高考數(shù)學一輪復習 4-4 數(shù)系的擴充與復數(shù)的引入課件 文.ppt
《高考數(shù)學一輪復習 4-4 數(shù)系的擴充與復數(shù)的引入課件 文.ppt》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學一輪復習 4-4 數(shù)系的擴充與復數(shù)的引入課件 文.ppt(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第四節(jié) 數(shù)系的擴充與復數(shù)的引入,最新考綱展示 1.理解復數(shù)的基本概念. 2.理解復數(shù)相等的充要條件. 3.了解復數(shù)的代數(shù)表示形式及其幾何意義. 4.會進行復數(shù)代數(shù)形式的四則運算. 5.了解復數(shù)的代數(shù)形式的加、減運算的幾何意義.,一、復數(shù)的有關(guān)概念 1.復數(shù)的概念 形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中a,b分別是它的 和_______.若 ,則a+bi為實數(shù);若 ,則a+bi為虛數(shù);若_____________,則a+bi為純虛數(shù). 2.復數(shù)相等:a+bi=c+di? (a,b,c,d∈R). 3.共軛復數(shù):a+bi與c+di共軛? (a,b,c,d∈R).,實部,虛部,b=0,b≠0,a=0,b≠0,a=c,b=d,a=c,b+d=0,,,二、復數(shù)的幾何表示,三、復數(shù)的運算 1.復數(shù)的加、減、乘、除運算法則 設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R),則 (1)加法:z1+z2=(a+bi)+(c+di)= . (2)減法:z1-z2=(a+bi)-(c+di)= . (3)乘法:z1·z2=(a+bi)·(c+di)= .,(a+c)+(b+d)i,(a-c)+(b-d)i,(ac-bd)+(ad+bc)i,= (c+di≠0).,2.復數(shù)加法的運算定律 復數(shù)的加法滿足交換律、結(jié)合律,即對任何z1,z2,z3∈C,有z1+z2= ,(z1+z2)+z3= .,z2+z1,z1+(z2+z3),1.處理有關(guān)復數(shù)概念的問題,首先要找準復數(shù)的實部與虛部(若復數(shù)為非標準的代數(shù)形式,則應(yīng)通過代數(shù)運算化為標準代數(shù)形式),然后根據(jù)定義解題. 2.復數(shù)與復平面內(nèi)的點是一一對應(yīng)的,復數(shù)和復平面內(nèi)以原點為起點的向量也是一一對應(yīng)的,因此復數(shù)加減法的幾何 意義可按平面向量加減法理解,利用平行四邊形法則或三角形法則解決問題. 3.虛數(shù)單位i的周期性: 計算得i0=1,i1=i,i2=-1,i3=-i,繼續(xù)計算可知i具有周期性,且最小正周期為4,故有如下性質(zhì)(n∈N+): (1)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i. (2)i4n+i4n+1+i4n+2+i4n+3=0.,A.-3 B.-1 C.1 D.3,答案:D,2.實部為-2,虛部為1的復數(shù)所對應(yīng)的點位于復平面的( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:由題意知,對應(yīng)點為(-2,1),位于第二象限. 答案:B,3.(2014年高考福建卷)復數(shù)(3+2i)i等于( ) A.-2-3i B.-2+3i C.2-3i D.2+3i 解析:(3+2i)i=3i+2i2=-2+3i. 答案:B,A.1+2i B.-1+2i C.1-2i D.-1-2i,答案:B,5.(2014年高考江蘇卷)已知復數(shù)z=(5+2i)2(i為虛數(shù)單位),則z的實部為________. 解析:z=(5+2i)2=21+20i,實部為21. 答案:21,p1:|z|=2;p2:z2=2i;p3:z的共軛復數(shù)為1+i;p4:z的虛部為-1. 其中的真命題為( ) A.p2,p3 B.p1,p2 C.p2,p4 D.p3,p4,復數(shù)的概念(自主探究),A.1 B.-1 C.2 D.-2,答案 (1)C (2)A 規(guī)律方法 有關(guān)復數(shù)的概念問題,一般涉及復數(shù)的實部、虛部、模、虛數(shù)、純虛數(shù)、實數(shù)、共軛復數(shù)等,解決時,一定先看復數(shù)是否為a+bi(a,b∈R)的形式,以確定其實部和虛部.,A.-i B.i C.-1 D.1 (2)(2014年高考山東卷)已知a,b∈R,i是虛數(shù)單位.若a+i=2-bi,則(a+bi)2=( ) A.3-4i B.3+4i C.4-3i D.4+3i,復數(shù)的代數(shù)運算(師生共研),答案 (1)D (2)A (3)B,規(guī)律方法 (1)復數(shù)代數(shù)形式的運算類似于多項式的四則運算,含有虛數(shù)單位i的看作一類同類項,不含i的看作另一類同類項,分別合并即可.但需注意把i的冪寫成最簡形式.,1.(2014年高考遼寧卷)設(shè)復數(shù)z滿足(z-2i)(2-i)=5,則z=( ) A.2+3i B.2-3i C.3+2i D.3-2i,答案:A,A.M B.N C.P D.Q,復數(shù)的幾何表示(師生共研),,答案 (1)D (2)B 規(guī)律方法 判斷復數(shù)所在平面內(nèi)的點的位置的方法:首先將復數(shù)化成a+bi(a,b∈R)的形式,其次根據(jù)實部a和虛數(shù)b的符號來確定點所在的象限.,A.第一象限 B.第二象限 C.第三象限 D.第四象限,答案:A,- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學一輪復習 4-4 數(shù)系的擴充與復數(shù)的引入課件 高考 數(shù)學 一輪 復習 擴充 復數(shù) 引入 課件
鏈接地址:http://www.820124.com/p-2188973.html