a和行星齒輪c的精度為6級(jí),即精度系數(shù)C=6;再按下公式計(jì)算動(dòng)載荷系數(shù),即
=
式中:B=0.25=
A=50+56
則得
=
中心輪a和行星輪c的動(dòng)載荷系數(shù)=1.26
c.齒向載荷分布系數(shù)齒向載荷分布系數(shù)可按下式計(jì)算,即
=1+
查表得
=
查表得,代入上式,則得=1+(1.3-1)1=1.3
d.齒間載荷分配系數(shù)。齒間載荷分配系數(shù)查表得=1.1
e.行星輪間載荷分配系數(shù)。行星輪間載荷分配系數(shù)按下式計(jì)算
即=1+1.5
已取,則得=1+1.5=1
f.齒形系數(shù)。齒形系數(shù)查得。,
g.應(yīng)力修正系數(shù)。應(yīng)力修正系數(shù)查得,
h.重合度系數(shù)。重合度系數(shù)可按下式計(jì)算,即
==0.25+
i.螺旋角系數(shù)。螺旋角系數(shù)查得=1
通過查表或采用相應(yīng)公式計(jì)算,可得到取值與外嚙合不同的系數(shù)為,,,,,=2.65,,=1.03和。代入上式則得:
=(N/mm2)
取N/mm2
(N/mm2)
可見,,故b-c齒輪副滿足齒根彎曲強(qiáng)度條件。
e-c齒輪副只需要校核內(nèi)齒輪e的齒根彎曲強(qiáng)度,即仍按以上公式計(jì)算和。仿上,與內(nèi)齒輪b不同的系數(shù)為:
和=0.68。代入上式,則得
=98(N/mm2)
因N/mm2,取N/mm2
(N/mm2)
3齒輪傳動(dòng)的回差分析
可見,,故e-c齒輪副滿足彎曲強(qiáng)度條件。
3齒輪傳動(dòng)的回差分析
齒輪增速裝置是風(fēng)力發(fā)電系統(tǒng)中的重要組成部分。我國(guó)電力系統(tǒng)的頻率要求為50HZ,因此要求該系統(tǒng)由較高的傳動(dòng)精度。傳動(dòng)誤差是影響傳動(dòng)精度的主要因素之一,而影響傳動(dòng)精度的誤差包括兩類,一類是單向傳動(dòng)誤差(簡(jiǎn)稱傳動(dòng)誤差),另一類是回城誤差(簡(jiǎn)稱1,空回或空城誤差)。回差會(huì)造成輸入軸在相角上的滯后,使系統(tǒng)的穩(wěn)定裕度減小,影響系統(tǒng)的動(dòng)態(tài)品質(zhì),是系統(tǒng)在單位階躍信號(hào)作用下過渡時(shí)間加長(zhǎng),震蕩次數(shù)增多?;夭钸_(dá)到一定值時(shí),系統(tǒng)甚至?xí)霈F(xiàn)自振,稱為“齒隙震蕩”,這時(shí)系統(tǒng)就不再穩(wěn)定了,所以對(duì)于齒輪傳動(dòng)的回差分析是保證整個(gè)系統(tǒng)的穩(wěn)定所必不可少的。
3.1側(cè)隙與回差的關(guān)系及來源
在齒輪傳動(dòng)中,齒輪副的側(cè)隙能夠保持齒輪齒面的正常潤(rùn)滑,消除由于動(dòng)力引起的非工作齒輪面的撞擊而引起齒面?zhèn)鲃?dòng)過程中的燒傷、卡死、甚至失效。與此同時(shí),側(cè)隙赫爾回差又有直接的關(guān)系,也是影響回差的主要因素。齒輪的誤差對(duì)傳動(dòng)性能(傳遞運(yùn)動(dòng)的準(zhǔn)確性、工作的平穩(wěn)性、載荷分布的均勻性)有很大的影響。因此,我們要分析側(cè)隙的類型,并分析回差的來源,為減小回差打下基礎(chǔ)。
3.1.1側(cè)隙的分類
兩個(gè)相配齒輪的工作齒面接觸是,會(huì)在兩個(gè)非工作齒輪間形成間隙,有時(shí)節(jié)圓上的齒槽寬度會(huì)超過相嚙合的齒輪厚,這些都會(huì)形成側(cè)隙。[10]
側(cè)隙有三種不同的度量方式:
(1)沿分度圓度量
圓周側(cè)隙——裝配好的齒輪副,當(dāng)一個(gè)齒輪固定時(shí),另一個(gè)齒輪的圓周晃動(dòng)量,用jt表示。以分度圓上弧長(zhǎng)計(jì)值。
(2)沿嚙合線度量
法相側(cè)隙——裝配好的齒輪副,當(dāng)工作齒輪面接觸是,非工作齒面間的最小值,用jh表示。
(3)沿軸線中心距度量
徑向側(cè)隙——將兩個(gè)相配齒輪的中心距縮小,直到左側(cè)和右側(cè)的齒面都接觸是,這個(gè)縮小的量即為徑向側(cè)隙,用jr表示。詳見圖3.1所示。
圖3.1齒輪副側(cè)隙
3.1.2不同側(cè)隙的關(guān)系
不同嚙合形式的齒輪側(cè)隙的關(guān)系如圖3.2所示。
圖3.2各種側(cè)隙的關(guān)系
可以得到側(cè)隙間的關(guān)系如下:
式中:αn—齒形角,分度圓壓力角。
法向側(cè)隙jn通常是用鉛筆或者塞尺測(cè)量,應(yīng)用于小模數(shù)和精密齒輪時(shí),測(cè)量不便,讀數(shù)精度不高;而圓周側(cè)隙jt的測(cè)量,可以將齒輪副的一個(gè)齒輪固定,在另一個(gè)齒輪的分度圓切線方向上放置一個(gè)百分表。
圓周側(cè)隙jt是一個(gè)線值,相對(duì)于兩個(gè)相配齒輪,該值大小相同。而回差是一個(gè)角度值,它的大小與分度圓半徑有關(guān)。因此同一圓周側(cè)隙換算到不同的齒輪軸上所得到的回差大小不同。所以在具體分析系統(tǒng)的回差指標(biāo)的時(shí)候,應(yīng)該說明是折算到哪根軸上的回差。本文中,無特殊說明都是折算到從動(dòng)輪上的。[11]
3.3本章小結(jié)
回差是衡量齒輪傳動(dòng)精度的一項(xiàng)重要標(biāo)準(zhǔn),系統(tǒng)的穩(wěn)定性和靈敏性很大程度取決于回差的大小。因此,本章主要針對(duì)第二章所確定的增速箱結(jié)構(gòu),首先分析了齒輪傳動(dòng)中造成的回差的三類來源,然后詳細(xì)計(jì)算了各級(jí)傳動(dòng)中的回差大小,驗(yàn)證結(jié)構(gòu)確定精度分配的正確性,并得到系統(tǒng)的總回差為85.387arcmin,最后提出提高一級(jí)傳動(dòng)精度,提高齒輪的安裝和加工精度,采用齒輪結(jié)構(gòu),設(shè)計(jì)均載機(jī)構(gòu)等措施減小系統(tǒng)回城誤差。
4 中心輪和行星輪齒面接觸分析
4 中心輪和行星輪齒面接觸分析
齒輪的接觸疲勞強(qiáng)度是評(píng)價(jià)齒輪承載能力的一個(gè)重要尺度。齒面在單、雙齒嚙合交替處的接觸應(yīng)力最大,因而在本文中,主要考慮單、雙嚙合交替處的接觸應(yīng)力。隨著計(jì)算機(jī)技術(shù)的發(fā)展,目前已廣泛采用有限元法對(duì)齒輪傳動(dòng)強(qiáng)度進(jìn)行分析計(jì)算,因?yàn)橛邢拊芎芎玫靥幚睚X輪受載后嚙合接觸面力學(xué)和邊界條件,從而可對(duì)齒輪傳動(dòng)系統(tǒng)作更為準(zhǔn)確的應(yīng)力變形分析。[12]
4.1齒輪接觸有限元算法
ABAQUS被廣泛地認(rèn)為是功能最強(qiáng)的有限元軟件,可以分析復(fù)雜的固體力學(xué)和結(jié)構(gòu)力學(xué)系統(tǒng),特別是能夠駕馭非常龐大復(fù)雜的問題和模擬高度非線性問題。優(yōu)秀的分析能力和模擬復(fù)雜系統(tǒng)的可靠性使得ABAQUS被各國(guó)的工業(yè)和研究機(jī)構(gòu)廣泛采用,其產(chǎn)品也在大量的高科技產(chǎn)品研究中發(fā)揮著巨大的作用。
ABAQUS中計(jì)算接觸非線性問題有罰函數(shù)法、拉格朗日乘子法與增強(qiáng)的拉格朗日乘子法。罰函數(shù)法的基本原理是在原目標(biāo)函數(shù)中加上一個(gè)罰(障礙)函數(shù),而得到一個(gè)增廣目標(biāo)函數(shù),接觸分析中也就是接觸剛度因子FKN。在接觸對(duì)之間設(shè)置一個(gè)壓縮剛度非常大而拉伸剛度為零的彈簧,當(dāng)接觸體間距離接近時(shí)彈簧就會(huì)停止它們相互嵌入,這是基于物理上的解釋,其中的彈簧剛度和接觸剛度稱為罰函數(shù),這種施加接觸協(xié)調(diào)條件的方法為罰函數(shù)法。接觸剛度(記為k)越大,接觸表面的浸入越少,然而,若該值太大,會(huì)導(dǎo)致收斂困難。因此罰函數(shù)法在理論上是可行的,在實(shí)際計(jì)算中很難把握罰因子M的取值。最有效的方式就是進(jìn)行試驗(yàn)然后根據(jù)實(shí)驗(yàn)結(jié)果來選取該罰值,基于這個(gè)原因,本文不采用這個(gè)本方法進(jìn)行齒面接觸分析。拉格朗日乘子法,是通過增加一個(gè)附加自由度(接觸壓力),以滿足不浸入條件。將拉格朗日算法和罰函數(shù)方法結(jié)合起來,施加接觸協(xié)調(diào)條件稱為增強(qiáng)的拉格朗日算法。增強(qiáng)的拉格朗日法對(duì)接觸剛度系數(shù)具有較小的敏感性。
有限元分析方法使用牛頓-拉普森平衡迭代算法,迫使每個(gè)載荷增量的末端解達(dá)到平衡收斂(容限范圍內(nèi))。求解前,采用完全的NR方法估算殘差矢量,然后使用非平衡載荷進(jìn)行線性求解,核查收斂性,如果不收斂則重新估算非平衡載荷,修改剛度矩陣,重新計(jì)算直到收斂。
接觸問題是一種高度非線性行為,需要較大的計(jì)算資源,而且目前,接觸分析方法和理論還不太健全,軟件也沒有提供專門的方法使得利用有限元方法進(jìn)行接觸分析有很大的難度。為了進(jìn)行有效的計(jì)算,建立和真實(shí)模型盡可能相符合的
模型,設(shè)定接近于真實(shí)情況的參數(shù)是必須的,在本分析中,選用非線性功能強(qiáng)大的ABAQUS軟件進(jìn)行單個(gè)齒的三維接觸分析。
4.2接觸分析
4.2.1齒輪接觸有限元模型
對(duì)行星圓柱齒輪進(jìn)行有限元分析時(shí),首先要對(duì)齒輪建立力學(xué)模型并進(jìn)行離散化處理,提供各單元和節(jié)點(diǎn)的坐標(biāo)、編號(hào)、載荷及約束等數(shù)據(jù)。計(jì)算表明:有限元模型的建立合理與否是影響接觸邊界迭代求解收斂的關(guān)鍵。
精確求解齒輪嚙合每一瞬時(shí)的齒間載荷分配和齒向載荷分布是精確分析齒輪強(qiáng)度的基礎(chǔ)?,F(xiàn)有的計(jì)算方法都是建立在某種假定接觸區(qū)形狀的基礎(chǔ)上,按赫茲(Hertz)的接觸理論進(jìn)行求解,這與實(shí)際接觸情況有所偏離。圓柱齒輪的瞬時(shí)接觸區(qū)形狀及壓力分布是典型的接觸非線性問題,有限元法可以很好地解決。齒輪在傳動(dòng)過程中,隨著嚙合位置的不斷變化,沿齒向輪齒剛度和承載位置不斷變化,齒間載荷的分配情況也是變化的。[13]
由于受到計(jì)算機(jī)條件的限制,在本課題研究中,采用單個(gè)齒接觸模型進(jìn)行分析。首先利用PRO/E軟件進(jìn)行單個(gè)齒的建模,并進(jìn)行裝配,然后存為.x_t格式的文件,最后導(dǎo)入ABAQUS 中進(jìn)行三維的接觸分析;也可以利用PRO/E將裝配圖轉(zhuǎn)化成AutoCAD平面圖,并在AutoCAD中建立面域存為SAT格式的文件導(dǎo)入ANSYS中進(jìn)行二維分析。單個(gè)齒的裝配圖如圖4.1和圖4.2所示,有限元模型如圖4.3。
圖4.1行星輪a-c三維接觸模型 圖4.2行星輪a-c二維接觸模型
圖4.3中心輪和行星輪的有限模型
4.2.2齒輪副齒面接觸應(yīng)力求解
ABAQUS軟件和ANSYS軟件一樣,都有前處理模塊,求解器模塊和后處理模塊,而且功能相似,所以在這里不再贅述。這里將所要選擇的材料和接觸對(duì)的建立過程以及材料參數(shù)的設(shè)定簡(jiǎn)單的敘述一下。該行星輪系選擇的材料為優(yōu)質(zhì)合金鋼,泊松比μ=0.3,在三維分析中,利用 ABAQUS 軟件中的三個(gè)接觸分析模塊(INTERACTION,CONSTRAINT,CONNECTOR)中的INTERACTION模塊,選擇四面體單元C3D4結(jié)構(gòu)單元建立兩個(gè)面(SLAVESURFACE和MASTER),由于沒有相對(duì)滑動(dòng),因此切向定義的為FRICTIONLESS,法向定義的是‘HARD’CONTACT。[14]
在接觸分析中,為了能夠使接觸迭代計(jì)算能夠更好的進(jìn)行和保證分析結(jié)果的可靠性,需要施加正確地約束和建立合適的接觸對(duì),并設(shè)置合理的接觸參數(shù)和單元屬性及求解參數(shù)。兩輪之間建立接觸對(duì)如下:中心輪為目標(biāo)面,行星輪為接觸面。行星輪繞著中心輪轉(zhuǎn)動(dòng)。
4.2.3ABAQUS三維接觸分析結(jié)果
在該接觸分析的建模、分網(wǎng)、加載、求解過程中產(chǎn)生了大量的數(shù)據(jù),不能夠馬上看到求解結(jié)果,要進(jìn)入后處理模塊查看分析結(jié)果,在ABAQUS/CAE的Visualization(可視化)模塊(也可以授權(quán)為ABAQUS/Viewer)允許用戶應(yīng)用不同的方法觀察圖形化的結(jié)果,該分析中,進(jìn)入后處理器能夠看到兩個(gè)接觸的齒輪的應(yīng)力和變形圖。
利用ANSYS軟件的非線性分析模塊進(jìn)行分析,在進(jìn)行迭代過程中常常出現(xiàn)不收斂的情況。利用ABAQUS軟件雖然比用ANSYS軟件的收斂性好多了,但是仍然會(huì)出現(xiàn)不收斂的情況,因此要不斷的重新設(shè)置參數(shù)和劃分網(wǎng)格以致模型能夠收斂,經(jīng)過多次反復(fù)。得到變形、接觸應(yīng)力圖如圖所示:
圖4.4兩個(gè)齒輪的接觸應(yīng)力云變圖
從接觸應(yīng)力云變圖中可以看出行星輪的接觸應(yīng)力比中心輪的接觸應(yīng)力大,它的接觸應(yīng)力為520.6Mpa,而數(shù)值計(jì)算所得到的接觸應(yīng)力為514.148 MPa,有一定的誤差,這里產(chǎn)生的差距主要是由于模型的建立和導(dǎo)入時(shí)引起了模型信息的丟失,這樣一來,利用有限元的方法進(jìn)行計(jì)算所得到的結(jié)果和理論計(jì)算的有一定的誤差,所以本文計(jì)算的接觸應(yīng)力結(jié)果已經(jīng)比較精確,如果再經(jīng)過試驗(yàn)數(shù)據(jù)調(diào)整各接觸參數(shù)后,接觸應(yīng)力結(jié)果會(huì)有更好的計(jì)算精度。所得的結(jié)果和理論計(jì)算結(jié)果相符,同時(shí)也驗(yàn)證了該結(jié)構(gòu)的合理性。而且從變形圖中能夠得到兩個(gè)齒輪接觸時(shí)的變形是毫米級(jí)的。[15]
4.3本章小結(jié)
比較ANSYS軟件和ABAQUS軟件的接觸分析功能,選擇 ABAQUS的接觸分析模塊(INTERACTION,CONSTRAINT,CONNECTOR)中INTERACTION模塊進(jìn)行行星齒輪傳動(dòng)副中a-c副的三維單個(gè)齒接觸分析,從分析的結(jié)果可以看出行星輪的接觸應(yīng)力比中心輪的接觸應(yīng)力大,它的接觸應(yīng)力為520.6MPa,而數(shù)值計(jì)算所得到的接觸應(yīng)力為514.148MPa,數(shù)值計(jì)算的許用應(yīng)力值為652.39MPa,總體來說該分析結(jié)果和理論計(jì)算很貼近,說明了結(jié)構(gòu)的合理性,同時(shí)得到接觸變形為毫米級(jí)的。
從分析的結(jié)果可知行星輪沿齒廓線的應(yīng)力分布最大值點(diǎn)并不在接觸處,而是在接觸處向齒根方向的某一點(diǎn)處。中心輪的最大應(yīng)力值點(diǎn)為接觸處附近。
5 總結(jié)
5 總結(jié)
此次畢業(yè)設(shè)計(jì)是我們從大學(xué)畢業(yè)生走向未來工作崗位重要的一步。從最初的選題,開題到計(jì)算、繪圖直到完成設(shè)計(jì)。期間,查找資料,老師指導(dǎo),與同學(xué)交流,反復(fù)修改圖紙,每一個(gè)過程都是對(duì)自己能力的一次檢驗(yàn)和充實(shí)。
在設(shè)計(jì)的同時(shí)也遇到了很多問題,由于長(zhǎng)時(shí)間沒有這種實(shí)踐,上手的時(shí)候有點(diǎn)生疏。首先要做的是查閱資料,之后通過所得資料確定傳動(dòng)方案。在設(shè)計(jì)計(jì)算時(shí),很多公式找不到,但與老師同學(xué)交流之后,計(jì)算工作能夠較快的完成了。在制圖的時(shí)候,制圖軟件的很多命令都不知道怎么用,經(jīng)過幾天的摸索,才堪堪能運(yùn)用其一些基本的用法。圖紙做好的時(shí)候,經(jīng)過老師多次指導(dǎo)和反復(fù)修改,才達(dá)到老師的要求。
通過這次實(shí)踐,我了解了3Z(II)型行星齒輪增速器的用途及工作原理,熟悉了行星齒輪增速器的設(shè)計(jì)步驟,可知行星齒輪增速器有著體積小、質(zhì)量小、結(jié)構(gòu)緊湊和傳動(dòng)效率高等特點(diǎn),但由于行星齒輪增速器傳動(dòng)比大,力矩就比其它增速器結(jié)構(gòu)小,行星齒輪增速器自鎖角大止退性差而不適合啟動(dòng)用。
畢業(yè)設(shè)計(jì)收獲很多,比如學(xué)會(huì)了查找相關(guān)資料相關(guān)標(biāo)準(zhǔn),分析數(shù)據(jù),提高了自己的繪圖能力,懂得了許多經(jīng)驗(yàn)公式的獲得是前人不懈努力的結(jié)果。由于時(shí)間倉(cāng)促,自己專業(yè)基礎(chǔ)的很多不足,很多地方會(huì)有疏漏,希望老師能給予指正。
參考文獻(xiàn)
參考文獻(xiàn)
[1] 璞良貴,紀(jì)名剛主編.機(jī)械設(shè)計(jì).第七版.北京:高等教育出版社,2001
[2] 王昆主編.機(jī)械設(shè)計(jì)課程設(shè)計(jì).武漢:華中理工大學(xué)出版社,1922
[3] 盧頌峰、王大康主編.機(jī)械設(shè)計(jì)課程設(shè)計(jì).北京:北京工業(yè)大學(xué)出版社,