2019-2020年高二數(shù)學(xué)上冊 8.1《向量的坐標(biāo)表示及其運(yùn)算》教案二 滬教版.doc
《2019-2020年高二數(shù)學(xué)上冊 8.1《向量的坐標(biāo)表示及其運(yùn)算》教案二 滬教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高二數(shù)學(xué)上冊 8.1《向量的坐標(biāo)表示及其運(yùn)算》教案二 滬教版.doc(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高二數(shù)學(xué)上冊 8.1《向量的坐標(biāo)表示及其運(yùn)算》教案二 滬教版 時(shí)間: 年 月 日 1、 授課內(nèi)容: 2、 目的與考點(diǎn)分析: 3、 授課內(nèi)容: (1) 知識點(diǎn)回顧: (2) 典型題型分析講解: 一.情境引入 上海市莘莊中學(xué)的健美操隊(duì)四名隊(duì)員A、B、C、D在一個(gè)長10米,寬8米的矩形表演區(qū)域EFGH內(nèi)進(jìn)行健美操表演. (1)若在某時(shí)刻,四名隊(duì)員A、B、C、D保持如圖1所示的平行四邊形隊(duì)形.隊(duì)員A位于點(diǎn)F處,隊(duì)員B在邊FG上距F點(diǎn)3米處,隊(duì)員D位于距EF邊2米距FG邊5米處.你能確定此時(shí)隊(duì)員C的位置嗎? [說明] 此時(shí)隊(duì)員C在位于距EF邊5米距FG邊5米處.這個(gè)圖形比較特殊,學(xué)生很快就會得到答案,這時(shí)教師引入第二個(gè)問題. (2)若在某時(shí)刻,四名隊(duì)員A、B、C、D保持如圖2所示的平行四邊形隊(duì)形.隊(duì)員A位于距EF邊2米距FG邊1米處,隊(duì)員B在距EF邊6米距FG邊3米處,隊(duì)員D位于距EF邊4米距FG邊5米處.你能確定此時(shí)隊(duì)員C的位置嗎? [說明] 不要求學(xué)生寫出結(jié)果,只引導(dǎo)學(xué)生思考.這個(gè)圖形更為一般一些,學(xué)生解決的可能不是很順,這時(shí),教師就可以說,這一節(jié)我們就來學(xué)習(xí)一個(gè)新的內(nèi)容:向量的坐標(biāo)表示及其運(yùn)算,學(xué)習(xí)了這個(gè)內(nèi)容之后,同學(xué)們只要花上兩分鐘或者只要一分鐘的時(shí)間就可以解決這個(gè)問題了,引起學(xué)生學(xué)習(xí)的興趣與探究的欲望. 二.學(xué)習(xí)新課 1. 向量的正交分解 我們稱在平面直角坐標(biāo)系中,方向與x軸和y軸正方向分別相同的的兩個(gè)單位向量叫做基本單位向量,分別記為,如圖,稱以原點(diǎn)O為起點(diǎn)的向量為位置向量,如下圖左,即為一個(gè)位置向量. 思考1:對于任一位置向量,我們能用基本單位向量來表示它嗎? 如上圖右,設(shè)如果點(diǎn)A的坐標(biāo)為,它在小x軸,y軸上的投影分別為M,N,那么向量能用向量與來表示嗎?(依向量加法的平行四邊形法則可得),與能用基本單位向量來表示嗎?(依向量與實(shí)數(shù)相乘的幾何意義可得),于是可得: 由上面這個(gè)式子,我們可以看到:平面直角坐標(biāo)系內(nèi)的任一位置向量都能表示成兩個(gè)相互垂直的基本單位向量的線性組合,這種向量的表示方法我們稱為向量的正交分解. 2.向量的坐標(biāo)表示 思考2:對于平面直角坐標(biāo)系內(nèi)的任意一個(gè)向量,我們都能將它正交分解為基本單位向量的線性組合嗎?如下圖左. 顯然,如上圖右,我們一定能夠以原點(diǎn)O為起點(diǎn)作一位置向量,使.于是,可知:在平面直角坐標(biāo)系內(nèi),任意一個(gè)向量都存在一個(gè)與它相等的位置向量.由于這一點(diǎn),我們研究向量的性質(zhì)就可以通過研究其相應(yīng)的位置向量來實(shí)現(xiàn).由于任意一個(gè)位置向量都可以正交分解為基本單位向量的線性組合,所以平面內(nèi)任意的一個(gè)向量都可以正交分解為基本單位向量的線性組合.即: == 上式中基本單位向量前面的系數(shù)x,y是與向量相等的位置向量的終點(diǎn)A的坐標(biāo).由于基本單位向量是固定不可變的,為了簡便,通常我們將系數(shù)x,y抽取出來,得到有序?qū)崝?shù)對(x,y).可知有序?qū)崝?shù)對(x,y)與向量的位置向量是一一對應(yīng)的.因而可用有序?qū)崝?shù)對(x,y)表示向量,并稱(x,y)為向量的坐標(biāo),記作: =(x,y) [說明](x,y)不僅是向量的坐標(biāo),而且也是與相等的位置向量的終點(diǎn)A的坐標(biāo)!當(dāng)將向量的起點(diǎn)置于坐標(biāo)原點(diǎn)時(shí),其終點(diǎn)A的坐標(biāo)是唯一的,所以向量的坐標(biāo)也是唯一的.這樣,我們就將點(diǎn)與向量、向量與坐標(biāo)統(tǒng)一起來,使復(fù)雜問題簡單化. 顯然,依上面的表示法,我們有:. 例1.(課本例題)如圖,寫出向量的坐標(biāo). 解:由圖知 與向量相等的位置向量為, 可知 與向量相等的位置向量為, 可知 [說明] 對于位置向量,它的終點(diǎn)的坐標(biāo)就是向量的坐標(biāo);對于起點(diǎn)不在原點(diǎn)的向量,我們是通過先找到與它相等的位置向量,再利用位置向量的坐標(biāo)得到它們的坐標(biāo).那么,有沒有不通過位置向量,直接就寫出任意向量的坐標(biāo)的方法呢?答案是肯定的,而且很簡便,但我們需幾分鐘后再來解決這個(gè)問題.讓我們先學(xué)習(xí)向量坐標(biāo)表示的運(yùn)算: 3.向量的坐標(biāo)表示的運(yùn)算 我們學(xué)過向量的運(yùn)算,知道向量有加法、減法、實(shí)數(shù)與向量的乘法等運(yùn)算,那么,在學(xué)習(xí)了向量的坐標(biāo)表示以后,我們怎么用向量的坐標(biāo)形式來表示這些運(yùn)算呢? 設(shè)是一個(gè)實(shí)數(shù), 由于 所以 于是有: [說明]上面第一個(gè)式子用語言可表述為:兩個(gè)向量的和(差)的橫坐標(biāo)等于它們對應(yīng)的橫坐標(biāo)的和(差),兩個(gè)向量的和(差)的縱坐標(biāo)也等于它們對應(yīng)的縱坐標(biāo)的和(差),可籠統(tǒng)地簡稱為:兩個(gè)向量和(差)的坐標(biāo)等于對應(yīng)坐標(biāo)的和(差); 同樣,第二個(gè)式子用語言可表述為:數(shù)與向量的積的橫坐標(biāo)等于數(shù)與向量的橫坐標(biāo)的積,數(shù)與向量的積的縱坐標(biāo)等于數(shù)與向量的縱坐標(biāo)的積,也可籠統(tǒng)地簡稱為:數(shù)與向量積的坐標(biāo)等于數(shù)與向量對應(yīng)坐標(biāo)的積. 4.應(yīng)用與深化 下面我們來研究剛才提出的不通過位置向量,如何直接寫出任意向量的坐標(biāo)的問題: 例2.如下圖左,設(shè)、是平面直角坐標(biāo)系內(nèi)的任意兩點(diǎn),如何用P、Q的坐標(biāo)來表示向量? 解:如上圖右,向量 從而有 [說明]上面這個(gè)式子告訴我們:平面直角坐標(biāo)系內(nèi)的任意向量的橫坐標(biāo)等于它終點(diǎn)的橫坐標(biāo)與它起點(diǎn)的橫坐標(biāo)的差,縱坐標(biāo)也等于它終點(diǎn)的縱坐標(biāo)與它起點(diǎn)的縱坐標(biāo)的差,可簡稱為“任意向量坐標(biāo)=終點(diǎn)坐標(biāo)-起點(diǎn)坐標(biāo)”. 例3.(課本例題)如圖,平面上A、B、C三點(diǎn)的坐標(biāo)分別為、、. (1)寫出向量的坐標(biāo); (2)如果四邊形ABCD是平行四邊形,求D的坐標(biāo). 解:(1) (2)在上圖中,因?yàn)樗倪呅蜛BCD是平行四邊形,所以 設(shè)點(diǎn)D的坐標(biāo)為,于是有 又 故 由此可得 解得 因此點(diǎn)D的坐標(biāo)為. 練習(xí):(1)請大家用兩分鐘的時(shí)間解答本節(jié)課一開始我們所提出的在某時(shí)刻,健美操隊(duì)員C的位置問題.即:在某時(shí)刻,四名隊(duì)員A、B、C、D保持如圖所示的平行四邊形隊(duì)形.如下圖左,隊(duì)員A位于距EF邊2米距FG邊1米處,隊(duì)員B在距EF邊6米距FG邊3米處,隊(duì)員D位于距EF邊4米距FG邊5米處.你能確定此時(shí)隊(duì)員C的位置嗎? 解:以點(diǎn)F為坐標(biāo)原點(diǎn),以邊FG為x軸,以邊FE為y軸,建立如上圖右所示直角坐標(biāo)系.則依題意有A(2,1),B(6,3),D(4,5),設(shè)C(x,y),則由ABCD是平行四邊形可得: 又 故 于是 x=8, y=7,即C(8,7). 答:隊(duì)員C位于距EF邊8米、距FG邊7米處. (2)在某時(shí)刻,四名隊(duì)員A、B、C、D保持平行四邊形隊(duì)形.已知隊(duì)員A位于距EF邊2米距FG邊1米處,隊(duì)員B在距EF邊6米距FG邊3米處,隊(duì)員C位于如下圖左所示的矩形陰影部分區(qū)域內(nèi)(包括邊界)某一位置.你能確定此時(shí)隊(duì)員D可能的位置區(qū)域嗎? 解:以點(diǎn)F為坐標(biāo)原點(diǎn),以邊FG為x軸,以邊FE為y軸,建立如上圖右所示直角坐標(biāo)系.依題意有A(2,1),B(6,3),設(shè)D(x,y),則由ABCD是平行四邊形可得: 又D(x,y),所以可得C(x+4,y+2) 由題意 于是可得隊(duì)員D可能的位置區(qū)域如圖所示陰影部分(除去點(diǎn)B): 例4.已知向量與,求的坐標(biāo). 解:因?yàn)椋? 所以 三.鞏固練習(xí) 1. 如圖,寫出向量的坐標(biāo). 2.已知,若其終點(diǎn)坐標(biāo)是(2,1),則其起點(diǎn)的坐標(biāo)是 ;若其起點(diǎn)坐標(biāo)是(2,1),則其終點(diǎn)的坐標(biāo)是 . 3.已知向量與,求及的坐標(biāo). 解:1.由題意: 2.設(shè)起點(diǎn)的坐標(biāo)是(x,y),則(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起點(diǎn)的坐標(biāo)是(3,-1); 設(shè)終點(diǎn)的坐標(biāo)是(x,y),則(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起點(diǎn)的坐標(biāo)是(1,3). 3. =3 =3 [另法]:== 四、總結(jié): 五、課后作業(yè): 6、 學(xué)生對于本次課的評價(jià): 意見: 學(xué)生簽字: 7、 教師評定: 1、學(xué)生上次作業(yè)評價(jià): 好 較好 一般 差 2、學(xué)生本次上課情況評價(jià): 好 較好 一般 差 教師簽字: 主任簽字: 蓋章處- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 向量的坐標(biāo)表示及其運(yùn)算 2019-2020年高二數(shù)學(xué)上冊 8.1向量的坐標(biāo)表示及其運(yùn)算教案二 滬教版 2019 2020 年高 數(shù)學(xué) 上冊 8.1 向量 坐標(biāo) 表示 及其 運(yùn)算 教案
鏈接地址:http://www.820124.com/p-2646777.html