高考數(shù)學(xué)一輪復(fù)習(xí) 1-1集合及其運(yùn)算課件 理.ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 1-1集合及其運(yùn)算課件 理.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 1-1集合及其運(yùn)算課件 理.ppt(32頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第1講 集合及其運(yùn)算,考試要求 1.集合的含義、元素與集合的屬于關(guān)系,A級(jí)要求;2.集合之間包含與相等的含義,集合的子集,B級(jí)要求;3.并集、交集、補(bǔ)集的含義,用韋恩(Venn)圖表述集合關(guān)系,B級(jí)要求;4.求兩個(gè)簡(jiǎn)單集合的并集與交集及求給定子集的補(bǔ)集,B級(jí)要求.,知 識(shí) 梳 理 1.元素與集合 (1)集合中元素的三個(gè)特征:確定性、 、無序性. (2)元素與集合的關(guān)系是 或 關(guān)系,用 符號(hào) 或 表示. (3)集合的表示法:列舉法、 、圖示法.,互異性,屬于,不屬于,∈,?,描述法,2.集合間的基本關(guān)系,A?B,子集,3.集合的基本運(yùn)算,,,,{x|x∈A, 或x∈B},{x|x∈A, 且x∈B},{x|x∈U, 且x?A},4. 集合的運(yùn)算性質(zhì) 并集的性質(zhì): A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A? . 交集的性質(zhì): A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A? . 補(bǔ)集的性質(zhì): A∪(?UA)= ;A∩(?UA)= ;?U(?UA)= .,B?A,A?B,U,?,A,×,×,×,√,2.(2014·新課標(biāo)全國Ⅰ卷改編)已知集合M={x|-1<x<3},N={x|-2<x<1},則M∩N=________. 解析 借助數(shù)軸求解. 由圖知:M∩N=(-1,1). 答案 (-1,1),3.(2014·遼寧卷改編)已知全集U=R,A={x|x≤0},B={x|x≥1},則集合?U(A∪B)=________. 解析 借助數(shù)軸求得:A∪B={x|x≤0,或x≥1}, ∴?U(A∪B)={x|0<x<1}. 答案 {x|0<x<1},4.(蘇教版必修1P14T11改編)已知集合A={x|3≤x<7},B={x|2<x<10},則(?RA)∩B=________. 解析 ∵?RA={x|x<3,或x≥7}, ∴(?RA)∩B={x|2<x<3,或7≤x<10}. 答案 {x|2<x<3,或7≤x<10},5.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},則A∩B的元素個(gè)數(shù)為________. 解析 集合A表示的是圓心在原點(diǎn)的單位圓,集合B表示的是直線y=x,據(jù)此畫出圖象,可得圖象有兩個(gè)交點(diǎn),即A∩B的元素個(gè)數(shù)為2. 答案 2,考點(diǎn)一 集合的含義 【例1】 (1)已知集合A={0,1,2},則集合B={x-y|x∈A,y∈A}中元素的個(gè)數(shù)是________. (2)若集合A={x∈R|ax2+ax+1=0}中只有一個(gè)元素,則a=________. 解析 (1)∵x-y={-2,-1,0,1,2},∴其元素個(gè)數(shù)為5. (2)由ax2+ax+1=0只有一個(gè)實(shí)數(shù)解,可得當(dāng)a=0時(shí),方程無實(shí)數(shù)解; 當(dāng)a≠0時(shí),則Δ=a2-4a=0, 解得a=4(a=0不合題意舍去). 答案 (1)5 (2)4,規(guī)律方法 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含義,再看元素的限制條件,明白集合的類型,是數(shù)集、點(diǎn)集還是其他類型集合.(2)集合中元素的三個(gè)特性中的互異性對(duì)解題的影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗(yàn)集合中的元素是否滿足互異性.,答案 1,考點(diǎn)二 集合間的基本關(guān)系 【例2】 (1)已知集合A={x|-2≤x≤7},B={x|m+1x2m-1},若B?A,則實(shí)數(shù)m的取值范圍為__________. (2)設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(?UA)∩B=?,則m=__________. 解析 (1)當(dāng)B=?時(shí),有m+1≥2m-1,則m≤2. 當(dāng)B≠?時(shí),若B?A,如圖.,深度思考 ①你會(huì)用這些結(jié)論嗎? A∪B=A?B?A, A∩B=A?A?B, (?UA)∩B=?? B?A; ②你考慮到空集了嗎?,(2)A={-2,-1},由(?UA)∩B=?,得B?A, ∵方程x2+(m+1)x+m=0的判別式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?. ∴B={-1}或B={-2}或B={-1,-2}. ①若B={-1},則m=1; ②若B={-2},則應(yīng)有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,這兩式不能同時(shí)成立, ∴B≠{-2};,③若B={-1,-2},則應(yīng)有-(m+1)=(-1)+(-2)=-3,且 m=(-1)·(-2)=2,由這兩式得m=2. 經(jīng)檢驗(yàn)知m=1和m=2符合條件. ∴m=1或2. 答案 (1)(-∞,4] (2)1或2 規(guī)律方法 (1)空集是任何集合的子集,在涉及集合關(guān)系時(shí),必須優(yōu)先考慮空集的情況,否則會(huì)造成漏解.(2)已知兩個(gè)集合間的關(guān)系求參數(shù)時(shí),關(guān)鍵是將條件轉(zhuǎn)化為元素或區(qū)間端點(diǎn)間的關(guān)系,進(jìn)而轉(zhuǎn)化為參數(shù)所滿足的關(guān)系.常用數(shù)軸、Venn圖來直觀解決這類問題.,答案 (1)0 (2)(4,+∞),考點(diǎn)三 集合的基本運(yùn)算 【例3】 (1)(2014·新課標(biāo)全國Ⅱ卷改編)已知集合A={-2,0,2},B={x|x2-x-2=0},則A∩B=________. (2)(2014·江西卷改編)設(shè)全集為R,集合A={x|x2-9<0},B={x|-1<x≤5},則A∩(?RB)=________.,解析 (1)B={x|x2-x-2=0}={-1,2},A={-2,0,2}, ∴A∩B={2}. (2)∵A={x|x2-9<0}={x|-3<x<3}, B={x|-1<x≤5}, ∴?RB={x|x≤-1或x>5}, ∴A∩(?RB)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}. 答案 (1){2} (2)(-3,-1],規(guī)律方法 (1)一般來講,集合中的元素若是離散的,則用Venn圖表示;集合中的元素若是連續(xù)的實(shí)數(shù),則用數(shù)軸表示,此時(shí)要注意端點(diǎn)的情況.(2)運(yùn)算過程中要注意集合間的特殊關(guān)系的使用,靈活使用這些關(guān)系,會(huì)使運(yùn)算簡(jiǎn)化.,【訓(xùn)練3】 (1)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(?UA)∪B=________. (2)(2014·四川卷改編)已知集合A={x|(x+1)(x-2)≤0},集合B為整數(shù)集,則A∩B=________. 解析 (1)?UA={0,4},∴(?UA)∪B={0,2,4}. (2)∵A={x|-1≤x≤2},B為整數(shù)集, ∴A∩B={-1,0,1,2}. 答案 (1){0,2,4} (2){-1,0,1,2},微型專題 集合背景下的新定義問題 以集合為背景的新定義問題,集合只是一種表述形式,實(shí)質(zhì)上考查的是考生接受新信息、理解新情境、解決新問題的數(shù)學(xué)能力.解決此類問題,要從以下兩點(diǎn)入手: (1)正確理解創(chuàng)新定義.分析新定義的表述意義,把新定義所表達(dá)的數(shù)學(xué)本質(zhì)弄清楚,進(jìn)而轉(zhuǎn)化成熟知的數(shù)學(xué)情境,并能夠應(yīng)用到具體的解題之中,這是解決問題的基礎(chǔ).,(2)合理利用集合性質(zhì).運(yùn)用集合的性質(zhì)(如元素的性質(zhì)、集合的運(yùn)算性質(zhì)等)是破解新定義型集合問題的關(guān)鍵.在解題時(shí)要善于從題設(shè)條件給出的數(shù)式中發(fā)現(xiàn)可以使用集合性質(zhì)的一些因素,但關(guān)鍵之處還是合理利用集合的運(yùn)算與性質(zhì).,點(diǎn)撥 先理解集合的“長度”,然后求M∩N的“長度”的最小值.,點(diǎn)評(píng) 本題的難點(diǎn)是理解集合的“長度”,解題時(shí)緊扣新定義與基礎(chǔ)知識(shí)之間的相互聯(lián)系,把此類問題轉(zhuǎn)化成熟悉的問題進(jìn)行求解.,[思想方法] 1.在解題時(shí)經(jīng)常用到集合元素的互異性,一方面利用集合元素的互異性能順利找到解題的切入點(diǎn);另一方面,在解答完畢時(shí),注意檢驗(yàn)集合的元素是否滿足互異性以確保答案正確. 2.求集合的子集(真子集)個(gè)數(shù)問題,需要注意的是:首先,過好轉(zhuǎn)化關(guān),即把圖形語言轉(zhuǎn)化為符號(hào)語言;其次,當(dāng)集合的元素個(gè)數(shù)較少時(shí),常利用枚舉法解決,枚舉法不失為求集合的子集(真子集)個(gè)數(shù)的好方法,使用時(shí)應(yīng)做到不重不漏. 3.對(duì)于集合的運(yùn)算,常借助數(shù)軸、Venn圖,這是數(shù)形結(jié)合思想的又一體現(xiàn).,3.Venn圖圖示法和數(shù)軸圖示法是進(jìn)行集合交、并、補(bǔ)運(yùn)算的常用方法,其中運(yùn)用數(shù)軸圖示法要特別注意端點(diǎn)是實(shí)心還是空心.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 1-1集合及其運(yùn)算課件 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 集合 及其 運(yùn)算 課件
鏈接地址:http://www.820124.com/p-2183377.html