高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.1.2 瞬時(shí)變化率——導(dǎo)數(shù)(二)課件 蘇教版選修2-2.ppt
《高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.1.2 瞬時(shí)變化率——導(dǎo)數(shù)(二)課件 蘇教版選修2-2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.1.2 瞬時(shí)變化率——導(dǎo)數(shù)(二)課件 蘇教版選修2-2.ppt(32頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1.1.2 瞬時(shí)變化率——導(dǎo)數(shù)(二),第 1章 1.1 導(dǎo)數(shù)的概念,1.理解曲線的切線的含義. 2.理解導(dǎo)數(shù)的幾何意義. 3.會(huì)求曲線在某點(diǎn)處的切線方程. 4.理解導(dǎo)函數(shù)的定義,會(huì)用定義法求簡(jiǎn)單函數(shù)的導(dǎo)函數(shù).,,學(xué)習(xí)目標(biāo),,,欄目索引,,,知識(shí)梳理 自主學(xué)習(xí),題型探究 重點(diǎn)突破,當(dāng)堂檢測(cè) 自查自糾,知識(shí)梳理 自主學(xué)習(xí),知識(shí)點(diǎn)一 曲線的切線 如圖所示,當(dāng)點(diǎn)Pn沿著曲線y=f(x)無(wú)限趨近于點(diǎn)P時(shí),割線PPn趨近于確定的位置,這個(gè)確定位置的直線PT稱為點(diǎn)P處的 . (1)曲線y=f(x)在某點(diǎn)處的切線與該點(diǎn)的位置有關(guān); (2)曲線的切線,并不一定與曲線只有一個(gè)交點(diǎn), 可以有多個(gè),甚至可以有無(wú)窮多個(gè). 思考 有同學(xué)認(rèn)為曲線y=f(x)在點(diǎn)P(x0,y0)處的 切線l與曲線y=f(x)只有一個(gè)交點(diǎn),你認(rèn)為正確嗎? 答案 不正確.曲線y=f(x)在點(diǎn)P(x0,y0)處的切線l與 曲線y=f(x)的交點(diǎn)個(gè)數(shù)不一定只有一個(gè),如圖所示.,,答案,切線,,知識(shí)點(diǎn)二 導(dǎo)數(shù)的幾何意義 函數(shù)y=f(x)在點(diǎn)x=x0處的導(dǎo)數(shù)f′(x0)就是曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的 . 思考 (1)曲線的割線與切線有什么關(guān)系? 答案 曲線的切線是由割線繞一點(diǎn)轉(zhuǎn)動(dòng),當(dāng)割線與曲線的另一交點(diǎn)無(wú)限接近這一點(diǎn)時(shí)趨于的直線.曲線的切線并不一定與曲線有一個(gè)交點(diǎn). (2)曲線在某點(diǎn)處的切線與在該點(diǎn)處的導(dǎo)數(shù)有何關(guān)系? 答案 函數(shù)f(x)在x0處有導(dǎo)數(shù),則在該點(diǎn)處函數(shù)f(x)表示的曲線必有切線,且在該點(diǎn)處的導(dǎo)數(shù)就是該切線的斜率. 函數(shù)f(x)表示的曲線在點(diǎn)(x0,f(x0))處有切線,但函數(shù)f(x)在該點(diǎn)處不一定可導(dǎo),如f(x)= 在x=0處有切線,但不可導(dǎo).,斜率,答案,返回,題型探究 重點(diǎn)突破,,解析答案,題型一 求曲線的切線方程 1.求曲線在某點(diǎn)處的切線方程 例1 求曲線y=f(x)=x3-x+3在點(diǎn)(1,3)處的切線方程. 解 因?yàn)辄c(diǎn)(1,3)在曲線上,且f(x)在x=1處可導(dǎo),,=(Δx)2+3Δx+2, 當(dāng)Δx→0時(shí),(Δx)2+3Δx+2→2,故f′(1)=2. 故所求切線方程為y-3=2(x-1),即2x-y+1=0.,反思與感悟,,反思與感悟,若求曲線y=f(x)在點(diǎn)P(x0,y0)處的切線方程,其切線只有一條,點(diǎn)P(x0,y0)在曲線y=f(x)上,且是切點(diǎn),其切線方程為y-y0=f′(x0)(x-x0).,,解析答案,跟蹤訓(xùn)練1 (1)曲線f(x)= x3-x2+5在x=1處切線的傾斜角為_(kāi)_____.,解析 設(shè)切線的傾斜角為α,,由導(dǎo)數(shù)幾何意義得tan α=-1.,,解析答案,(2)曲線y=f(x)=x3在點(diǎn)P處切線斜率為3,則點(diǎn)P的坐標(biāo)為_(kāi)______________.,∴點(diǎn)P的坐標(biāo)是(1,1)或(-1,-1).,(-1,-1)或(1,1),,解析答案,2.求曲線過(guò)某點(diǎn)的切線方程 例2 求過(guò)點(diǎn)(-1,-2)且與曲線y=2x-x3相切的直線方程.,反思與感悟,,=2-3x2-3xΔx-(Δx)2,,當(dāng)Δx→0時(shí),其值趨近于2-3x2.,又∵切線過(guò)點(diǎn)(-1,-2),,解析答案,反思與感悟,,當(dāng)切點(diǎn)為(0,0)時(shí),切線斜率為2,切線方程為y=2x;,即19x+4y+27=0. 綜上可知,過(guò)點(diǎn)(-1,-2)且與曲線相切的直線方程為y=2x或19x+4y+27=0.,反思與感悟,,反思與感悟,若題中所給點(diǎn)(x0,y0)不在曲線上,首先應(yīng)設(shè)出切點(diǎn)坐標(biāo),然后根據(jù)導(dǎo)數(shù)的幾何意義列出等式,求出切點(diǎn)坐標(biāo),進(jìn)而求出切線方程.,,解析答案,跟蹤訓(xùn)練2 求過(guò)點(diǎn)P(3,5)且與曲線y=x2相切的直線方程.,,當(dāng)Δx→0時(shí),其值趨近于2x. 設(shè)所求切線的切點(diǎn)為A(x0,y0). ∵點(diǎn)A在曲線y=x2上,,又∵A是切點(diǎn),∴過(guò)點(diǎn)A的切線的斜率,,解析答案,∵所求切線過(guò)P(3,5)和A(x0,y0)兩點(diǎn),,解得x0=1或x0=5.,從而切點(diǎn)A的坐標(biāo)為(1,1)或(5,25). 當(dāng)切點(diǎn)為(1,1)時(shí),切線的斜率為k1=2x0=2; 當(dāng)切點(diǎn)為(5,25)時(shí),切線的斜率為k2=2x0=10. ∴所求的切線有兩條,方程分別為y-1=2(x-1)和y-25=10(x-5), 即2x-y-1=0和10x-y-25=0.,,解析答案,題型二 求導(dǎo)函數(shù),解 ∵Δy=f(x+Δx)-f(x),反思與感悟,,反思與感悟,,解析答案,跟蹤訓(xùn)練3 已知函數(shù)f(x)=x2-1,求f′(x)及f′(-1). 解 因Δy=f(x+Δx)-f(x) =(x+Δx)2-1-(x2-1) =2Δxx+(Δx)2,,故當(dāng)Δx→0時(shí),其值趨近于2x. 得f′(x)=2x,f′(-1)=-2.,,解析答案,題型三 導(dǎo)數(shù)幾何意義的綜合應(yīng)用 例4 設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0),若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行,求a的值. 解 ∵Δy=f(x+Δx)-f(x)=(x+Δx)3+a(x+Δx)2-9(x+Δx)-1-(x3+ax2-9x-1)=(3x2+2ax-9)Δx+(3x+a)(Δx)2+(Δx)3,,由題意知f′(x)最小值是-12,,反思與感悟,,反思與感悟,與導(dǎo)數(shù)的幾何意義相關(guān)的題目往往涉及解析幾何的相關(guān)知識(shí),如直線的方程、直線間的位置關(guān)系等,因此要綜合應(yīng)用所學(xué)知識(shí)解題.,,解析答案,跟蹤訓(xùn)練4 (1)已知函數(shù)f(x)在區(qū)間[0,3]上的圖象如圖所示,記k1=f′(1),k2=f′(2),k3=f(2)-f(1),則k1,k2,k3之間的大小關(guān)系為_(kāi)_________.(請(qǐng)用“>”連接),解析 結(jié)合導(dǎo)數(shù)的幾何意義知, k1就是曲線在點(diǎn)A處切線的斜率, k2則為在點(diǎn)B處切線的斜率, 而k3則為割線AB的斜率, 由圖易知它們的大小關(guān)系.,k1>k3>k2,,解析答案,故交點(diǎn)坐標(biāo)為(1,1).,曲線y=x2在點(diǎn)(1,1)處切線方程為l2:2x-y-1=0.,,易錯(cuò)易混,因?qū)Α霸谀滁c(diǎn)處”“過(guò)某點(diǎn)”分不清致誤,例5 已知曲線y=f(x)=x3上一點(diǎn)Q(1,1),求過(guò)點(diǎn)Q的切線方程.,解析答案,返回,防范措施,,錯(cuò)解 因y′=3x2,f′(1)=3. 錯(cuò)因分析 上述求解過(guò)程中,忽略了當(dāng)點(diǎn)Q不是切點(diǎn)這一情形,導(dǎo)致漏解. 正解 當(dāng)Q(1,1)為切點(diǎn)時(shí),可求得切線方程為y=3x-2.,所以(x0-1)2(2x0+1)=0,,綜上,所求切線的方程為3x-y-2=0或3x-4y+1=0.,故切線方程為3x-y-2=0.,防范措施,,防范措施,解題前,養(yǎng)成認(rèn)真審題的習(xí)慣,其次,弄清“在某點(diǎn)處的切線”與“過(guò)某點(diǎn)的切線”,點(diǎn)Q(1,1)盡管在所給曲線上,但它可能是切點(diǎn),也可能不是切點(diǎn).,,返回,,當(dāng)堂檢測(cè),1,2,3,4,5,解析答案,1.下列說(shuō)法中正確的有_____. ①和曲線只有一個(gè)公共點(diǎn)的直線是曲線的切線; ②和曲線有兩個(gè)公共點(diǎn)的直線一定不是曲線的切線; ③曲線的切線與曲線不可能有無(wú)數(shù)個(gè)公共點(diǎn); ④曲線的切線與曲線有可能有無(wú)數(shù)個(gè)公共點(diǎn).,④,,解析答案,1,2,3,4,5,2.已知曲線y=f(x)=2x2上一點(diǎn)A(2,8),則點(diǎn)A處的切線斜率為_(kāi)___.,當(dāng)Δx→0時(shí),其值趨近于8.即k=8.,8,,1,2,3,4,5,3.若曲線y=x2+ax+b在點(diǎn)(0,b)處的切線方程是x-y+1=0, 則a=___,b=___.,解析答案,解析 由題意,知k=y(tǒng)′|x=0=1,∴a=1. 又(0,b)在切線上,∴b=1.,1,1,,解析答案,1,2,3,4,5,故當(dāng)Δx→0時(shí),其值趨近于x,∴y′|x=1=1.,45,,解析答案,1,2,3,4,5,5.已知曲線y=f(x)=2x2+4x在點(diǎn)P處的切線斜率為16,則P點(diǎn)坐標(biāo)為_(kāi)____.,=2Δx+4x0+4, 當(dāng)Δx→0時(shí),其值趨近于4+4x0. 令4x0+4=16,得x0=3,∴P(3,30).,(3,30),,課堂小結(jié),,返回,1.導(dǎo)數(shù)f′(x0)的幾何意義是曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線的斜率,即 →f′(x0),物理意義是運(yùn)動(dòng)物體在某一時(shí)刻的瞬時(shí)速度. 2.“函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)”是一個(gè)數(shù)值,不是變數(shù),“導(dǎo)函數(shù)”是一個(gè)函數(shù),二者有本質(zhì)的區(qū)別,但又有密切關(guān)系,f′(x0)是其導(dǎo)函數(shù)y=f′(x)在x=x0處的一個(gè)函數(shù)值. 3.利用導(dǎo)數(shù)求曲線的切線方程,要注意已知點(diǎn)是否在曲線上.如果已知點(diǎn)在曲線上,則以該點(diǎn)為切點(diǎn)的切線方程為y-f(x0)=f′(x0)(x-x0);若已知點(diǎn)不在切線上,則設(shè)出切點(diǎn)(x0,f(x0)),表示出切線方程,然后求出切點(diǎn).,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.1.2 瞬時(shí)變化率導(dǎo)數(shù)二課件 蘇教版選修2-2 導(dǎo)數(shù) 及其 應(yīng)用 1.1 瞬時(shí) 變化 課件 蘇教版 選修
鏈接地址:http://www.820124.com/p-2436944.html