高考數(shù)學(xué)總復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第11講 抽象函數(shù)課件 理.ppt
《高考數(shù)學(xué)總復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第11講 抽象函數(shù)課件 理.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué)總復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第11講 抽象函數(shù)課件 理.ppt(23頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第 11 講,抽象函數(shù),1.了解函數(shù)模型的實(shí)際背景.,2.會(huì)運(yùn)用函數(shù)的解析式理解和研究函數(shù)的性質(zhì).,1.已知 f(x+y)+f(x-y)=2f(x)f(y),且 f(x)≠0,則 f(x)是,(,),B,A.奇函數(shù) C.非奇非偶函數(shù),B.偶函數(shù) D.不確定,解析:令x=y(tǒng)=0,則2f(0)=2[f(0)]2,因f(x)≠0,所以f(0) =1.令 x=0,則 f(y)+f(-y)=2f(y),f(y)=f(-y).故選B.,C,A,0,考點(diǎn)1,正比例函數(shù)型抽象函數(shù),例1:設(shè)函數(shù) f(x)對(duì)任意 x,y∈R,都有 f(x+y)=f(x)+f(y), 且當(dāng) x0 時(shí),f(x)0,f(1)=-2. (1)求證:f(x)是奇函數(shù); (2)試問(wèn)在-3≤x≤3 時(shí),f(x)是否有最值?如果有,求出最 值;如果沒(méi)有,說(shuō)出理由.,令 y=-x,則有 f(0)=f(x)+f(-x). 即 f(-x)=-f(x).∴f(x)是奇函數(shù).,(2)解:當(dāng)-3≤x≤3 時(shí),f(x)有最值,理由如下: 任取 x10?f(x2-x1)0.,∴f(x1)f(x2).∴y=f(x)在 R 上為減函數(shù).,因此 f(3)為函數(shù)的最小值,f(-3)為函數(shù)的最大值. f(3)=f(1)+f(2)=3f(1)=-6,f(-3)=-f(3)=6. ∴函數(shù)的最大值為 6,最小值為-6.,(1)證明:令 x=y(tǒng)=0,則有 f(0)=2f(0)?f(0)=0.,【規(guī)律方法】(1)利用賦值法解決抽象函數(shù)問(wèn)題時(shí)需把握好 如下三點(diǎn):一是注意函數(shù)的定義域,二是利用函數(shù)的奇偶性去 掉函數(shù)符號(hào)“f ”前的“負(fù)號(hào)”,三是利用函數(shù)單調(diào)性去掉函數(shù) 符號(hào)“f ”.,(2)解決正比例函數(shù)型抽象函數(shù)的一般步驟為:f(0)=0?f(x),是奇函數(shù)?f(x-y)=f(x)-f(y)?單調(diào)性.,(3)判斷單調(diào)性小技巧:設(shè) x10?f(x2-x1)0 ?f(x2)=f(x2 -x1 +x1)=f(x2 -x1)+f(x1)f(x1),得到函數(shù)單調(diào)遞 減.,【互動(dòng)探究】 1.已知定義在 R 上的函數(shù) f(x)滿(mǎn)足 f(x+y)=f(x)+f(y),則,下列錯(cuò)誤的是(,),答案:D,考點(diǎn) 2,對(duì)數(shù)函數(shù)型抽象函數(shù),例 2:已知函數(shù) f(x)的定義域?yàn)閧x|x∈R,且 x≠0},對(duì)定義 域內(nèi)的任意x1,x2,都有 f(x1x2)=f(x1)+f(x2),且當(dāng) x1時(shí) f(x)0, f(2)=1. (1)求證:f(x)是偶函數(shù); (2)求證:f(x)在(0,+∞)上是增函數(shù); (3)解不等式 f(2x2-1)2.,則有 f(-x)=f(x)+f(-1). 又令x1=x2=-1,得 2f(-1)=f(1). 再令 x1=x2=1,得 f(1)=0,從而 f(-1)=0. 于是有 f(-x)=f(x),所以 f(x)是偶函數(shù).,(1)證明:對(duì)定義域內(nèi)的任意 x1,x2 都有 f(x1x2)=f(x1)+f(x2),令 x1=x,x2=-1,,【互動(dòng)探究】 2.對(duì)于函數(shù) f(x)定義域中任意 x1,x2(x1≠x2)有如下結(jié)論: ①f(x1+x2)=f(x1)+f(x2); ②f(x1x2)=f(x1)+f(x2);,當(dāng) f(x)=lgx 時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是______.,②③,考點(diǎn)3,指數(shù)函數(shù)型抽象函數(shù),例3:定義在R上的函數(shù) y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)1, 且對(duì)任意的 a,b∈R,有 f(a+b)=f(a)f(b). (1)求證:f(0)=1; (2)求證:對(duì)任意的 x∈R,恒有 f(x)>0; (3)求證:f(x)是 R 上的增函數(shù); (4)若 f(x)f(2x-x2)>1,求 x 的取值范圍. (1)證明:令a=b=0,則 f(0)=f 2(0). ∵f(0)≠0,∴f(0)=1.,∴f(x2)>f(x1).∴f(x)是 R 上的增函數(shù).,(4)解:由f(x)f(2x-x2)>1,f(0)=1 得 f(3x-x2)>f(0). ∵f(x)是R 上的增函數(shù),∴3x-x2>0.∴0<x<3. ∴x 的取值范圍是{x|0x3}.,【互動(dòng)探究】 3.對(duì)于函數(shù) f(x)定義域中任意的 x1,x2(x1≠x2),有如下結(jié)論: ①f(x1+x2)=f(x1)f(x2); ②f(x1x2)=f(x1)+f(x2);,當(dāng) f(x)=2x 時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是___________.,答案:①③⑤,●思想與方法● ⊙利用轉(zhuǎn)化與化歸思想解答抽象函數(shù),答案:①③,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)總復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第11講 抽象函數(shù)課件 高考 數(shù)學(xué) 復(fù)習(xí) 第二 函數(shù) 導(dǎo)數(shù) 及其 應(yīng)用 11 抽象 課件
鏈接地址:http://www.820124.com/p-2454564.html