高考數(shù)學(xué) 2.3 函數(shù)的奇偶性與周期性課件.ppt
《高考數(shù)學(xué) 2.3 函數(shù)的奇偶性與周期性課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 2.3 函數(shù)的奇偶性與周期性課件.ppt(74頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第三節(jié) 函數(shù)的奇偶性與周期性,【知識(shí)梳理】 1.必會(huì)知識(shí) 教材回扣 填一填 (1)函數(shù)的奇偶性:,f(-x)=f(x),y軸,f(-x)=-f(x),原點(diǎn),(2)周期性: ①周期函數(shù):對(duì)于函數(shù)y=f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定 義域內(nèi)的任何值時(shí),都有____________,那么就稱函數(shù)y=f(x)為周期 函數(shù),稱T為這個(gè)函數(shù)的周期. ②最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個(gè)_____的 正數(shù),那么這個(gè)最小正數(shù)就叫做f(x)的最小正周期.,f(x+T)=f(x),最小,2.必備結(jié)論 教材提煉 記一記 (1)函數(shù)奇偶性常用結(jié)論: ①如果函數(shù)f(x)是偶函數(shù),那么f(x)=f(|x|). ②奇函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相反的單調(diào)性. ③在公共定義內(nèi)有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.,(2)函數(shù)周期性常用結(jié)論: 對(duì)f(x)定義域內(nèi)任一自變量的值x: ①若f(x+a)=-f(x),則T=2a(a0); ②若f(x+a)= ,則T=2a(a0); ③若f(x+a)= ,則T=2a(a0).,3.必用技法 核心總結(jié) 看一看 (1)常用方法:判斷函數(shù)奇偶性的方法,應(yīng)用函數(shù)奇偶性、周期性的方法. (2)數(shù)學(xué)思想:數(shù)形結(jié)合思想、分類討論思想、轉(zhuǎn)化與化歸思想.,【小題快練】 1.思考辨析 靜心思考 判一判 (1)函數(shù)具備奇偶性的必要條件是函數(shù)的定義域在x軸上是關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的.( ) (2)若函數(shù)f(x)為奇函數(shù),則一定有f(0)=0.( ) (3)若函數(shù)y=f(x+a)是偶函數(shù),則函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱.( ) (4)若函數(shù)y=f(x+b)是奇函數(shù),則函數(shù)y=f(x)關(guān)于點(diǎn)(b,0)中心對(duì)稱.( ),【解析】(1)正確.根據(jù)函數(shù)奇偶性的定義,f(x),f(-x)必須同時(shí)有意 義,故具備奇偶性的函數(shù)首先其定義域關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,但定義域 關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的函數(shù)未必具有奇偶性. (2)錯(cuò)誤.若函數(shù)f(x)在點(diǎn)x=0處沒有定義,如f(x)= ,則f(0)不存在.,(3)正確.函數(shù)y=f(x+a)關(guān)于直線x=0對(duì)稱,則函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱. (4)正確.函數(shù)y=f(x+b)關(guān)于點(diǎn)(0,0)中心對(duì)稱,則函數(shù)y=f(x)關(guān)于點(diǎn)(b,0)中心對(duì)稱. 答案:(1)√ (2)× (3)√ (4)√,2.教材改編 鏈接教材 練一練 (1)(必修1P39B組T3改編)若f(x)是偶函數(shù)且在(0,+∞)上為增函數(shù),則函數(shù)f(x)在(-∞,0)上為 . 【解析】因?yàn)閒(x)是偶函數(shù),所以f(x)關(guān)于y軸對(duì)稱,又因?yàn)閒(x)在(0,+∞)上為增函數(shù),結(jié)合圖象可知,函數(shù)f(x)在(-∞,0)上為減函數(shù). 答案:減函數(shù),(2)(必修1P39A組T6改編)設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lg x,則滿足f(x)0的x的取值范圍是 . 【解析】如圖所示, 由f(x)為奇函數(shù)知:f(x)0的x的取值范圍為(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞),(3)(必修1P39A組T6改編)設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí), f(x)=2x(1-x),則 = . 【解析】依題意,得 答案:,3.真題小試 感悟考題 試一試 (1)(2014·湖南高考)下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0) 上單調(diào)遞增的是( ) A.f(x)= B.f(x)=x2+1 C.f(x)=x3 D.f(x)=2-x,【解析】選A.,(2)(2015·石家莊模擬)已知f(x)是定義在R上的偶函數(shù),且對(duì)任意x∈R都有f(x+4)=f(x)+f(2),則f(2014)等于( ) A.0 B.3 C.4 D.6,【解析】選A.因?yàn)閒(x)是定義在R上的偶函數(shù), 所以f(-2)=f(2). 所以f(-2+4)=f(2)=f(-2)+f(2)=2f(2), 所以f(2)=0. f(2014)=f(4×503+2)=f(2)=0.,(3)(2014·新課標(biāo)全國(guó)卷Ⅱ)已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,f(2)=0,若f(x-1)0,則x的取值范圍是 . 【解析】由題可知,當(dāng)-20,f(x-1)的圖象是由f(x)的圖象向右平移一個(gè)單位得到的,若f(x-1)0,則-1x3. 答案:(-1,3),考點(diǎn)1 函數(shù)奇偶性的判斷 【典例1】(1)(2014·廣東高考)下列函數(shù)為奇函數(shù)的是( ) (本題源于教材必修1P35例5) A.2x- B.x3sin x C.2cos x+1 D.x2+2x,(2)判斷下列函數(shù)的奇偶性 ①f(x)=|x+1|-|x-1|; ②f(x)= ③f(x)= ④f(x)=(x-1) ,x∈(-1,1).,【解題提示】(1)奇函數(shù)滿足函數(shù)關(guān)系式f(-x)=-f(x).當(dāng)在原點(diǎn)處有定義時(shí),f(0)=0. (2)先求出定義域,看定義域是否關(guān)于原點(diǎn)對(duì)稱,在定義域內(nèi),解析式帶絕對(duì)值號(hào)的先化簡(jiǎn),計(jì)算f(-x),再判斷f(-x)與f(x)之間的關(guān)系.,【規(guī)范解答】(1)選A.幾個(gè)函數(shù)的定義域都關(guān)于原點(diǎn)對(duì)稱,在原點(diǎn)處有 定義,故應(yīng)滿足f(0)=0,此時(shí)2cos x+1和x2+2x不符合題意;又2x- 滿 足f(-x)=-f(x),但x3sin x滿足f(-x)=f(x),所以只有f(x)=2x- 是 奇函數(shù).,(2)①函數(shù)的定義域x∈(-∞,+∞),關(guān)于原點(diǎn)對(duì)稱. 因?yàn)閒(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x), 所以f(x)=|x+1|-|x-1|是奇函數(shù). ②由 得x=±3. 所以f(x)的定義域?yàn)閧-3,3},關(guān)于原點(diǎn)對(duì)稱. 又f(3)+f(-3)=0,f(3)-f(-3)=0. 即f(x)=±f(-x). 所以f(x)既是奇函數(shù),又是偶函數(shù).,③去掉絕對(duì)值符號(hào),根據(jù)定義判斷. 由 得 故f(x)的定義域?yàn)閇-1,0)∪(0,1],關(guān)于原點(diǎn)對(duì)稱,且有x+20.從而有 f(x)= 這時(shí)有f(-x)= =-f(x), 故f(x)是奇函數(shù).,④已知f(x)的定義域?yàn)?-1,1), 其定義域關(guān)于原點(diǎn)對(duì)稱. 因?yàn)閒(x)= 所以f(-x)= =f(x). 即f(-x)=f(x),所以f(x)是偶函數(shù).,【易錯(cuò)警示】解答本題(2)有三點(diǎn)容易出錯(cuò): (1)忽視函數(shù)的定義域. (2)對(duì)函數(shù)奇偶性概念把握不準(zhǔn). (3)存在既是奇函數(shù),又是偶函數(shù)的情形,對(duì)②不知如何判斷.,【互動(dòng)探究】本例(2)④題中若將條件“x∈(-1,1)”去掉,函數(shù)的奇 偶性如何? 【解析】要使f(x)有意義,則 ≥0,解得-1≤x1,顯然f(x)的定 義域不關(guān)于原點(diǎn)對(duì)稱,所以f(x)既不是奇函數(shù),也不是偶函數(shù).,【規(guī)律方法】判斷函數(shù)的奇偶性的兩種重要方法 (1)定義法: (2)圖象法:函數(shù)是奇(偶)函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)(y軸)對(duì)稱.,【變式訓(xùn)練】下列函數(shù): ①f(x)=x3-x; ②f(x)=ln(x+ ); ③f(x)= (a0且a≠1); ④f(x)= ⑤f(x)= 其中有 個(gè)奇函數(shù).,【解析】①f(x)=x3-x的定義域?yàn)镽, 又f(-x)=(-x)3-(-x)=-(x3-x)=-f(x), 所以f(x)=x3-x是奇函數(shù). ②由x+ x+|x|≥0知f(x)=ln(x+ )的定義域?yàn)镽, 又f(-x)= =-ln(x+ )=-f(x),所以f(x)為奇函數(shù).,③f(x)定義域?yàn)镽,且f(-x)= =-f(x), 所以f(x)為奇函數(shù). ④由 0得-1x1, f(x)=lg 的定義域?yàn)?-1,1), 又f(-x)= 所以f(x)為奇函數(shù).,⑤函數(shù)f(x)的定義域?yàn)?-∞,0)∪(0,+∞),其關(guān)于原點(diǎn)對(duì)稱,并且有當(dāng)x0時(shí),-x0, f(-x)=(-x)[1-(-x)]=-x(1+x)=f(x), 所以函數(shù)f(x)為偶函數(shù).所以①②③④⑤中共有4個(gè)奇函數(shù). 答案:4,【加固訓(xùn)練】1.設(shè)Q為有理數(shù)集,函數(shù)f(x)= g(x)= ,則函數(shù)h(x)=f(x)·g(x)( ) A.是奇函數(shù)但不是偶函數(shù) B.是偶函數(shù)但不是奇函數(shù) C.既是奇函數(shù)也是偶函數(shù) D.既不是偶函數(shù)也不是奇函數(shù),【解析】選A.因?yàn)楫?dāng)x∈Q時(shí),-x∈Q, 所以f(-x)=f(x)=1;當(dāng)x∈?RQ時(shí),-x∈?RQ, 所以f(-x)=f(x)=-1. 綜上,對(duì)任意x∈R,都有f(-x)=f(x), 故函數(shù)f(x)為偶函數(shù). 因?yàn)間(-x)= 所以函數(shù)g(x)為奇函數(shù).,所以h(-x)=f(-x)·g(-x)=f(x)·[-g(x)] =-f(x)g(x)=-h(x), 所以函數(shù)h(x)=f(x)·g(x)是奇函數(shù). 所以h(1)=f(1)·g(1)= ,h(-1)=f(-1)·g(-1)= 1× h(-1)≠h(1), 所以函數(shù)h(x)不是偶函數(shù).,2.函數(shù)f(x)的定義域?yàn)镽,若f(x+1)與f(x-1)都是奇函數(shù),則( ) A.f(x)是偶函數(shù) B.f(x)是奇函數(shù) C.f(x)=f(x+2) D.f(x+3)是奇函數(shù),【解析】選D.f(x+1)是奇函數(shù),則有f(-x+1)=-f(x+1); ① f(x-1)是奇函數(shù),則有f(-x-1)=-f(x-1); ② 在①式中用x+1代替x,則有f[-(x+1)+1]=-f[(x+1)+1], 即f(-x)=-f(x+2); 在②式中用x-1代替x,則有f[-(x-1)-1]=-f[(x-1)-1], 即f(-x)=-f(x-2),,則f(x-2)=f(x+2),可知周期為4, 則f(x-1)=f(x+3),f(-x-1)=f(-x+3). 由②式:f(-x-1)=-f(x-1),可得f(-x+3)=-f(x+3), 所以f(x+3)是奇函數(shù).,考點(diǎn)2 函數(shù)周期性及其應(yīng)用 【典例2】(1)(2015·南陽(yáng)模擬)函數(shù)f(x)是周期為4的偶函數(shù),當(dāng) x∈[0,2]時(shí),f(x)=x-1,則不等式xf(x)0在[-1,3]上的解集為( ) A.(1,3) B.(-1,1) C.(-1,0)∪(1,3) D.(-1,0)∪(0,1) (2)(2014·四川高考)設(shè)f(x)是定義在R上的周期為2的函數(shù),當(dāng)x∈ [-1,1)時(shí),f(x)= 則 = .,【解題提示】(1)根據(jù)函數(shù)的周期性、奇偶性及在x∈[0,2]上的解析 式畫出函數(shù)的圖象,結(jié)合函數(shù)圖象求解. (2)利用周期得 再求值即得.,【規(guī)范解答】(1)選C.f(x)的圖象如圖. 當(dāng)x∈[-1,0)時(shí),由xf(x)0得x∈(-1,0); 當(dāng)x∈[0,1)時(shí),由xf(x)0得x∈?. 當(dāng)x∈[1,3]時(shí),由xf(x)0得x∈(1,3). 故x∈(-1,0)∪(1,3).,(2)因?yàn)楹瘮?shù)f(x)是定義在R上的周期為2的函數(shù), 所以 答案:1,【規(guī)律方法】函數(shù)周期性的判定與應(yīng)用 (1)判定:判斷函數(shù)的周期性只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T. (2)應(yīng)用:根據(jù)函數(shù)的周期性,可以由函數(shù)局部的性質(zhì)得到函數(shù)的整體性質(zhì),在解決具體問(wèn)題時(shí),要注意結(jié)論:若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期.,【變式訓(xùn)練】(2015·南京模擬)已知f(x)是定義在R上的偶函數(shù),并 且f(x+2)= ,當(dāng)2≤x≤3時(shí),f(x)=x,則f(105.5)= . 【解析】由已知,可得f(x+4)=f((x+2)+2) 故函數(shù)的周期為4. 所以f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5).,因?yàn)?.5∈[2,3],由題意,得f(2.5)=2.5. 所以f(105.5)=2.5. 答案:2.5,【加固訓(xùn)練】1.若f(x)是R上周期為5的奇函數(shù),且滿足f(1)=1,f(2)=2,則f(3)-f(4)等于( ) A.-1 B.1 C.-2 D.2 【解析】選A.由f(x)是R上周期為5的奇函數(shù)知 f(3)=f(-2)=-f(2)=-2, f(4)=f(-1)=-f(1)=-1, 所以f(3)-f(4)=-1.,2.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當(dāng)-3≤x-1時(shí),f(x)= -(x+2)2;當(dāng)-1≤x3時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(2015)等 于( ) A.335 B.336 C.1678 D.2012,【解析】選B.因?yàn)閒(x+6)=f(x),所以f(x)是以6為周期的函數(shù). 因?yàn)楫?dāng)-3≤x-1時(shí),f(x)=-(x+2)2; 當(dāng)-1≤x3時(shí),f(x)=x, 所以f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1, f(6)=f(0)=0,,所以f(1)+f(2)+…+f(6)=1, 所以f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12)=… =f(2005)+f(2006)+…+f(2010)=1, 所以f(1)+f(2)+…+f(2010)=1× =335. 而f(2011)+f(2012)+f(2013)+f(2014)+f(2015) =f(1)+f(2)+f(3)+f(4)+f(5)=1+2-1+0-1=1. 所以f(1)+f(2)+f(3)+…+f(2015)=335+1=336.,3.定義在R上的偶函數(shù)f(x)滿足f(x+2)·f(x)=1對(duì)于x∈R恒成立, 且f(x)0,則f(119)= . 【解析】因?yàn)閒(x+2)= ,所以f(x+4)=f(x+2+2)= =f(x), 所以f(x)為周期函數(shù),且周期為4, 又因?yàn)閒(x)為偶函數(shù),所以f(-x)=f(x),所以f(119)=f(29×4+3)=f(3)=f(3-4)=f(-1)=f(1),,又因?yàn)閒(-1+2)= 所以f(1)·f(-1)=1 即f2(1)=1,因?yàn)閒(x)0, 所以f(1)=1,所以f(119)=1. 答案:1,考點(diǎn)3 函數(shù)奇偶性的應(yīng)用 知·考情 函數(shù)的奇偶性、周期性以及單調(diào)性是函數(shù)的三大性質(zhì),在高考中常常將它們綜合在一起命制試題,其中奇偶性多與單調(diào)性相結(jié)合,而周期性常與抽象函數(shù)相結(jié)合,并以結(jié)合奇偶性求函數(shù)值為主.多以選擇題、填空題形式出現(xiàn).,明·角度 命題角度1:已知函數(shù)的奇偶性求函數(shù)的值 【典例3】(2014·湖南高考)已知f(x),g(x)分別是定義在R上的偶 函數(shù)和奇函數(shù),且f(x)-g(x)=x3+x2+1,則f(1)+g(1)=( ) A.-3 B.-1 C.1 D.3 【解題提示】由奇函數(shù)和偶函數(shù)的定義,把x=-1代入即可. 【規(guī)范解答】選C.把x=-1代入已知,得f(-1)-g(-1)=1, 所以f(1)+g(1)=1.,命題角度2:奇函數(shù)、偶函數(shù)圖象對(duì)稱性的應(yīng)用 【典例4】(2015·杭州模擬)已知定義在R上的奇函數(shù)f(x)和偶函數(shù) g(x),當(dāng)x0時(shí),f(x)=- ,當(dāng)x≥0時(shí),g(x)=2x,則f(x)和g(x)圖象的公 共點(diǎn)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限,【解題提示】根據(jù)奇函數(shù)、偶函數(shù)圖象的對(duì)稱性分別作出f(x)與g(x)的圖象,數(shù)形結(jié)合求解. 【規(guī)范解答】選B.根據(jù)奇函數(shù)、偶函數(shù)圖象的對(duì)稱性分別作出f(x)與g(x)的圖象如圖所示, 由圖象知公共點(diǎn)在第二象限.,命題角度3:已知函數(shù)的奇偶性,求參數(shù) 【典例5】(2014·湖南高考)若f(x)=ln(e3x+1)+ax是偶函數(shù),則a= . 【解題提示】利用偶函數(shù)的定義求解.,【規(guī)范解答】方法一:由偶函數(shù)的定義得f(-x)=f(x), 即ln(e-3x+1)-ax=ln(e3x+1)+ax,-3x=2ax, a= 方法二:因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以f(1)=f(-1), 即ln(e3+1)+a=ln(e-3+1)-a, 即2a= =ln e-3=-3,所以a= 答案:,悟·技法 函數(shù)奇偶性的問(wèn)題類型及解題思路 (1)已知函數(shù)的奇偶性,求函數(shù)值:將待求值利用奇偶性轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解. (2)已知函數(shù)的奇偶性,求函數(shù)解析式中參數(shù)的值,常常利用待定系數(shù)法:利用f(x)±f(-x)=0得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對(duì)等性得參數(shù)的值或方程求解.,(3)應(yīng)用奇偶性畫圖象和判斷單調(diào)性:利用奇偶性可畫出另一對(duì)稱區(qū)間上的圖象及判斷另一對(duì)稱區(qū)間上的單調(diào)性.,通·一類 1.(2015·福州模擬)已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1) +g(1)=2,f(1)+g(-1)=4.則g(1)等于( ) A.4 B.3 C.2 D.1 【解析】選B.由已知條件變形得 解得g(1)=3.,2.(2015·西安模擬)設(shè)f(x)= 是奇函數(shù)且在原點(diǎn)處有定義, 則使f(x)0的x的取值范圍是( ) A.(-1,0) B.(0,1) C.(-∞,0) D.(-∞,0)∪(1,+∞),【解析】選A.因?yàn)楹瘮?shù)f(x)= 為奇函數(shù),且在x=0處有定義, 故f(0)=0, 即lg(2+a)=0,所以a=-1. 故函數(shù)f(x)= 令f(x)0,得0 1,解得-1x0, 即x∈(-1,0).,3.(2015·煙臺(tái)模擬)已知函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意 的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與函 數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的值是 ( ) A.0 B.0或- C.- 或- D.0或-,【解析】選D.因?yàn)閒(x+2)=f(x),所以f(x)的周期為2. 又0≤x≤1時(shí),f(x)=x2,可畫出函數(shù)y=f(x)在一個(gè)周期內(nèi)的圖象如圖. 顯然a=0時(shí),y=x與y=f(x)在[0,2]內(nèi)恰有兩個(gè)不同的公共點(diǎn).,另當(dāng)直線y=x+a與y=x2(0≤x≤1)相切時(shí)也恰有兩個(gè)不同公共點(diǎn),由題 意知y′=(x2)′=2x=1,所以x= 所以A 又A點(diǎn)在y=x+a上,所以a= 綜上可知a=0或,4.(2015·邯鄲模擬)若f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又 有f(-3)=0,則xf(x)0的解集是 . 【解析】由題意可得,函數(shù)f(x)在(-∞,0)上是增函數(shù),且f(-3)= -f(3)=0,函數(shù)的單調(diào)性示意圖如圖所示, 由不等式xf(x)0可得,x與f(x)的符號(hào)相 反,結(jié)合函數(shù)f(x)的圖象可得,不等式的解 集為(-3,0)∪(0,3). 答案:(-3,0)∪(0,3),巧思妙解1 妙用奇偶性求函數(shù)解析式中的參數(shù)值 【典例】(2015·金華模擬)若函數(shù)f(x)= 為奇函數(shù), 則a=( ),【常規(guī)解法】選A.因?yàn)閒(x)是奇函數(shù),所以f(-x)=-f(x), 因?yàn)閒(x)= 所以 所以-(1-2a)=1-2a,所以1-2a=0,所以a=,【巧妙解法】選A.方法一:由已知f(x)為奇函數(shù), 得f(-1)=-f(1), 即 所以a+1=3(1-a),解得a=,,方法二:因?yàn)?f(x)的分子是奇函數(shù), 所以要使f(x)為奇函數(shù), 則它的分母必為偶函數(shù), 所以1-2a=0,所以a= 方法三:因?yàn)?f(x)為奇函數(shù),且 不在f(x)的定義域內(nèi), 故 也不在f(x)的定義域內(nèi), 所以 -a=0,所以a=,,,【方法指導(dǎo)】利用函數(shù)的奇偶性求參數(shù)的思路:利用函數(shù)的奇偶性的定義轉(zhuǎn)化為f(-x)=±f(x),建立方程,使問(wèn)題得到解決,但是在解決選擇題、填空題時(shí)還顯得比較麻煩,為了使解題更快,可采用特殊值法求解.,【類題試解】(2015·煙臺(tái)模擬)已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù),則a= ,b= .,【常規(guī)解法】因?yàn)閒(x)為奇函數(shù),所以f(-x)=-f(x), 又f(x)= 所以 即 左、右對(duì)照得a=2,b=1. 答案:2 1,【巧妙解法】由f(0)=0,得b=1,再由f(-1)=-f(1),得 解得a=2. 答案:2 1,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué) 2.3 函數(shù)的奇偶性與周期性課件 高考 數(shù)學(xué) 函數(shù) 奇偶性 周期性 課件
鏈接地址:http://www.820124.com/p-2180526.html