2019-2020年高考數(shù)學二輪復習 專題8 選修專題 第二講 極坐標與參數(shù)方程 文.doc
《2019-2020年高考數(shù)學二輪復習 專題8 選修專題 第二講 極坐標與參數(shù)方程 文.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學二輪復習 專題8 選修專題 第二講 極坐標與參數(shù)方程 文.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學二輪復習 專題8 選修專題 第二講 極坐標與參數(shù)方程 文 從歷年高考題全國卷可知,極坐標與參數(shù)方程在選考題中相對容易,選此題同學較多,且重點考查參數(shù)方程與普通方程互化,極坐標與普通坐標的互化,另重點考幾類曲線的參數(shù)方程與極坐標方程,應爭取拿滿分! 1.曲線的極坐標方程. (1)極坐標系:一般地,在平面上取一個定點O,自點O引一條射線Ox,同時確定一個長度單位和計算角度的正方向(通常取逆時針方向為正方向),這樣就建立了一個極坐標系.其中,點O稱為極點,射線Ox稱為極軸. (2)極坐標(ρ,θ)的含義:設M是平面上任一點,ρ表示OM的長度,θ表示以射線Ox為始邊,射線OM為終邊所成的角.那么,有序數(shù)對(ρ,θ)稱為點M的極坐標.顯然,每一個有序?qū)崝?shù)對(ρ,θ),決定一個點的位置.其中ρ稱為點M的極徑,θ稱為點M的極角. 極坐標系和直角坐標系的最大區(qū)別在于:在直角坐標系中,平面上的點與有序數(shù)對之間的對應關系是一一對應的,而在極坐標系中,對于給定的有序數(shù)對(ρ,θ),可以確定平面上的一點,但是平面內(nèi)的一點的極坐標卻不是唯一的. (3)曲線的極坐標方程:一般地,在極坐標系中,如果平面曲線C上的任意一點的極坐標滿足方程f(ρ,θ)=0,并且坐標適合方程f(ρ,θ)=0的點都在曲線C上,那么方程f(ρ,θ)=0叫做曲線C的極坐標方程. 幾類曲線的極坐標方程及與直角坐標的互化 2.直線的極坐標方程. (1)過極點且與極軸成φ0角的直線方程是θ=φ0和θ=π-φ0,如下圖所示. (2)與極軸垂直且與極軸交于點(a,0)的直線的極坐標方程是ρcos θ=a,如下圖所示. (3)與極軸平行且在x軸的上方,與x軸的距離為a的直線的極坐標方程為ρsin θ=a,如下圖所示. 3.圓的極坐標方程. (1)以極點為圓心,半徑為r的圓的方程為ρ=r,如圖1所示. (2)圓心在極軸上且過極點,半徑為r的圓的方程為ρ=2rcos_θ,如圖2所示. (3)圓心在過極點且與極軸成的射線上,過極點且半徑為r的圓的方程為ρ=2rsin_θ,如圖3所示. 4.極坐標與直角坐標的互化. 若極點在原點且極軸為x軸的正半軸,則平面內(nèi)任意一點M的極坐標M(ρ,θ)化為平面直角坐標M(x,y)的公式如下: 或者ρ=,tan θ=, 其中要結(jié)合點所在的象限確定角θ的值. 參數(shù)方程的定義及幾類曲線的參數(shù)方程 1.曲線的參數(shù)方程的定義. 在平面直角坐標系中,如果曲線上任意一點的坐標x,y都是某個變數(shù)t的函數(shù),即并且對于t的每一個允許值,由方程組所確定的點M(x,y)都在這條曲線上,那么方程組就叫做這條曲線的參數(shù)方程,聯(lián)系x,y之間關系的變數(shù)t叫做參變數(shù),簡稱參數(shù). 2.常見曲線的參數(shù)方程. (1)過定點P(x0,y0),傾斜角為α的直線: (t為參數(shù)), 其中參數(shù)t是以定點P(x0,y0)為起點,點M(x,y)為終點的有向線段PM的數(shù)量,又稱為點P與點M間的有向距離. 根據(jù)t的幾何意義,有以下結(jié)論: ①設A,B是直線上任意兩點,它們對應的參數(shù)分別為tA和tB,則|AB|=|tB-tA|=; ②線段AB的中點所對應的參數(shù)值等于. (2)中心在P(x0,y0),半徑等于r的圓: (θ為參數(shù)). (3)中心在原點,焦點在x軸(或y軸)上的橢圓: (θ為參數(shù)). 中心在點P(x0,y0),焦點在平行于x軸的直線上的橢圓的參數(shù)方程為(α為參數(shù)). (4)中心在原點,焦點在x軸(或y軸)上的雙曲線: (θ為參數(shù)). (5)頂點在原點,焦點在x軸的正半軸上的拋物線: (t為參數(shù),p>0) 注:sec θ=. 3.參數(shù)方程化為普通方程. 由參數(shù)方程化為普通方程就是要消去參數(shù),消參數(shù)時常常采用代入消元法、加減消元法、乘除消元法、三角代換法,消參數(shù)時要注意參數(shù)的取值范圍對x,y的限制. 1.已知點A的極坐標為,則點A的直角坐標是(2,-2). 2.把點P的直角坐標(,-)化為極坐標,結(jié)果為. 3.曲線的極坐標方程ρ=4sin θ化為直角坐標方程為x2+(y-2)2=4. 4.以極坐標系中的點為圓心、1為半徑的圓的極坐標方程是ρ=2cos. 5.在平面直角坐標系xOy中,若直線l:(t為參數(shù))過橢圓C:(θ為參數(shù))的右頂點,則常數(shù)a的值為________. 解析:由直線l:得y=x-a.由橢圓C:得==1.所以橢圓C的右頂點為(3,0).因為直線l過橢圓的右頂點,所以0=3-a,即a=3. 答案:3- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學二輪復習 專題8 選修專題 第二講 極坐標與參數(shù)方程 2019 2020 年高 數(shù)學 二輪 復習 專題 選修 第二 坐標 參數(shù) 方程
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.820124.com/p-2755610.html