2019-2020年高考數(shù)學 中等生百日捷進提升系列 專題06 數(shù)列的通項公式(含解析).doc
《2019-2020年高考數(shù)學 中等生百日捷進提升系列 專題06 數(shù)列的通項公式(含解析).doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學 中等生百日捷進提升系列 專題06 數(shù)列的通項公式(含解析).doc(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學 中等生百日捷進提升系列 專題06 數(shù)列的通項公式(含解析) 【背一背重點知識】 1.求數(shù)列的通項公式,要注意多觀察、多試驗,大膽猜想,小心論證. 2.已知求的問題,要特別注意的情況. 3.求數(shù)列的通項公式,常見的有六種類型: (1)已知數(shù)列的前項,求其通項公式.常用方法:觀察分析法、逐差法、待定系數(shù)法等,根據(jù)數(shù)列前幾項,觀察規(guī)律,歸納出數(shù)列通項公式是一項重要能力. (2)已知數(shù)列前項和,或前項和與的關系,求通項可利用. (3)已知遞推式求通項,這類問題要求不高,主要掌握“先猜后證”“化歸法”“累加法”等. (4)型,求問題,其關鍵是確定待定系數(shù),使. (5)型,求問題,可用方法. (6)型,求問題,可用方法. 【講一講提高技能】 1. 必備技能:由和遞推關系求通項公式,可觀察其特點,一般常用“化歸法”、“累加法”、“累乘法”等.對于形如“”型的遞推關系式求通項公式,只要可求和,便可利用累加法;對于形如“”型的遞推關系式求通項公式,只要可求積,便可利用累積或迭代法;對于形如“”型遞推關系求通項公式,可用迭代或構造等比數(shù)列法. 2. 典型例題: 例1若數(shù)列{}的前n項和為,則數(shù)列{}的通項公式是=______. 分析:此題難度不大,符合求數(shù)列通項公式中的第(2)種類型,要注意檢驗時是否也成立,否則就只能用分段函數(shù)來表示. 當時,,所以,即;當時,,所以,因此數(shù)列是以首項為1,公差為的等比數(shù)列,故所求數(shù)列的通項公式為. 【解析】 例2在數(shù)列中,若前n項和滿足,則該數(shù)列的通項公式 【答案】 【解析】 試題分析:時,當時,所以數(shù)列為等比數(shù)列,公比 【練一練提升能力】 1. 已知等比數(shù)列滿足:公比,數(shù)列的前項和為,且(). (1)求數(shù)列和數(shù)列的通項和; (2)設,證明:. 【答案】(1),(2)詳見解析 【解析】 2. 已知數(shù)列的前項和為,且滿足 (1)求數(shù)列的通項公式 (2)設數(shù)列的前項和為,求證: 【答案】(1);(2)詳見解析 【解析】 試題分析:(1)利用,即可求出結果;(2)因為,再利用不等式放縮,可得,再采用裂項相消即可求出結果. 等差數(shù)列的性質(zhì) 【背一背重點知識】 1.若、、、,且,為等差數(shù)列,則. 2.在等差數(shù)列中,仍為等數(shù)列,公差為. 3.若為等差數(shù)列,則仍為等數(shù)列,公差為. 4.等差數(shù)列的增減性:時為遞增數(shù)列,且當時前項和有最小值;時為遞減數(shù)列,且當時前項和有最大值. 5.若等數(shù)列的前項之和可以寫成,則,,當時它表示二次函數(shù),數(shù)列的前項和是成等差數(shù)列的充要條件. 6.設分別是等數(shù)列中所有奇數(shù)項的和與所有偶數(shù)項的和,則有當數(shù)列項數(shù)為時,有;當數(shù)列項數(shù)為時,有, ,,. 【講一講提高技能】 1.必備技能:等差數(shù)列的性質(zhì)是等差數(shù)列的定義、通項公式以及前項和公式等基礎知識的推廣與變形,熟練掌握和靈活應用這些性質(zhì)可以有效、方便、快捷地解決許多等差數(shù)列問題。應用等差數(shù)列的性質(zhì)解答問題的關鍵是尋找項數(shù)之間的關系. 2.典型例題: 例1在等差數(shù)列中,,公差為,前項和為,當且僅當時取最大值,則的取值范圍_________. 分析:此題主要考查的是等差數(shù)列的性質(zhì)及等差數(shù)列前項和公式,難度不大.可由題意確定得到,從而得到公差的不等式組,求出的范圍. 【解析】由題意得:,所以,即 例2設等差數(shù)列的前項和為,若,,則=( ) A.63 B.45 C.43 D.27 【答案】B 【解析】 試題分析:由題意,得,解得,,則===45,故選B. 【練一練提升能力】 1. 已知,,是、的等差中項,正數(shù)是、的等比中項,那么、、、從小到大的順序關系是( ) A. B. C. D. 【答案】B 【解析】 2. 已知,若,則的表達式為________. 【答案】 【解析】 試題分析: ,,,,即,當且僅當時取等號 當時, 當時 ,,即 數(shù)列是以為首項,以1為公差的等差數(shù)列 當時, 等比數(shù)列的性質(zhì) 【背一背重點知識】 1.通項公式的推廣:. 2.對于任意正整數(shù),只要滿足,則有. 3.若(項數(shù)相同),是等比數(shù)列,則仍是等比數(shù)列. 4.三個數(shù)成等比數(shù)列且積一定,通常設這三個數(shù)為比較方便. 5.為等比數(shù)列的前和,則滿足,但不一定成等比數(shù)列. 【講一講提高技能】 1必備技能:等比數(shù)列與等差數(shù)列在定義上只有“一字之差”,它們的通項公式和性質(zhì)有許多相似之處,其中等差數(shù)列中的“和”“倍數(shù)”可以與等比數(shù)列中的“積”“冪”相類比.關注它們之間的異同有助于我們從整體上把握它們,同時也有利于類比思想的推廣.對于等差數(shù)列項的和或等比數(shù)列項的積的運算,若能關注通項公式的下標的大小關系,可以簡化題目的運算. 2典型例題: 例1在各項均為正數(shù)的等比數(shù)列中,,則等于( ) A.5 B.6 C.7 D.8 【答案】C 【解析】 例2已知數(shù)列滿足=1,. (Ⅰ)證明是等比數(shù)列,并求的通項公式; (Ⅱ)證明:. 分析:本題第(Ⅰ)問,證明等比數(shù)列,可利用等比數(shù)列的定義來證明,之后利用等比數(shù)列,求出其通項公式;對第(Ⅱ)問,可先由第(Ⅰ)問求出,然后轉(zhuǎn)化為等比數(shù)列求和,放縮法證明不等式. 【解析】(Ⅰ)證明:由得,所以,所以是等比數(shù)列,首項為,公比為3,所以,解得. (Ⅱ)由(Ⅰ)知:,所以, 因為當時,,所以,于是=, 所以. 【練一練提升能力】 1. 項數(shù)為奇數(shù)的等比數(shù)列,所有奇數(shù)項的和為255,所有偶數(shù)項的和為-126,末項是192,則首項( ) A.1 B.2 C.3 D.4 【答案】C 【解析】 2.設是公比為q的等比數(shù)列. (Ⅰ) 求的前n項和公式; (Ⅱ) 設q≠1, 證明數(shù)列不是等比數(shù)列. 【答案】(Ⅰ) 分兩種情況討論. ①當時,數(shù)列是首項為的常數(shù)列,所以. ②當時, 上面兩式錯位相減: . 綜上,得 (Ⅱ) 使用反證法. 設是公比q≠1的等比數(shù)列, 假設數(shù)列是等比數(shù)列.則 ①當,使得成立,則不是等比數(shù)列. ②當,使得成立,則恒為常數(shù) 當時,.這與題目條件q≠1矛盾. 綜上兩種情況,假設數(shù)列是等比數(shù)列均不成立,所以當q≠1時, 數(shù)列不是等比數(shù)列. 【解析】 數(shù)列求和 【背一背重點知識】 非等差、等比數(shù)列求和的常用方法: 1.倒序相加法:如果一個數(shù)列,首末兩端等“距離”的兩項的和相等或等于同一常數(shù),那么求這個數(shù)列的前項和即可用倒序相加法,如等差數(shù)列的前前項和即是用此類法推導的. 2.分組轉(zhuǎn)化求和法:若一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)化法,分別求和而后相加減. 3.錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應項之積構成的,那么這個數(shù)列的前項和即可用此法來求,如等比數(shù)列的前項和就是用此法推導的. 4.裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求得其和. 【講一講提高技能】 1必備技能:數(shù)列求和的方法:(1)一般的數(shù)列求和,應從通項入手,若無通項,先求通項,然后通過對通項變形,轉(zhuǎn)化為與特殊數(shù)列有關或具備某種方法適用特點的形式,從而選擇合適的方法求和;(2)解決非等差、等比數(shù)列的求和,主要有兩種思路:①轉(zhuǎn)化的思想,即將一般數(shù)列設法轉(zhuǎn)化為等差或等比數(shù)列,這一思想方法往往通過通項分解或錯位相減來完成.②不能轉(zhuǎn)化為等差或等比數(shù)列的數(shù)列,往往通過裂項相消法、錯位相減法、倒序相加法等來求和. 2典型例題: 例1已知數(shù)列是首項為的等比數(shù)列,其前項和為,且,則數(shù)列的前5項和為 A.或 B.或 C. D. 【答案】D 【解析】 試題分析:由可知公比 ,數(shù)列是等比數(shù)列,公比為,首項為1,所以 例2若等差數(shù)列滿足,則當 時,的前項和最大. 分析:此題主要考查等差數(shù)列的性質(zhì)、前項和公式的應用,難度不大.由已知,可得,進一步得到,,得出結論. 【解析】由等差數(shù)列的性質(zhì),,,又因為,所以 所以,所以,,故數(shù)列的前8項最大. 【練一練提升能力】 1.已知等比數(shù)列是遞增數(shù)列,是的前項和,若是方程的兩個根,則____________. 【答案】63 【解析】 2. 已知公差不為零的等差數(shù)列中,,且成等比數(shù)列. (Ⅰ)求數(shù)列的通項公式; (Ⅱ)令(),求數(shù)列的前項和. 【答案】(Ⅰ);(Ⅱ). 【解析】 (一) 選擇題(12*5=60分) 1.設是等差數(shù)列的前項和,若,則( ) A.5 B.7 C.9 D.11 【答案】A 【解析】 試題分析:因為是等差數(shù)列,所以,,,故選A. 2.設首項為,公比為的等比數(shù)列的前項和為,則( ?。? A. B. C. D. 【答案】D 3.等差數(shù)列中,則的前8項和為( ) A. B. C. D. 【答案】B 【解析】 試題分析:設等差數(shù)列的等差中項為,又所以得,所以,所以,故選B. 4.設是公差為d(d≠0)的無窮等差數(shù)列﹛an﹜的前n項和,則下列命題錯誤的是( ?。? A.若d<0,則數(shù)列﹛Sn﹜有最大項 B.若數(shù)列﹛Sn﹜有最大項,則d<0 C.若數(shù)列﹛Sn﹜是遞增數(shù)列,則對任意,均有 D.若對任意,均有,則數(shù)列﹛Sn﹜是遞增數(shù)列 【答案】C 【解析】選項C顯然是錯的,舉出反例:—1,0,1,2,3,….滿足數(shù)列{S n}是遞增數(shù)列,但是S n>0不成立.故選C 5. 在等差數(shù)列中,,則( ) 【答案】B 【解析】設等差數(shù)列的公差為,由題設知,,所以, 所以,.故選B. 6.設等差數(shù)列滿足,;則數(shù)列的前項和中使得取的最大值的序號為( ) A.4 B.5 C.6 D.7 【答案】B 【解析】 7.在等差數(shù)列中,,則數(shù)列的前11項和( ) A.24 B.48 C.66 D.132 【答案】D 【解析】 試題分析:由已知得,化簡得:,即,所以.故選D. 8.設函數(shù),是公差為的等差數(shù)列,,則( ) A、 B、 C、 D、 【答案】D 【解析】 ,即 ,而是公差為的等差數(shù)列,代入,即 ,不是的倍數(shù),. ,故選D. 9.定義在上的函數(shù),如果對于任意給定的等比數(shù)列, 仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”. 現(xiàn)有定義在上的如下函數(shù): ①; ②; ③; ④. 則其中是“保等比數(shù)列函數(shù)”的的序號為 ( ?。? A① ② B.③ ④ C.① ③ D.② ④ 【答案】C 【解析】 10.等差數(shù)列{an}中,,則數(shù)列{an}的公差為( ?。? A.1 B.2 C.3 D.4 【答案】B 【解析】由等差中項的性質(zhì)知,又.故選B. 11.已知等比數(shù)列中,公比,若,則有( ) A.最小值-4 B.最大值-4 C.最小值12 D.最大值12 【答案】B 【解析】 試題分析:由題意,因為,所以(時取等號),所以,最大值為-4.故選B. 12.已知等差數(shù)列中,,公差;是數(shù)列的前n項和,則( ) A. B. C. D. 【答案】D 【解析】 試題分析:因為在等差數(shù)列中,,公差,所以,則,所以;故選D. (二) 填空題(4*5=20分) 13.數(shù)列中,,,(,),則 . 【答案】 【解析】 14. 若等比數(shù)列的各項均為正數(shù),且,則 . 【答案】. 【解析】由題意知,所以, 因此, 因此. 15. 設函數(shù)是公差為的等差數(shù)列,,則________. 【答案】 【解析】 16. 如圖,在等腰直角三角形中,斜邊,過點作的垂線,垂足為;過點作的垂線,垂足為;過點作的垂線,垂足為;…,以此類推,設,,,…,,則________. 【答案】 【解析】 試題分析:由題意,,,所以是以首項,公比的等比數(shù)列,則.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學 中等生百日捷進提升系列 專題06 數(shù)列的通項公式含解析 2019 2020 年高 數(shù)學 中等 百日 提升 系列 專題 06 數(shù)列 公式 解析
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2772400.html