2019-2020年高考數(shù)學專題復習導練測 第五章 平面向量章末檢測 理 新人教A版.doc
《2019-2020年高考數(shù)學專題復習導練測 第五章 平面向量章末檢測 理 新人教A版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學專題復習導練測 第五章 平面向量章末檢測 理 新人教A版.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學專題復習導練測 第五章 平面向量章末檢測 理 新人教A版 一、選擇題(本大題共12小題,每小題5分,共60分) 1.如圖,D、E、F分別是△ABC的邊AB、BC、CA的中點,則 ( ) A.++=0 B.-+=0 C.+-=0 D.--=0 2.(xx金華月考)已知a=(cos 40,sin 40),b=(sin 20,cos 20),則ab等于 ( ) A.1 B. C. D. 3.已知△ABC中,=a,=b,若ab<0,則△ABC是 ( ) A.鈍角三角形 B.直角三角形 C.銳角三角形 D.任意三角形 4.(xx山東)定義平面向量之間的一種運算“⊙”如下:對任意的a=(m,n),b=(p,q),令a⊙b=mq-np,下面說法錯誤的是 ( ) A.若a與b共線,則a⊙b=0 B.a(chǎn)⊙b=b⊙a C.對任意的λ∈R,有(λa)⊙b=λ(a⊙b) D.(a⊙b)2+(ab)2=|a|2|b|2 5.一質點受到平面上的三個力F1,F(xiàn)2,F(xiàn)3(單位:牛頓)的作用而處于平衡狀態(tài).已知F1,F(xiàn)2成60角,且F1,F(xiàn)2的大小分別為2和4,則F3的大小為 ( ) A.6 B.2 C.2 D.2 6.(xx廣東)若向量a=(1,1),b=(2,5),c=(3,x)滿足條件(8a-b)c=30,則x等于( ) A.6 B.5 C.4 D.3 7.(xx遼寧)平面上O,A,B三點不共線,設=a,=b,則△OAB的面積等于 ( ) A. B. C. D. 8.O是平面上一定點,A、B、C是該平面上不共線的3個點,一動點P滿足:=+λ(+),λ∈(0,+∞),則直線AP一定通過△ABC的 ( ) A.外心 B.內(nèi)心 C.重心 D.垂心 9.已知a=(sin θ,),b=(1,),其中θ∈,則一定有 ( ) A.a(chǎn)∥b B.a(chǎn)⊥b C.a(chǎn)與b的夾角為45 D.|a|=|b| 10.(xx湖南師大附中月考)若|a|=1,|b|=,且a⊥(a-b),則向量a,b的夾角為( ) A.45 B.60 C.120 D.135 11.(xx廣州模擬)已知向量a=(sin x,cos x),向量b=(1,),則|a+b|的最大值( ) A.1 B. C.3 D.9 12.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=( ) A. B. C. D. 題 號 1 2 3 4 5 6 7 8 9 10 11 12 答 案 13.(xx江西)已知向量a,b滿足|a|=1,|b|=2,a與b的夾角為60,則|a-b|=________. 14.(xx舟山調研)甲船在A處觀察乙船,乙船在它的北偏東60的方向,兩船相距a海里,乙船正向北行駛,若甲船是乙船速度的倍,則甲船應取方向__________才能追上乙船;追上時甲船行駛了________海里. 15.(xx天津)如圖所示,在△ABC中,AD⊥AB,=,||=1,則=________. 16.(xx濟南模擬)在△ABC中,角A、B、C對應的邊分別為a、b、c,若==1,那么c=________. 三、解答題(本大題共6小題,共70分) 17.(10分)(xx江蘇)在平面直角坐標系xOy中,點A(-1,-2)、B(2,3)、C(-2,-1). (1)求以線段AB、AC為鄰邊的平行四邊形的兩條對角線的長; (2)設實數(shù)t滿足(-t)=0,求t的值. 18.(12分)已知A、B、C的坐標分別為A(4,0),B(0,4),C(3cos α,3sin α). (1)若α∈,且||=||,求角α的大??; (2)若⊥,求的值. 19.(12分)(xx遼寧)在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asin A=(2b+c)sin B+(2c+b)sin C. (1)求A的大??; (2)若sin B+sin C=1,試判斷△ABC的形狀. 20(12分)已知向量=,=,定義函數(shù)f(x)=. (1)求函數(shù)f(x)的表達式,并指出其最大值和最小值; (2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S. 21.(12分)(xx衡陽月考)在海岸A處,發(fā)現(xiàn)北偏東45方向,距離A處(-1)n mile的B處有一艘走私船,在A處北偏西75的方向,距離A 2 n mile的C處的緝私船奉命以 10n mile/h的速度追截走私船.此時,走私船正以10 n mile/h的速度從B處向北偏東30方向逃竄,問緝私船沿什么方向能最快追上走私船? 22.(12分)(xx天津一中高三第四次月考)設A,B,C為△ABC的三個內(nèi)角,m=(sin B+sin C,0),n=(0,sin A)且|m|2-|n|2=sin Bsin C. (1)求角A的大??; (2)求sin B+sin C的取值范圍. 2.B [由數(shù)量積的坐標表示知 ab=cos 40sin 20+sin 40cos 20 =sin 60=.] 4.B [∵a⊙b=mq-np,b⊙a=np-mq, ∴a⊙b≠b⊙a.] 5.D [因為F=F+F-2|F1||F2|cos(180-60)=28,所以|F3|=2.] 6.C [∵(8a-b)=(8,8)-(2,5)=(6,3), ∴(8a-b)c=63+3x=30,∴x=4.] 7.C [S△OAB=|a||b|sin〈a,b〉 =|a||b| =|a||b| =.] 9.B [ab=sin θ+|sin θ|,∵θ∈, ∴|sin θ|=-sin θ,∴ab=0,∴a⊥b.] 10.A [由a⊥(a-b),得a2-ab=0, 即a2=ab,所以|a|2=|a||b|cos θ. 因為|a|=1,|b|=,所以cos θ=, 又θ∈[0,180],所以θ=45.] 11.C [由a+b=(sin x+1,cos x+), 得|a+b|= = = =≤=3.] 12.D [設c=(x,y),則c+a=(x+1,y+2), 又(c+a)∥b, ∴2(y+2)+3(x+1)=0.① 又c⊥(a+b), ∴(x,y)(3,-1)=3x-y=0.② 由①②解得x=-,y=-.] 13. 解析 如圖,a=,b=,a-b=-=,由余弦定理得,|a-b|=. 14.北偏東30 a 解析 如圖所示, 設到C點甲船追上乙船,乙到C地用的時間為t,乙船速度為v, 則BC=tv,AC=tv,B=120, 由正弦定理知 =, ∴=, ∴sin∠CAB=,∴∠CAB=30, ∴∠ACB=30,∴BC=AB=a, ∴AC2=AB2+BC2-2ABBCcos 120 =a2+a2-2a2=3a2, ∴AC=a. 15. . 16. 解析 設AB=c,AC=b,BC=a, 由= 得:cbcos A=cacos B. 由正弦定理得:sin Bcos A=cos Bsin A, 即sin(B-A)=0,因為-π- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學專題復習導練測 第五章 平面向量章末檢測 新人教A版 2019 2020 年高 數(shù)學 專題 復習 導練測 第五 平面 向量 檢測 新人
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2726810.html