2019-2020年高二數(shù)學(xué)下 11.1《直線的點(diǎn)斜式、斜截式》教案 滬教版.doc
《2019-2020年高二數(shù)學(xué)下 11.1《直線的點(diǎn)斜式、斜截式》教案 滬教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高二數(shù)學(xué)下 11.1《直線的點(diǎn)斜式、斜截式》教案 滬教版.doc(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高二數(shù)學(xué)下 11.1《直線的點(diǎn)斜式、斜截式》教案 滬教版 一、素質(zhì)教育目標(biāo) 1、知識(shí)教學(xué)點(diǎn) ⑴直線方程的點(diǎn)斜式、斜截式、兩點(diǎn)式、截距式和一般式,它們之間的內(nèi)在聯(lián)系 ⑵直線與二元一次方程之間的關(guān)系 ⑶由已知條件寫出直線的方程 ⑷根據(jù)直線方程求出直線的斜率、傾斜角、截距,能畫方程表示的直線 2、能力訓(xùn)練點(diǎn) (1) 通過對(duì)直線方程的點(diǎn)斜式的研究,培養(yǎng)學(xué)生由特殊到一般的研究方法 (2) 通過對(duì)二元一次方程與直線的對(duì)應(yīng)關(guān)系的認(rèn)識(shí)和理解,培養(yǎng)學(xué)生的數(shù)、形轉(zhuǎn)化能力 (3) 通過運(yùn)用直線方程的知識(shí)解答相關(guān)問題的訓(xùn)練,培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)分析問題、解決問題的能力。 二、學(xué)法指導(dǎo) 本節(jié)主要學(xué)習(xí)直線方程的五種形式,應(yīng)理解并記憶公式的內(nèi)容,特別要搞清各個(gè)公式的適用范圍:點(diǎn)斜式和斜截式需要斜率存在,而兩點(diǎn)式不能表示與坐標(biāo)軸垂直的直線,截距式不能表示過原點(diǎn)及與坐標(biāo)軸垂直的直線。一般式雖然可表示任意直線但它所含的變量多,故在運(yùn)用時(shí)要靈活選擇公式,不丟解不漏解。 三、教學(xué)重點(diǎn)、難點(diǎn) 1、重點(diǎn):直線的點(diǎn)斜式和一般式的推導(dǎo),由已知條件求直線的方程 2、難點(diǎn):直線的點(diǎn)斜式和一般式的推導(dǎo),如何選擇方程的形式,如何簡(jiǎn)化運(yùn)算過程。 四、課時(shí)安排 本課題安排3課時(shí) 五、教與學(xué)過程設(shè)計(jì) 第一課時(shí) 直線的方程-點(diǎn)斜式、斜截式 ●教學(xué)目標(biāo) 1.理解直線方程點(diǎn)斜式的形式特點(diǎn)和適用范圍. 2.了解求直線方程的一般思路. 3.了解直線方程斜截式的形式特點(diǎn). ●教學(xué)重點(diǎn) 直線方程的點(diǎn)斜式 ●教學(xué)難點(diǎn) 點(diǎn)斜式推導(dǎo)過程的理解. ●教學(xué)方法 學(xué)導(dǎo)式 ●教具準(zhǔn)備 幻燈片 ●教學(xué)過程 1、創(chuàng)設(shè)情境 已知直線l過點(diǎn)(1,2),斜率為2,則直線l上的任一點(diǎn)應(yīng)滿足什么條件? 分析:設(shè)Q(x,y)為直線l上的任一點(diǎn),則kPQ= 1, 即(y―1)/(x―1)= 2(x≠1), 整理得y―2=2(x―1) 又點(diǎn)(1,2)符合上述方程, 故直線l上的任一點(diǎn)應(yīng)滿足條件y―2=2(x―1) 回顧解題用到的知識(shí)點(diǎn): 過兩點(diǎn)的斜率的公式: 經(jīng)過兩點(diǎn)P1(x1,y1),P2(x2,y2)的直線的斜率公式是: 2、提出問題 問:直線l過點(diǎn)(1,2),斜率為2,則直線l的方程是y―2=2(x―1)嗎?回想一下直線的方程與方程的直線的概念: 以一個(gè)方程的解為坐標(biāo)的點(diǎn)都是某條直線上的點(diǎn),反過來,這條直線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解,這時(shí),這個(gè)方程叫做這條直線的方程,這條直線叫做這個(gè)方程的直線。 直線l上的點(diǎn)都是這個(gè)方程的解;反過來,以這個(gè)方程的解為坐標(biāo)的點(diǎn)都在直線l上,所以直線l的方程是y―2=2(x―1) 3、解決問題 直線方程的點(diǎn)斜式: y ―y1 =k( x ―x1) 其中()為直線上一點(diǎn)坐標(biāo), k為直線斜率. 推導(dǎo)過程: 若直線l經(jīng)過點(diǎn),且斜率為k,求l方程。 設(shè)點(diǎn) P(x,y)是直線l上任意一點(diǎn), 根據(jù)經(jīng)過兩點(diǎn)的直線的斜率公式, 得 ,可化為. 當(dāng)x = x1時(shí)也滿足上述方程。 所以,直線l方程是. 說明:①這個(gè)方程是由直線上一點(diǎn)和斜率確定的; ②當(dāng)直線l的傾斜角為0時(shí),直線方程為; ③當(dāng)直線傾斜角為90時(shí),直線沒有斜率,它的方程不能用點(diǎn)斜式表示.這時(shí)直線方程為:. 4、反思應(yīng)用. 例1.一條直線經(jīng)過點(diǎn)P1(-2,3),傾斜角=45,求這條直線方程,并畫出圖形. 解:這條直線經(jīng)過點(diǎn)P1(-2,3),斜率是:. 代入點(diǎn)斜式方程,得 這就是所求的直線方程,圖形如圖中所示 說明:例1是點(diǎn)斜式方程的直接運(yùn)用,要求學(xué)生熟練掌握,并具備一定的作圖能力. 鞏固訓(xùn)練: 例2.直線l過點(diǎn)A(-1 ,-3),其傾斜角等于直線y=2x的傾斜角的2倍,求直線l 的方程。 分析:已知所求直線上一點(diǎn)的坐標(biāo),故只要求直線的斜率。所以可以根據(jù)條件,先求出y=2x的傾斜角,再求出l的傾斜角,進(jìn)而求出斜率。 解:設(shè)所求直線l的斜率為k,直線y=2x的傾斜角為α,則 tanα=2 , k= tan2α 代入點(diǎn)斜式,得 即:4x + 3y + 13 = 0 例3:已知直線的斜率為k, 與y軸的交點(diǎn)是p (0 ,b ), 求直線l 的方程. 解:將點(diǎn)p (0,b), k代入直線方程的點(diǎn)斜式,得 y-b=k(x-0) 即 直線的斜截式:y = kx + b, 其中k為直線的斜率,b為直線在y軸上的截距。 說明:①b為直線l在y軸上截距; ②斜截式方程可由過點(diǎn)(0,b)的點(diǎn)斜式方程得到; ③當(dāng)時(shí),斜截式方程就是一次函數(shù)的表示形式. 想一想:點(diǎn)斜式、斜截式的適用范圍是什么? 當(dāng)直線與x軸垂直時(shí),不適用。 練習(xí):直線l的方程是4x + 3y + 13 = 0,求它的斜率及它在y軸上的截距。 分析:由4x + 3y + 13 = 0得y = ―4x/3―13/3 所以斜率是-4/3, 在y軸上的截距是―13/3。 例4 直線l在y軸上的截距是-7,傾斜角為45,求直線l的方程。 分析:直線l在x軸上的截距是-7,即直線l過點(diǎn)(0,-7) 又傾斜角為45,即斜率k = 1 ∴直線l的方程是y = x - 7 ●課堂小結(jié) 數(shù)學(xué)思想:數(shù)形結(jié)合、特殊到一般 數(shù)學(xué)方法:公式法 知識(shí)點(diǎn):點(diǎn)斜式、斜截式 ●課后作業(yè) P44習(xí)題7.2 1 (2)(3),2,3 思考題:一直線被兩直線l1:4x+y+6=0, l2:3x―5y―6=0截得的線段的中點(diǎn)恰好是坐標(biāo)原點(diǎn),求該直線方程。 分析:設(shè)所求直線與直線l1:4x+y+6=0, l2:3x―5y―6=0交于點(diǎn)A、B, 設(shè)A(a, b),則B(-a,- b), ∵A、B分別在直線l1:4x+y+6=0, l2:3x―5y―6=0 ∴4a+b+6=0, 3a―5b―6=0 ∴a+6b=0 ∴所求直線的方程是x+6y=0 教學(xué)后記:- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 直線的點(diǎn)斜式、斜截式 2019-2020年高二數(shù)學(xué)下 11.1直線的點(diǎn)斜式、斜截式教案 滬教版 2019 2020 年高 數(shù)學(xué) 11.1 直線 點(diǎn)斜式 斜截式 教案
鏈接地址:http://www.820124.com/p-2461466.html